Section 1.3. Abel Summation

Note. In this section we

Note.

Proposition 1.3.1. For integers $n > m \le 0$,

$$\sum_{r=m+1}^{n} a(r)f(r) = \sum_{r=m}^{n-1} A(r)[f(r) - f(r+1)] + A(n)f(n) - A(m)f(m).$$

In particular,

$$\sum_{r=1}^{n} a(r)f(r) = \sum_{r=1}^{n-1} A(r)[f(r) - f(r+1)] + A(n)f(n).$$

Proposition 1.3.2. Suppose that f(r) is real and non-negative, and decreases with r. Suppose that a(r) and b(r) are such that $A(r) \leq CB(r)$ for all r. Then

$$\sum_{r=1}^{n} a(r)f(r) \le C \sum_{r=1}^{n} b(r)f(r).$$

Proposition 1.3.3. Suppose that $A(n)f(n) \to 0$ as $n \to \infty$. Then if one of the series

$$\sum_{r=1}^{\infty} a(r)f(r) \text{ and } \sum_{r=1}^{\infty} A(r)[f(r) - f(r+1)]$$

converges, then so does the other, to the same sum.

Proposition 1.3.4. Dirichlet's Test for Convergence.

Suppose that:

- (i) $|A(r)| \leq C$ for all r,
- (ii) $f(r \rightarrow 0 \text{ as } r \rightarrow \infty,$
- (iii) $\sum_{r=1}^{\infty} |f(r) f(r_1)|$ is convergent.

Then $\sum_{r=1}^{\infty} a(r)f(r)$ converges, say to S, where $|S| \leq C \sum_{r=1}^{\infty} |f(r) - f(r+1)|$. Condition (iii) can be replaced by: (iiia) f(r) is non-negative and decreasing. We then have $|S| \leq Cf(1)$.

Theorem 1.3.5. Let y < x, and let f be a function (with real or complex values) having a continuous derivative on [y, x]. Then

$$\sum_{y < r \le x} a(r)f(r) = A(x)f(x) - A(y)f(y) - \int_{y}^{x} A(t)f'(t) dt.$$

Proposition 1.3.6. Let f has a continuous derivative on [1, x]. Then:

(i)
$$\sum_{r \le x} a(r)f(r) = A(x)f(x) - \int_1^x A(t)f'(t) dt$$
,

(ii)
$$\sum_{r \le x} a(r)[f(x) - f(r)] = \int_1^x A(t)f'(t) dt$$
.

Proposition 1.3.7. If f has a continuous derivative on [2, x] and a(1) = 0, then

$$\sum_{2 \le r \le x} a(r)f(r) = A(x)f(x) = \int_2^x A(t)f'(t) dt.$$

Proposition 1.3.8. Suppose that f has a continuous derivative on $[1, \infty)$, and that $A(x)f(x) \to 0$ as $x \to \infty$. Then

$$\sum_{r=1}^{\infty} a(r)f(r) = -\int_{1}^{\infty} A(t)f'(t) dt,$$

in the sense that if either side converges, then so does the other, to the same value. Further, we then have

$$\sum_{r>x} a(r)f(r) = -A(x)f(x) - \int_x^\infty A(t)f'(t) dt.$$

Note.

Revised: 4/9/2022