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Chapter 2. Vectors and Vector Spaces

Section 2.2. Cartesian Coordinates and Geometrical

Properties of Vectors

Note. There is a natural relationship between a point in Rn and a vector in

Rn. Both are represented by an n-tuple of real numbers, say (x1, x2, . . . , xn). In

sophomore linear algebra, you probably had a notational way to distinguish vectors

in Rn from points in Rn. For example, Fraleigh and Beauregard in Linear Algebra,

3rd Edition (1995), denote the point x ∈ Rn as (x1, x2, . . . , xn) and the vector

~x ∈ Rn as ~x = [x1, x2, . . . , xn]. Gentle makes no such notational convention so we

will need to be careful about how we deal with points and vectors in Rn, when

these topics are together. Of course, there is a difference between points in

Rn and vectors in Rn (a common question on the departmental Linear Algebra

Comprehensive Exams)!!! For example, vectors in Rn can be added, multiplied

by scalars, they have a “direction” (an informal concept based on existence of an

ordered basis and the component of the vector with respect to that ordered basis).

But vectors don’t have any particular “position” in Rn and they can be translated

from one position to another. Points in Rn do have a specific position given by the

coordinates of the point. But you cannot add points, multiply them be scalars,

and they have neither magnitude nor direction. So the properties which a vector

in Rn has are not shared by a point in Rn and vice-versa.
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Note. We shall refer to the “natural relationship” between points in Rn and vectors

in Rn as the geometric interpretation of vectors. A vector in Rn with components

x1, x2, . . . , xn (in order) can be geometrically interpreted as an “arrow” with its

“tail” at the origin of an n-dimensional real coordinate system and its “head” at

the point in Rn with coordinates x1, x2, . . . , xn (in order). Thusly interpreted, the

vector is said to be in standard position. When n = 2 this produces a nice way to

illustrate vectors.

Note. In R2, a vector ~v in R2 (we briefly revert to sophomore level notation)

can be drawn in standard position in the Cartesian plane (left) and can be drawn

translated to a point other than the origin (right):

The parallelogram law of vector addition is illustrated as:
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Scalar multiplication is illustrated as:

Note. In order to write a vector in terms of an orthogonal (or, preferably, an

orthonormal) basis, we will make use of projections.

Definition. Let x, y ∈ V , where V is a vectors space of n-vectors. The projection

of y onto x is projx(y) = ŷ =
〈x, y〉
‖x‖2 x.

Note. For x, y ∈ V , ŷ = projx(y) is the component of y in the direction of x. This

is justified when we observe that

〈y − projx(y), x〉 = 〈y − ŷ, x〉 =

〈
y − 〈x, y〉

‖x‖2 x, x

〉
= 〈y, x〉 − 〈x, y〉

‖x‖2 〈x, x〉 = 0.

So y − ŷ is the component of y orthogonal to x. Then y = ŷ + (y − ŷ) where ŷ is

parallel to x (that is, a multiple of x) and y − ŷ is orthogonal to x. We therefore

have y, ŷ, and y − ŷ determining a right triangle. Notice that

‖ŷ‖2 + ‖y − ŷ‖2 =

∥∥∥∥〈x, y〉
‖x‖2 x

∥∥∥∥2

+

∥∥∥∥y − 〈x, y〉
‖x‖2 x

∥∥∥∥2

=
〈x, y〉2

‖x‖2 +

〈
y − 〈x, y〉

‖x‖2 x, y − 〈x, y〉
‖x‖2 x

〉
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=
〈x, y〉2

‖x‖2 + 〈y, y〉 − 2
〈x, y〉
‖x‖2 〈x, y〉+

〈x, y〉2

‖x‖4 〈x, x〉

=
〈x, y〉2

‖x‖2 + ‖y‖2 − 2
〈x, y〉2

‖x‖2 +
〈x, y〉2

‖x‖2 = ‖y‖2,

and so the Pythagorean Theorem is satisfied.

Note. With θ an angle between vectors x and y, from the previous note we expect

a geometric interpretation as follows:

So cos θ =
‖ŷ‖
‖y‖

=

∥∥∥ 〈x,y〉
‖x‖2 x

∥∥∥
‖y‖

=
|〈x, y〉|
‖x‖‖y‖

. Now ŷ is a scalar multiple of x, say ŷ = ax,

then 〈x, y〉 = 〈x, ŷ + (y − ŷ)〉 = 〈x, ŷ〉+ 〈x, y − ŷ〉 = 〈x, ax〉+ 0 = a〈x, x〉 = a‖x‖2.

If a ≥ 0 then 〈x, y〉 ≥ 0 and cos θ = 〈x, y〉/(‖x‖‖y‖). If a < 0 then 〈x, y〉 < 0 and

cos θ = 〈x, y〉/(‖x‖‖y‖) < 0. The geometric interpretation of these two cases are:

This inspires the following definition.
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Definition. The angle θ between vectors x and y is θ = cos−1
(

〈x, y〉
‖x‖‖y‖

)
. With

ei as the ith unit vector (0, 0, . . . , 0, 1, 0, . . . , 0), the ith direction cosine is θi =

cos−1
(
〈x, ei〉
‖x‖

)
.

Note. For x = [x1, x2, . . . , xn] ∈ Rn, we can easily express x as a linear combination

of e1, e2, . . . , en as x =
∑n

i=1〈x, ei〉ei. Of course, {e1, e2, . . . , en} is a basis (actually,

an orthonormal basis) for Rn, called the standard basis for Rn. With cos θi =
〈x, ei〉
‖x‖

we have

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn =

(
〈x, e1〉
‖x‖

)2

+

(
〈x, e2〉
‖x‖

)2

+ · · ·+
(
〈x, en〉
‖x‖

)2

=
1

‖x‖2

(
〈x, e1〉2 + 〈x, e2〉2 + · · ·+ 〈x, en〉2

)
=

1

‖x‖2 〈〈x, e1〉e1 + 〈x, e2〉e2 + · · ·+ 〈x, en〉en,

〈x, e1〉e1 + 〈x, e2〉e2 + · · ·+ 〈x, en〉en〉

since {e1, e2, . . . , en} is an orthonormal set

=
1

‖x‖2 〈x, x〉 =
‖x‖2

‖x‖2 = 1.

Note. The representation above of x = [x1, x2, . . . , xn] in terms of the standard

basis {e1, e2, . . . , en} as x =
∑n

i=1〈x, ei〉ei is suggestive of the ease of such repre-

sentations when using an orthonormal basis. The following theorem allows us to

represent x in terms of an orthogonal basis.
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Theorem 2.2.1. Let {v1, v2, . . . , vk} be a basis for vector space V of n-vectors

where the basis vectors are mutually orthogonal. Then for x ∈ V we have

x =
〈x, v1〉
〈v1, v1〉

v1 +
〈x, v2〉
〈v2, v2〉

v2 + · · ·+ 〈x, vk〉
〈vk, vk〉

vk.

Corollary 2.2.2. Let {v1, v2, . . . , vk} be an orthonormal basis for vector space V

of n-vectors. Then for x ∈ V we have

x = 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vk〉vk.

Definition. If {v1, v2, . . . , vk} is an orthonormal basis for vector space V of n-

vectors, then for x ∈ V the formula x = 〈x, v1〉v1 + 〈x, v2〉v2 + · · ·+ 〈x, vk〉vk is the

Fourier expansion of x and the 〈x, vi〉 are the Fourier coefficients (with respect to

the given basis).

Note. We now give a technique by which any basis for a vector space V can be

transformed into an orthonormal basis.

Definition. Let {x1, x2, . . . , xm} be a set of linearly independent n-vectors. Define

x̃1 = x1/‖x1‖. For k = 2, 3, . . . ,m define

x̃k =

(
xk −

k−1∑
i=1

〈x̃i, xk〉x̃i

)/∥∥∥∥∥xk −
k−1∑
i=1

〈x̃i, xk〉x̃i

∥∥∥∥∥ .

This transformation of set {x1, x2, . . . , xm} into {x̃1, x̃2, . . . , x̃m} is called the Gram-

Schmidt Process.
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Note. In the Gram-Schmidt Process, for each 1 ≤ k ≤ m we have that x̃k is

a linear combination of x1, x2, . . . , xk (due to the recursive definition). Also, by

the definition of x̃k, we see that xk is a linear combination of x̃1, x̃2, . . . , x̃k. So

span{x1, x2, . . . , xk} = span{x̃1, x̃2, . . . , x̃k}. By the Note above which shows that

(y − projx(y)) ⊥ x, we have that x̃2 ⊥ x̃1; x̃3 ⊥ x̃1 and x̃3 ⊥ x̃2; x̃4 ⊥ x̃3, x̃4 ⊥ x̃2,

x̃4 ⊥ x̃1; etc. Of course each x̃k is normalized, so {x̃1, x̃2, . . . , x̃m} is an orthonormal

basis for span{x1, x2, . . . , xm}.

Note. Since each x̃k is normalized, we can think of the term 〈x̃i, xk〉x̃i as projx̃i
(xk).

This gives the Gram-Schmidt Process a very geometric flavor! For example, in R3

suppose that we already have x̃1 = e1 and x̃2 = e2. With x3 as illustrated below,

we produce x̃3 as shown.

Note. We might think of the Gram Schmidt Process as producing a “nice” basis

from a given basis. One thing nice about an orthonormal basis is the ease with

which we can express a vector in terms of the basis elements, as shown in Corollary

2.2.2.
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Note. The Gram-Schmidt Process is named for Jorgen Gram (1850–1916) and

Erhard Schmidt (1876–1959).

Jorgen Gram (1850–1916) Erhard Schmidt (1876–1959)

Jorgen Gram was a Danish (i.e., from Denmark) mathematician who worked for

an insurance company and published papers in forestry and on probability and

numerical methods. In 1883 he published “On Series Determined by the Methods

of Least Squares” in Journal für Mathematik. This paper contained the process

co-named after him (though the process was used by Laplace and Cauchy before

Gram). It also is a fundamental paper in the development of integral equations.

He did work in number theory, including work on the Riemann zeta function. Un-

like most prominent mathematicians, Gram never taught. He died at the age of

65 when he was hit by a bicycle. Erhard Schmidt was born in Estonia and did

his doctoral work at the University of Göttingen under David Hilbert’s supervi-

sion. He spent his professional career at the University of Berlin. Like Gram, he

studied integral equations (in fact, for both Gram and Schmidt, the vectors they

considered were in fact continuous functions). In 1907 he published a paper on

integral equations which contained a proof of the Gram-Schmidt Process (in which

he mentions Gram’s work). Most of his work was in the area of Hilbert spaces.

These historical comments are based on the “MacTutor History of Mathematics

http://www-history.mcs.st-andrews.ac.uk/index.html
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archive” and historical comments from Fraliegh and Bauregard’s Linear Algebra,

3rd edition (1995). The Gram-Schmidt Process also holds in a Hilbert space with

a countable basis; for details, see my online notes on Section 5.4, Projections and

Hilbert Space Isomorphisms, from Real Analysis with an Introduction to Wavelets

and Applications, D. Hong, J. Wang, and R. Gardner, Elsevier Press (2005).

Note. With {u1, u2, . . . , un} an orthonormal basis for a vector space, for any

x = c1u1 + c2u2 + · · ·+ cnun we have ‖x‖2 =
∑n

i=1 c2
i . This is Parseval’s identity.

Note. We now consider a collection of linearly independent n-vectors c1, c2, . . . , cm

(column vectors) and an n-vector x (a column vector of variables). For constants

b1, b2, . . . , bm (or scalars; technically, these are 1× 1 matrices) we can consider the

m equations (since the ci are linearly independent n-vectors; notice that m ≤ n by

Exercise 2.1):

cT
1 x = b1

cT
2 x = b2

...

cT
mx = bm

This may be more familiar to you as the matrix equation C~x = ~b where C is a

matrix with ith row as the row vector cT
i (so C is an m× n matrix), ~x as an n× 1

column vector, and ~b as an m× 1 column vector. So we have m linear equations in

n unknowns. From Linear Algebra (MATH 2010), since the rows of C are linearly

independent then each row of the row echelon form of C contains a pivot and so

there exists a solution to the system of equations. If m = n, this means that C is

invertible and there is a unique solution. Otherwise the set of solutions has n−m

free variables.

http://www-history.mcs.st-andrews.ac.uk/index.html
http://www-history.mcs.st-andrews.ac.uk/index.html
http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf
http://faculty.etsu.edu/gardnerr/Func/notes/HWG-5-4.pdf
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Definition. In the system of m equations in n unknowns given above, the set of

vectors x which are solutions form a flat (or affine space) in Rn. If b1 = b2 = · · · =

bm = 0 then the system of equations is homogeneous. If m = 1, the set of vectors

x which are solutions form a hyperplane in Rn.

Theorem 2.2.2. The solutions to a homogeneous system of equations form a

subspace of Rn.

Note. A nonhomogeneous system of equations cannot have a solution set which

contains the zero vector. So the solution set, in this case, is not a subspace of

Rn. So a flat (or affine space) or hyperplane may not be a subspace. You are

probably used to describing flats as “translates of subspaces” and writing them as

a translation vector t plus a subspace span{v1, v2, . . . , vk}: t + span{v1, v2, . . . , vk}.

Definition. For a set V of n-vectors (not necessarily a vector space nor a cone)

the dual cone of V , denoted V ∗, is

V ∗ = {y∗ ∈ Rn | (y∗)Ty ≥ 0 for all y ∈ V }.

(Notice that all vectors here are treated as column vectors, so the products are

defined.) The polar cone of V , denoted V 0, is

V 0 = {y0 ∈ Rn | (y0)Ty ≤ 0 for all y ∈ V }.

Note. If y∗ ∈ V ∗ then (y∗)Ty ≥ 0 for all y ∈ V and so −(y∗)Y y = (−y∗)Ty ≤ 0 for

all y ∈ V ; that is, −y∗ ∈ V 0. Similarly, if y0 ∈ V 0 then −y0 ∈ V ∗. So V 0 = −V ∗.



2.2. Cartesian Coordinates and Geometrical Properties of Vectors 11

Note. Since 〈y∗, y〉 = (y∗)Ty (though technically, the left hand side is a scalar and

the right hand side is a 1× 1 matrix), then V ∗ includes all vectors in Rn that make

an angle with all elements of set V of less than or equal to π/2 (recall, the angle θ

between two vectors x and y is θ = cos−1(〈x, y〉/(‖x‖‖y‖))). So we can illustrate

a dual cone and polar cone in R2 as follows (where all vectors are geometrically

interpreted to be in standard position):

Example. If V ⊂ Rn satisfies v ∈ V implies v ≥ 0 (that is, V is a subset of

the “nonnegative orthant” and all entries of vector v ∈ V are nonnegative) then

V ∗ = {x ∈ Rn | x ≥ 0} (that is, V ∗ is the nonnegative orthant) and V 0 = {x ∈

Rn | x ≤ 0} (that is, V 0 is the nonpositive orthant). The nonnegative orthant is a

convex cone and is its own dual. Our modified Exercise 2.12 shows that for any set

V ∗ and V 0 are cones, that V ∗ ∪ V 0 is closed under scalar multiplication, but that

V ∗ ∪ V 0 is not a vector space (even when V itself is a convex cone).

Definition. For x = [x1, x2, x3], y = [y1, y2, y3] ∈ R3, define the vector cross product

x× y as

x× y = [x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1].
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Theorem 2.2.3. Properties of Cross Product.

Let x, y, z ∈ R3 and a ∈ R. Then:

1. x× x = 0 (Self-nilpotency)

2. x× y = −y × x (Anti-commutivity)

3. (ax)× y = a(x× y) = x× (ay) (Factoring of Scalar Multiplication)

4. (x+y)×z = (x×z)+(y×z) (Relation of Vector Addition to Addition of Cross

Products)

5. 〈x, x× y〉 = 〈y, x× y〉 = 0 (Perpendicular Property)

6. x× (y × z) = 〈x, z〉y − 〈x, y〉z.

Note. We can also show that the cross product is not in general associative. For

example,

[1, 0, 0]× ([1, 1, 0]× [1, 1, 1]) = [1, 0, 0]× [1,−1, 0] = [0, 0,−1]

6= ([1, 0, 0]× [1, 1, 0])× [1, 1, 1] = [0, 0, 1]× [1, 1, 1] = [−1, 1, 0].

Note. The cross product can be used to find a normal vector to a plane in R3

which, in turn, gives the formula for a plane in R3. See my online Calculus 3 notes

on “Lines and Planes in Space.”
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