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Chapter 3. Basic Properties of Matrices

Note. This long chapter (over 100 pages) contains the bulk of the material for

this course. As in Chapter 2, unless stated otherwise, all matrix entries are real

numbers. Chapters 8 and 9 include material on applications of this material to

regression and statistics.

Section 3.1. Basic Definitions and Notation

Note. In this section, we reintroduce many of the definitions you should be famil-

iar with from sophomore Linear Algebra (diagonal, trace, minor matrix, cofactor,

determinant). We also introduce some notation and matrix/vector manipulations

which might be new to you.

Definition. Let A be an n×m matrix. Treating the columns of A as n-vectors, the

vector space generated by these column vectors (that is, the span of the columns of

A) is the column space of matrix A. This is sometimes called the range or manifold

of A and is denoted span(A). Treating the rows of A as m-vectors, the vectors

generated by these row vectors (that is, the span of the rows of A) is the row space

of matrix A.
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Definition. For matrix A = [aij], define scalar multiplication entry-wise as cA =

c[aij] = [caij]. For A = [aij] and B = [bij] m × n matrices, define matrix addition

entry-wise as A + B = [aij] + [bij] = [aij + bij]. The diagonal elements of A =

[aij] are the elements aii for i = 1, 2, . . . , min{m, n} (these elements make up the

principal diagonal), elements aij where i < j are above the diagonal, and elements

aij where i > j are below the diagonal. The elements ai,i+k (for fixed k) form the

kth codiagonal or kth minor diagonal. For n × m matrix A, the elements ai,m+1−i

for i = 1, 2, . . . , min{m, n} are the skew diagonal elements of A.

Definition. Square matrix A of size n × n is symmetric if aij = aji for all 1 ≤

i, j ≤ n. Square matrix A is skew symmetric if aij = −aji for 1 ≤ i, j ≤ n. Square

matrix A with complex entries is Hermetian (or self-adjoint) if aij = aji (where aji

represents the complex conjugate of aji).

Definition. If all entries of a square matrix are 0 except for the principal diagonal

elements, then matrix A is a diagonal matrix. If all the principal diagonal elements

are 0, the matrix is a hollow matrix. If all entries except the principal skew diagonal

elements of a matrix are 0, the matrix is a skew diagonal matrix.

Note. A skew symmetric matrix must satisfy aii = −aii for 1 ≤ i ≤ n and so is

necessarily hollow.
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Definition. An n × m matrix A for which |aii| >
∑m

j=1,j 6=i |aij| for each i =

1, 2, . . . , n is row diagonally dominant (that is, the absolute value of the diagonal

entry is larger than the sum of the absolute values of the other entries in the row

containing that diagonal entry [for each row]). Similarly, if |ajj| >
∑n

i=1,i6=j |aij| for

each j = 1, 2, . . . ,m then A is column diagonally dominant.

Note. If A is symmetric (and hence square) then row and column diagonal domi-

nance are equivalent in which case A is simply called diagonally dominant.

Definition. A square matrix such that all elements below the diagonal are 0 is

an upper triangular matrix; if all entries above the diagonal are 0 the matrix is a

lower triangular matrix. If a nonsquare matrix has all entries below the diagonal

{aii} equal to 0 (or all entries above the diagonal equal to 0) then the matrix is

trapezoidal.

Definition. A square matrix A for which all elements are 0 except for ai,i+ck
for

some (“small”) ck where ck ∈ {−w`,−w` + 1, . . . ,−1, 0, 1, . . . , wu−1, wu} is a band

matrix (or banded matrix). Value w` is the lower band width and wu is the upper

band width. A band matrix with lower and upper band widths of 1 is tridiagonal.

A matrix is in upper Hessenburg form if it is upper triangular except for the first

(lower) subdiagonal.

Note. Gentle states that band matrices arise in time series, stochastic processes,

and differential equations (see page 43).
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Definition. For m× n matrix A = [aij], the transpose matrix is the n×m matrix

AT = [aji]. If the entries of A are complex numbers, then the adjoint of A is the

conjugate transpose AH = [aji], also called the Hermetian of A.

Note. As you’ve seen in sophomore Linear Algebra, we often put vectors into ma-

trices and extract vectors from matrices. We now define such operations formally.

Definition. Define the “constructor function” diag : Rn → Rn×n as

diag([d1, d2, . . . , dn]) =



d1 0 0 · · · 0

0 d2 0 · · · 0

0 0 d3 · · · 0

...
...

... . . . ...

0 0 0 · · · dn


which maps an n-vector into an n× n diagonal matrix with diagonal entries equal

to the entries in the n-vector. Define vecdiag : Rn×m → Rk where k = min{m, n}

as

vecdiag(A) = [a11, a22, . . . , akk].

Define vec : Rn×m → Rnm as

vec(A) = [aT
1 , aT

2 , . . . , aT
m]

where a1, a2, . . . , am are the columns of matrix A (so “[aT
1 , aT

2 , . . . , aT
m]” denotes an

nm row vector). Define vech : Rm×n → Rm(m+1)/2 as

vech(A) = [a11, a21, . . . , am1, a22, a32, . . . , am2, a33, a43, . . . , amm]

(Gentle restricts vech to the symmetric matrices in Rm×n so that vech(A) produces

a vector with entries as those entries on and above the diagonal of A).
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Note. Gentle doesn’t give a formal definition of a partitioned matrix. You are

familiar with the idea of a partitioned matrix since the system of equations A~x =

~b (in the notation of sophomore Linear Algebra) is dealt with in terms of the

partitioned matrix (or “augmented matrix”) [A |~b].

“Definition.” An n×m matrix A can be partitioned into four matrices A11, A12, A21,

and A22 as

A =

 A11 A12

A21 A22


where A11 and A12 have the same number of rows (say r1); A21 and A22 have the

same number of rows (say r2); A11 and A21 have the same number of columns (say

c1); and A12 and A22 have the same number of columns (say c2). The ith row of

A11 “combined with” the ith row of A12 gives the ith row of A for 1 ≤ i ≤ r1; the

ith row of A21 “combined with” the ith row of A22 gives the (r1 + i)th row of A for

1 ≤ i ≤ r2; the jth column of A11 “combined with” the jth column of A21 gives

the jth column of A for 1 ≤ j ≤ c1; and the jth column of A12 “combined with”

the jth column of A22 gives the (c1 + j)th column of A for 1 ≤ j ≤ c2.

Definition. Matrix B is a submatrix of matrix A if B is obtained from A by

deleting some of the rows and some of the columns of A. A square submatrix whose

principal diagonal elements are elements of the principal diagonal of matrix A is

a principal submatrix of A. A principal submatrix B obtained from n×m matrix

A such that if column j is eliminated from A then all columns j + 1, j + 2, . . . m

are eliminated in producing B, and if row i is eliminated from A then all rows

i + 1, i + 2, . . . , n are eliminated, is a leading principal submatrix.
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Theorem 3.1.1. Suppose matrix A is diagonally dominant (that is, A is symmetric

and row and column diagonally dominant). If B is a principal submatrix of A then

B is also diagonally dominant.

Definition. A partitioned matrix is block diagonal if it is of the form
A1 0 · · · 0

0 A2 · · · 0

...
... . . . ...

0 0 · · · Ak


for i = 1, 2, . . . , k and where “0” represents a submatrix of all 0’s of appropriate

dimensions to yield a partitioned matrix. Similar to the function diag : Rn → Rn×n,

we denote the matrix above as diag(A1, A2, . . . , Ak).

Definition. Let A = [aij] and B = [bij] be n×m matrices. The sum A + B is the

n×m matrix C = [cij] where cij = aij + bij. For r ∈ R a scalar, rA is the matrix

D = [dij] where dij = raij.

Theorem 3.1.2. Let A and B be n×m matrices and r, s ∈ R. Then

(a) A + B = B + A (Commutivity Law of Matrix Addition).

(b) (A + B) + C = A + (B + C) (Associative Law of Matrix Addition).

(c) A + 0 = 0 + A where 0 is the n×m zero matrix (Matrix Additive Identity).
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(d) r(A + B) = rA + rB (Distribution of Scalar Multiplication over Matrix Addi-

tion).

(e) (r+s)A = rA+sA (Distribution of Scalar Multiplication over Scalar Addition).

(f) (rs)A = r(sA) (Associativity Law of Scalar Multiplication).

Note. Since we have defined matrix addition and scalar multiplication, we can

show that Rn×m is in fact a vector space (of dimension nm). A subspace of Rn×m

is the space of all symmetric n× n matrices; Rn×n is of dimension n(n + 1)/2 (see

Exercise 3.1).

Notation. For a ∈ R and A = [aij] we define A + a = [aij + a]. If all elements of

real matrix A are positive, we write A > 0; if all elements of A are nonnegative we

write A ≥ 0.

Definition. The trace of n× n matrix A = [aij] is tr(A) =
∑n

i=1 aii.

Note. Three properties of the trace are tr(A) = tr(AT ), tr(cA) = c tr(A), and

tr(A + B) = tr(A) + tr(B).

Note. To define the determinant of a matrix, we must step aside and study

permutations on the set {1, 2, . . . , n}.
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Definition. A permutation of a set A is a one to one and onto function (or

“bijection”) ϕ : A → A.

Note. There are n! permutations on the set {1, 2, . . . , n}. We use “cyclic notation”

to represent such permutations, so

1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

1 3 4 2 6 5

is represented as (1)(2, 3, 4)(5, 6). We “multiply” permutations by reading from

right to left: (1, 6)(1, 2)(2, 1)(1, 5)(1, 4) = (1, 4, 5, 6)(2).We often do not write cycles

of length 1 (such as (2) here). A cycle of length 2 is a “transposition.” Every cycle

is a product of transpositions: (1, 2, . . . , n) = (1, n)(1, n−1)(1, n−2) · · · (1, 3)(1, 2).

In fact, every permutation of a finite set of at least two elements is a product of

transpositions (see Corollary 9.12 of my online notes II.9. “Orbits, Cycles, and

the Alternating Groups”). Another important property of transpositions is: No

permutation of a finite set can be expressed as a product of an even number of

transpositions and as a product of an odd number of transpositions (see Theorem

9.15 of the online notes mentioned above). This property allows us to define a

permutation as even or odd according to whether the permutation can be expressed

as a product of an even number of transpositions or the product of an odd number

of transpositions. Recall that the alternating group An is the group of all even

permutations on the set {1, 2, . . . , n}.

http://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
http://faculty.etsu.edu/gardnerr/4127/notes/II-9.pdf
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Example. Consider {1, 2}. There are two permutations: (1)(2) and (1, 2). There

are 6 permutations of {1, 2, 3}: (1)(2)(3), (1)(2, 3), (1, 3)(2), (1, 2)(3), (1, 2, 3), and

(1, 3, 2). We have

Even Odd

(1)(2)(3) = (1, 2)(1, 2) (1)(2, 3) = (2, 3)

(1, 2, 3) = (1, 3)(1, 2) (1, 3)(2) = (1, 3)

(1, 3, 2) = (1, 2)(1, 3) (1, 2)(3) = (1, 2)

Definition. Define σ : Sn → {−1, 1}, where Sn denotes the group of all permu-

tations of {1, 2, . . . , n}, as σ(π) = 1 if π ∈ Sn is even and σ(π) = −1 if π ∈ Sn is

odd.

Note. Recall in sophomore Linear Algebra (MATH 2010) we have the following

determinants:

det[a11] = a11, det

 a11 a12

a21 a22

 = a11a22 − a12a21,

det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 = a11a22a33+a12a23a31+a13a21a32−a11a23a32−a13a22a31−a12a21a33.

When n = 2, with π1 = (1)(2) and π2 = (1, 2) we have

σ(π1)a1 π1(1)a2 π1(2) + σ(π2)a1 π2(1)a2 π2(2) = +a11a22 − a12a21 = det

 a11 a12

a21 a22

 .
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When n = 3, with π1 = (1)(2)(3), π2 = (1, 2, 3), π3 = (1, 3, 2) (the even per-

mutations) and π4 = (2, 3), π5 = (1, 3), π6 = (1, 2) (the odd permutations) we

have

6∑
j=1

σ(πj)
3∏

i=1

ai πj(i) = +a11a22a33 + a12a23a31 + a13a21a32

−a11a23a32 − a13a22a31 − a12a21a33 = det


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

We use this pattern to motivate the following definition.

Definition. Let A = [aij] be an n × n matrix and let Sn be the set of all permu-

tations on set {1, 2, . . . , n}. The determinant of A, denoted det(A) = |A|, is

det(A) =
∑
π∈Sn

σ(π)
n∏

i=1

ai π(i).

Note. Notice that det(A) involves all possible products where each factor is ob-

tained by picking one and only one element from each row and column of A. This

definition and the following “lettered” results are based in part on David Harville’s

Matrix Algebra from a Statistician’s Point of View, Springer-Verlag (1997).



3.1. Basic Definitions and Notations 11

Example 3.1.A. We claim that if A = [aij] is an n×n (upper or lower) triangular

matrix then det(A) = a11a22 · · · ann. Say A is upper triangular. By definition,

det(A) =
∑

π∈Sn
σ(π)

∏n
i=1 ai π(i). If π(1) 6= 1 then for some k with 2 ≤ k ≤ n we

have π(k) = 1. But since k > 1, then ak π(k) = ak1 = 0 and so
∏n

i=1 ai π(i) = 0.

So the only way for
∏n

i=1 ai π(i) to be nonzero is for π(1) = 1. With π(1) = 1 and∏n
i=1 ai π(i) nonzero, we can show by induction that π(i) = i for all 1 ≤ i ≤ n; that

is, π is the identity permutation (which is even). So det(A) =
∏n

i=1 aii, as claimed.

Note 3.1.A. If n×n matrix A is upper (or lower) triangular, then
∏n

i=1 ai π(i) = 0

unless π(i) ≥ i for each 1 ≤ i ≤ n. We can only have π(i) ≥ i for each 1 ≤ i ≤ n if

π(i) = i for each 1 ≤ i ≤ n (use backwards induction: π(n) = n, so π(n−1) = n−1,

. . . ). So the only permutation π for which
∏n

i=1 ai π(i) may be nonzero is the identity

permutation (which is even). So for such A, det(A) =
∏n

i=1 aii. Of course a diagonal

matrix is upper triangular and its determinant is also the product of its diagonal

elements.

Theorem 3.1.A. Let A = [aij] be an n× n matrix. Then det(A) = det(AT ).

Theorem 3.1.B. If an n × n matrix B is formed from a n × n matrix A by

multiplying all of the elements of one row or one column of A by the same scalar

k (and leaving the elements of the other n − 1 row or columns unchanged) then

det(B) = k det(A).
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Note 3.1.B. If a row (or column) of a matrix A is all 0’s then det(A) = 0.

This follows from Theorem 3.1.B by letting B = A and k = 0. With k ∈ R,

det(kA) = kn det(A); this follows by applying Theorem 3.1.B n times as each row

of A is multiplied by k. Notice that det(−A) = (−1)ndet(A).

Note. Theorem 3.1.B shows how the elementary row operation of multiplying a

row (or column) by a scalar affects the determinant of a matrix. We now explore

the effect of other elementary row operations.

Theorem 3.1.C. If a n × n matrix B = [bij] is formed from an n × n matrix

A = [aij] by interchanging two rows (or columns) of A then det(B) = −det(A).

Note 3.1.C. If two rows (or columns) of square matrix A are equal, then Theorem

3.1.C implies that det(A) = 0. This can be used to prove the following (we leave

the detailed proof as Exercise 3.1.A).

Corollary 3.1.D. If a row or column of n × n matrix A is a scalar multiple of

another row or column (respectively) of A, then det(A) = 0.

Note. The next result, along with Theorem 3.1.B and Theorem 3.1.C, show how

elementary row operations affect the determinant of a matrix.
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Theorem 3.1.E. Let B represent a matrix formed from n×n matrix A by adding to

any row (or column) of A, scalar multiples of one or more other rows (or columns).

Then det(B) = det(A).

Note. In sophomore Linear Algebra (MATH 2010), the determinant of a square

matrix is defined recursively using cofactors. See my online notes on 4.2. The

Determinant of a Square Matrix; notice Definition 4.1 and Theorem 4.2. We now

show that our definition is equivalent to that definition.

Definition. Let A = [aij] be an n×n matrix. Let Aij represent the (n−1)×(n−1)

submatrix of A obtained by eliminating the ith row and jth column of A. The

determinant det(Aij) is the minor of element aij. The signed minor (−1)i+jdet(Aij)

is the cofactor of aij, denoted αij.

Theorem 3.1.F. Let A = [aij] be an n×n matrix and let αij represent the cofactor

of aij. Then

det(A) =
n∑

j=1

aijαij for i = 1, 2, . . . , n, (5.1)

and

det(A) =
n∑

i=1

aijαij for j = 1, 2, . . . , n. (5.2)

Definition. The adjoint of a n × n matrix A is the transpose of the matrix of

cofactors of A, [αij]
T , denoted adj(A). (Gentle calls this the “adjugate” of A.)

http://faculty. etsu.edu/gardnerr/2010/c4s2.pdf
http://faculty. etsu.edu/gardnerr/2010/c4s2.pdf
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Theorem 3.1.3. Let A be an n × n matrix with adjoint adj(A) = [αij]
T . Then

A adj(A) = adj(A)A = det(A)In.

Note. Notice that Theorem 3.1.3 implies that A−1 = (1/det(A))adj(A). So for

A =

 a b

c d

, where det(A) = ad− bc 6= 0, we have A−1 = 1
ad−bc

 d −b

−c a

.

Note. We now consider the determinant of a partitioned matrix of a certain form.

Theorem 3.1.G. Let T be an m×m matrix, V an n×m matrix, W an n×n matrix,

and let ‘0’ represent the m× n matrix of all entries as 0. Then the determinant of

the partitioned matrix is

det

 T 0

V W

 = det

 W V

0 T

 = det(T )det(W ).

Note. The following will be useful in showing that the determinant of a product

of matrices in the next section. This is Harville’s Theorem 13.2.11.

Theorem 3.1.H. Let A be n× n and let T be an n× n upper or lower triangular

matrix with entries of 1 along the diagonal. Then det(AT ) = det(TA) = det(A).



3.1. Basic Definitions and Notations 15

Note. The actual computation of the determinant of a large matrix can be ex-

tremely time consuming. An efficient way to compute a determinant is to use

elementary row operations to reduce the matrix and to track how the reduction

effects the determinant as given by Theorems 3.1.B, 3.1.C, and 3.1.E. Numerical

techniques are explored in Part III of Gentle’s book.

Note. On page 58, Gentle gives an argument that the area of the parallelogram

determined by two 2-dimensional vectors can be calculated by taking the deter-

minant of the 2 × 2 matrix with the vectors as columns. In Section 4.1, “Areas,

Volumes, and Cross Products,” of Fraleigh and Beauregard’s Linear Algebra, 3rd

edition (Addison-Wesley, 1995), it is shown that the volume of the box determined

by three 3-dimensional vectors can be calculated by taking the determinant of the

3× 3 matrix with the vectors as columns. For details, see my online notes on 4.2.

Areas, Volumes, and Cross Products.

Note. Given the way determinants are presented in both sophomore linear algebra

and in this class, it is surprising to realize that the concept of determinant predates

that of matrix! This is because determinants were introduced in order to solve

systems of equations by Gottfried Wilhelm Leibniz (1646–1716) in 1693, though

his approach remained unknown at the time [Issrael Kleiner, A History of Abstract

Algebra, Birkhäuser (2007), page 80]. You might be familiar with “Cramer’s Rule”

which gives the solution to a system of n equations in n unknowns, A~x = ~b, where

A−1 exists as xk = det(Bk)/det(A) for k = 1, 2, . . . , n where Bk is the matrix

http://faculty.etsu.edu/gardnerr/2010/c4s1.pdf
http://faculty.etsu.edu/gardnerr/2010/c4s1.pdf
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obtained from A by replacing the kth column vector of A by the vector ~b (see

Fraleigh and Beauregard’s Linear Algebra, 3rd Edition, Section 4.3, “Computation

of Determinants and Cramer’s Rule”; see also Theorem 4.5 on page 2 of these online

notes). Gabriel Cramer (1704-1752) published this result in his Introduction to the

Analysis of Algebraic Curves in 1750, but gave no proof (Fraleigh and Beauregard

and my online class notes include a proof). The first publication to contain some

information on determinant was Colin Maclaurin’s (1698-1746) 1748 Treatise in

Algebra in which he used determinants to solve 2×2 and 3×3 systems [Kleiner, page

81]. Augustin Cauchy (1789–1857) gave the first systematic study of determinants

in 1815 in his paper “On the Functions which Can Assume But Two Equal Values

of Opposite Sign by Means of Transformations Carried Out to Their Variables,”

Journal de l’Ecole Polytechique 10, 29–112. In this early work, he proves det(AB) =

det(A)det(B).

Leibniz Cramer Maclaurin Cauchy

Karl Weierstrass (1815–1897) and Leopold Kronecker (1823–1891) gave a definition

of determinant in terms of axioms, probably in the 1860s [Kleiner, page 81]. By

1880, most of the basic results of linear algebra had been established, but not in

a cohesive theory. In 1888, Giuseppe Peano (1858–1932) introduced the idea of a

vector space, taking a large step forward in the development of a general theory,

http://faculty.etsu.edu/gardnerr/2010/c4s3.pdf
http://faculty.etsu.edu/gardnerr/2010/c4s3.pdf
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which was to follow in the early decades of the twentieth century [Kleiner, page

79]. Images are from the MacTutor History of Mathematics archive.
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