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Section 3.8. Eigenanalysis; Canonical Factorizations

Note. In this lengthy section, we define eigenvalues and eigenvectors for a square

matrix, and consider some of their properties. We consider geometric and alge-

braic multiplicity of eigenvalues, similar matrices, diagonalization of matrices, and

orthogonal diagonalizations of matrices. We define the spectrum, spectral radius,

and spectral decomposition.

Definition. Let A be an n × n matrix. If v is a nonzero n-vector and c is a

scalar satisfying Av = cv then v is an eigenvector of A and c is an eigenvalue (or

characteristic value) of A. Such c and v together form an eigenpair.

Note. Although we do not allow the 0 vector to be an eigenvector, the scalar 0

can be an eigenvalue (which would have associated nonzero eigenvectors). In this

section, Gentle continues to assume the entries of matrices are real but will

allow the eigenvalues and eigenvectors to be complex or have complex

entries, respectively.

Definition. Let A be an n×n matrix. If w is an n-vector, w 6= 0, and c is a scalar

satisfying wTA = cwT then w is a left eigenvector of A.

Note. If w is a left eigenvector of A and A is symmetric, then (wTA)T = (cwT )T

or ATw = cw or Aw = cw and w is an eigenvector of AT = A.

Theorem 3.8.1. If v is an eigenvector of A and w is a left eigenvector of A with

a different associated eigenvalue, then v ⊥ w.
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Theorem 3.8.2. Basic Properties of Eigenvalues and Eigenvectors.

Let A be an n× n real matrix with eigenpair c and v.

(1) For any nonzero b ∈ C, bv is an eigenvector of A.

(2) For any nonzero b ∈ C, bc is an eigenvalue of bA.

(3) If A is nonsingular then 1/c and v are an eigenpair for A−1.

(5) If A is diagonal or triangular with diagonal entries aii, then the eigenvalues of

A are aii. For A diagonal, the corresponding eigenvectors are ei (the ith unit

vector in Rn).

(6) ck and v are an eigenpair for Ak for k ∈ N.

(7) If A is an n×m matrix and B is an m×n matrix then the nonzero eigenvalues

of AB are the same as the nonzero eigenvalues of BA. If m = n then the

eigenvalues of AB and BA are the same (the “nonzero” restriction is removed

here).

(8) If A and B are n× n matrices and B−1 exists, then the eigenvalues of BAB−1

are the same as the eigenvalues of A.

Note. Gentle states as part (4) of Theorem 3.8.2: If A is square and c 6= 0 then

1/c and v are an eigenpair for A+. This is false, though, as shown by A =

 1 2

1 2

,

which has eigenvalues λ1 = 0 and λ2 = 0, and A+ =

 1/10 1/10

2/10 2/10

, which has

eigenvalues λ1 = 0 and λ2 = 3/10 (so c = 3 is an eigenvalue of A but 1/c = 1/3
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is not an eigenvalue of A+). The proof of Theorem 3.8.2 is to be given in Exercise

3.16.

Corollary 3.8.3. The set of eigenvectors of a n × n matrix A associated with

given eigenvalue c, along with the 0 vector, form a subspace of Cn (or of Rn if we

restrict ourselves to real numbers). The subspace is the eigenspace of A associated

with eigenvalue c.

Note. If c and v are an eigenpair for square matrix A, then Av = cv for nonzero

v, or Av − cv = (A − cI)v = 0. If A − cI is nonsingular (and so invertible) then

v = (A − cI)−10 = 0 and this is the only solution. Since v is nonzero by the

definition of eigenvectors, we must have (A−cI) singular; that is, det(A−cI) = 0.

Definition. For n×n matrix A, the n degree polynomial pA(c) = det(A−cI) is the

characteristic polynomial. The equation pA(c) = 0 is the characteristic equation.

Note. Some texts define the characteristic equation as qA(c) = det(cI − A) (see,

for example, Definition 1.2.3 on page 49 of R. A. Horn and C. R. Johnson’s Matrix

Analysis, 2nd Edition, Cambridge University Press, 2013). This does not affect

the eigenvalues of A, but will have an effect when we define the companion matrix

of a polynomial below. Since cI − A = −(A − cI), then by Theorem 3.1.B the

relationship between pA and qA is pA(c) = (−1)nqA(c).

Note 3.8.A. By definition, det(A − cI) =
∑

π∈Sn
σ(π)

∏n
i=1 bi π(i) where bi π(i) is

the (i, π(i)) entry of A − cI. For π the identity in Sn (and so σ(π) = 1 since

the identity is even), σ(π)
∏n

i=1 bi π(i) = +
∏n

i=1(aii − c) includes a term of the
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form (−c)n = (−1)ncn. For π not the identity in Sn,
∏n

i=1 bi π(i) only has terms

involving powers of c of order at most n− 1 (actually, of degree at most n− 2 since

a permutation producing n − 1 diagonal elements in
∏n

i=1 bi π(i) would necessarily

have to include the final diagonal element). So det(A−cI) is an n degree polynomial

with the coefficient of cn as (−1)n, where A is n× n.

Note. Every eigenvalue of A is a root of the characteristic polynomial and a solu-

tion to the characteristic equation. By the Fundamental Theorem of Algebra, every

n×n matrix (with real or complex entries) has n eigenvalues counting multiplicity.

Theorem 3.8.4. The Cayley-Hamilton Theorem.

For n× n matrix A with characteristic polynomial pA we have pA(A) = 0.

Theorem 3.8.5. Let q(c) = s0 + s1c + s2c
2 + · · · + sn−1c

n−1 + cn be a monic

polynomial. Then q(c) = det(cI − A) for some n × n matrix A. In particular,

q(c) = det(cI − A) for

A =



0 1 0 · · · 0

0 0 1 · · · 0

...
...

... . . . ...

0 0 0 · · · 1

−s0 −s1 −s2 · · · −sn−1


.

Matrix A is called a companion matrix for polynomial q.
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Note. Notice that Gentle states that q is the characteristic polynomial of A, but

this is not the case (see page 109). However, as commented above, p(c) = (−1)nq(c)

for characteristic polynomial p of n×n matrix A. The confusion arises from the two

different definitions of characteristic polynomial (det(A− cI) versus det(cI −A) in

some other sources, such as Horn and Johnson’s text). To further muddle things,

sometimes the companion matrix of q is defined as the transpose of what is given

in Theorem 3.8.5 (see Horn and Johnson’s Definition 3.3.13 on pages 194 and 195);

this has no real effect, since det(A) = det(AT ) for all square A by Theorem 3.1.A.

Theorem 3.8.6. Let A be an n × n matrix with eigenvalues c1, c2, . . . , cn. Then

det(A) =
∏n

i=1 ci and tr(A) =
∑n

i=1 ci.

Theorem 3.8.7. Let A be a real square matrix and (c, v) an eigenpair (possibly

complex) for A.

(1) c is an eigenvalue of AT . The eigenvectors of AT (which are by definition left

eigenvectors of A) are not necessarily the same as the eigenvectors of A.

(2) There is a left eigenvector such that c is the associated eigenvalue.

(3) (c, v) is an eigenpair of A, where c and v denote the complex conjugates of c

and v, respectively.

(4) cc is an eigenvalue of ATA.

(5) c is real if A is symmetric.
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Note. The proof of Theorem 3.8.7 is to be given in Exercise 3.18.

Note. We now address some properties of the set of eigenvalues of a matrix.

Throughout, we consider the real and complex eigenvalues. Recall that the modulus

of complex z = a + ib is |z| =
√

a2 + b2.

Definition. The set of all distinct eigenvalues of a matrix A is the spectrum of the

matrix, denoted σ(A).

Definition. Let A be an n×n matrix with eigenvalues c1, c2, . . . , cn where we index

the eigenvalues such that |c1| ≥ |c2| ≥ · · · ≥ |cn|. The spectral radius of A, denoted

ρ(A), is the maximum modulus of an eigenvalue: ρ(A) = max1≤i≤n |ci|. The set of

complex numbers {z | |z| = ρ(A)} is the spectral circle of A. An eigenvalue with

modulus ρ(A) (such as c1) is a dominant eigenvalue.

Note. By Theorem 3.8.2(2), if c is an eigenvalue of A and b ∈ C, then bc is an

eigenvalue of bA. So if A has a nonzero eigenvalue then the matrix (1/ρ(A))A is a

scaled matrix with spectral radius 1.

Theorem 3.8.8. Let A be an n×n matrix with distinct eigenvalues {c1, c2, . . . , ck}

and corresponding eigenvectors {x1, x2, . . . , xk} where (ci, xi) is an eigenpair for A.

Then {x1, x2, . . . , xk} is a set of linearly independent vectors. That is, eigenvectors

associated with distinct eigenvalues are linearly independent.
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Definition. Let c be an eigenvalue of square matrix A. The dimension of the

eigenspace of A associated with c (see Corollary 3.8.3) is the geometric multiplicity

of c.

Note. Since the eigenspace of A associated with eigenvalue c is mapped to the 0

vector by A− cI, the geometric multiplicity of c is the nullity of A− cI.

Definition. Let A be a square matrix with characteristic polynomial pA and

eigenvalue c. If c is a root of pA of multiplicity m then c is an eigenvalue of

algebraic multiplicity m. If the algebraic multiplicity of c is 1 then c is a simple

eigenvalue. If the geometric and algebraic multiplicities of c are the same then c is

a semisimple eigenvalue.

Definition. Let A and B be n × n matrices. If there exists nonsingular n × n

matrix P such that B = P−1AP then A and B are similar. If A and B are similar

and B is diagonal then A is diagonalizable. If there is n × n orthogonal matrix Q

such that B = QTAQ then A and B are orthogonally similar. If B is diagonal and

A and B are orthogonally similar then A is orthogonally diagonalizable and QBQT

is an orthogonally diagonal factorization of A. If A and B are orthogonally similar

and B is upper triangular then QBQT is a Schur factorization of A.

Theorem 3.8.9. For any square matrix A, a Schur factorization exists.
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Note. If B = QTAQ where Q is orthogonal and B is diagonal, then by Theorem

3.8.2(5 and 8) (and the fact that Q−1 = QT by Theorem 3.7.1) the eigenvalues of

A are the same as the diagonal elements of B. Similarly, if A = QBQT is a Schur

factorization of A (so that B is upper triangular) then the eigenvalues of A are

the diagonal entries of B. Though the eigenvalues of these similar matrices are

the same, they do not necessarily have the same eigenvectors, as is to be shown in

Exercise 3.19(b).

Note. Let A be an n×n matrix. Let C be a diagonal matrix with diagonal entries

as the eigenvalues of A repeated according to multiplicity. Let V be a matrix with

ith column an eigenvector corresponding to eigenvalue cii. Then AV = V C, as we

prove in the next theorem. If V is invertible (which would require rank(V ) = n

and so would require the linear independence of the eigenvectors in V ) then A =

V CV −1.

Theorem 3.8.10. Let A be an n×n matrix, let c1, c2, . . . , cn be (possibly complex)

scalars, and let v1, v2, . . . , vn be nonzero n-vectors. Let V be an n× n matrix with

ith column vi for 1 ≤ i ≤ n and let C = diag(c1, c2, . . . , cn). Then AV = V C if and

only if c1, c2, . . . , cn are eigenvalues of A and vj is an eigenvector of A corresponding

to cj for j = 1, 2, . . . , n.

Definition. If A is an n × n matrix and A = V CV −1 for some invertible matrix

V and some diagonal matrix C, then A is diagonalizable (or simple) and A =

V CV −1 is a diagonal factorization of A. If A has eigenvalues c1, c2, . . . , cn and

C = diag(c1, c2, . . . , cn) then A = V CV −1 (if this exists) is a similar canonical form

of A. A matrix which is not diagonalizable is a deficient matrix.
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Note. If the eigenvalues of A are distinct then by Theorem 3.8.8 rank(V ) = n

(where the columns of V are eigenvectors of A, as described above) and so V −1

exists and A is diagonalizable.

Theorem 3.8.11. Diagonalizability Theorem.

Let A be an n × n matrix with distinct eigenvalues c1, c2, . . . , ck with algebraic

multiplicities m1, m2, . . . ,mk, respectively. Then A is diagonalizable if and only if

rank(A− ciI) = n−mi for i = 1, 2, . . . , k.

Note. By the rank nullity equation (Theorem 3.5.4), dim(N (A − ciI)) = n −

rank(A−ciI), or rank(A−ciI) = n−dim(N (A−ciI)). So rank(A−ciI) = n−mi

if and only if mi = dim(N (A − ciI)). Now the geometric multiplicity of ci is

dim(N (A − ciI)) so, by Theorem 3.8.11, A is diagonalizable if and only if the

geometric multiplicity equals the algebraic multiplicity for each eigenvalue of A.

Example. We can use the Diagonalizability Theorem to find a nondiagonalizable

matrix. Consider A =


0 1 2

2 3 0

0 4 5

 . We find that the characteristic polynomial

equation is c3 − 8c2 + 13c − 6 = (c − 6)(c − 1)2 = 0. So c = 1 is an eigenvalue of

algebraic multiplicity 2. But

rank(A− 1I) = rank



−1 1 2

2 2 0

0 4 4


 = 2 6= n−mi = 3− 2 = 1.

So by the Diagonalizability Theorem, A is not diagonalizable.
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Note. On page 117, Gentle argues that a symmetric matrix is diagonalizable.

Something more general in fact holds, so we go to another source to prove the

general result. The following is based on Professor Ron Freiwald’s (of Washington

University in St. Louis) website on Orthogonally Diagonalizable Matrices (accessed

4/25/2020).

Theorem 3.8.A. A (real) n × n matrix A is orthogonally diagonalizable if and

only if A is symmetric.

Note. Of course, a non-symmetric matrix can be diagonalizable, just not orthog-

onally diagonalizable.

Theorem 3.8.12. If A is an n × n diagonalizable matrix where A = V CV −1 for

diagonal C, then

(1) there are n linearly independent eigenvectors of A,

(2) the number of nonzero eigenvalues of A is equal to rank(A).

Note. Gentle states that for diagonalizable A with A = V CV −1, and for “function”

f of a scalar, we can define

f(A) = V diag(f(c1), f(c2), . . . , f(cn))V
−1

where c1, c2, . . . , cn are the eigenvalues of A. In the current setting, the domain

of f is presumably C. This definition is fine if f is a polynomial. For other

functions (f(x) = exp(x) is particularly useful), we postpone the discussion until

we introduce matrix norms.

https://www.math.wustl.edu/~freiwald/309orthogdiag.pdf
https://www.math.wustl.edu/~freiwald/309orthogdiag.pdf
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Note 3.8.B. Since every (real) symmetric matrix is orthogonally diagonalizable,

say A = QCQT = QCQ−1, then AQ = QC. By Theorem 3.8.10, the columns of

Q are eigenvectors of A. So the eigenvectors of a (real) symmetric matrix can be

chosen to be orthonormal.

Note. If v1, v2, . . . , vn are orthonormal n-vectors then I =
∑n

i=1 viv
T
i by Exercise

3.8.A. Therefore, for A symmetric with orthonormal eigenvectors v1, v2, . . . , vn we

have

A = AI = A
n∑

i=1

viv
T
i =

n∑
i=1

Aviv
T
i =

n∑
i=1

civiv
T
i

where ci is the eigenvalue of A corresponding to eigenvector v1.

Definition. If A is a symmetric matrix with orthonormal eigenvectors vi and

corresponding eigenvalues ci with i = 1, 2, . . . , n, then A =
∑n

i=1 civiv
T
i is the

spectral decomposition of A. Let Pi = viv
T
i . Then the Pi are spectral projectors.

Example. We give a quick example of spectral decomposition using an exam-

ple from Fraleigh and Beauregard (Example 8.4.3). Consider symmetric A = 3 −2

−2 0

. We find c1 = 4 and c2 = −1, v1 =

 2/
√

5

−1/
√

5

 and v2 =

 1/
√

5

2/
√

5

.

Notice

n∑
i=1

viv
T
i =

 2/
√

5

−1/
√

5

[ 2√
5

− 1√
5

]
+

 1/
√

5

2/
√

5

[ 1√
5

2√
5

]

=

 4/5 −2/5

−2/5 1/5

+

 1/5 2/5

2/5 4/5

 =

 1 0

0 1

 .
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Also

n∑
i=1

civiv
T
i = 4

 4/5 −2/5

−2/5 1/5

− 1

 1/5 2/5

2/5 4/5

 =

 3 −2

−2 0

 = A.

Note. Since the spectral projectors satisfy Pi = viv
T
i where I =

∑n
i=1 viv

T
i (by

Exercise 3.8.A), then
∑n

i=1 Pi = I. Also, P T
i = (viv

T
i )T = viv

T
i = Pi so the Pi are

symmetric. Next,

PiPi = (viv
T
i )(viv

T
i ) = vi(v

T
i vi)v

T
i = vi‖vi‖2vT

i = vi(1)v
T
i = viv

T
i = Pi

and for i 6= j,

PiPj = (viv
T
i )(vjv

T
j ) = vi(v

T
i vj)v

T
j = vi〈vi, vj〉vT

j = vi(0)v
T
j = 0.

That is, PiPj =

 Pi if i = j

0 if i 6= j
where “0” is the n × n zero matrix. Of course

the spectral decomposition in terms of the spectral projectors is A =
∑n

i=1 ciPi.

Since, by Theorem 3.8.2(6), the eigenvalues of Ak are ck
i with eigenvector vi. so the

spectral decomposition of Ak is Ak =
∑n

i=1 ck
i viv

T
i =

∑n
i=1 ck

i Pi.

Note. For A a symmetric matrix and A =
∑n

i=1 civiv
T
i as the spectral decomposi-

tion of A with the columns of matrix V as the vi, we have that V is invertible. So

for any x ∈ Rn, we have x = V b for some b ∈ Rn (namely, b = V −1x). Recall from

Section 3.2 that a quadratic form is of the form xTAx for A an n × n matrix and

x ∈ Rn. So with x = V b we have the quadratic form

xTAx = xT

(
n∑

i=1

civiv
T
i

)
x = (V b)T

(
n∑

i=1

civiv
T
i

)
V b
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=
n∑

i=1

bTV T civiv
T
i V b =

n∑
i=1

bTV Tviv
T
i V bci

since ci is a scalar. Now vT
i V is the 1× n vector [〈vi, v1〉 〈vi, v2〉 · · · 〈vi, vn〉] = ei

where ei is the ith standard basis (row) vector of Rn. Therefore vT
i V b = bi (here,

bi is the ith component of vector b). Similarly, bTV Tvi = bTeT
i = bi. Therefore,

xTAx =
n∑

i=1

bTV Tviv
T
i V bci =

n∑
i=1

b2
i ci.

Since each ci is real by Theorem 3.8.7(5), we can consider max{ci}. So we have

xTAx =
n∑

i=1

b2
i ci ≤ max{ci}

n∑
i=1

b2
i = ‖b‖2 max{ci}.

Since x = V b then xTx = (V b)T (V b) = bTV TV b = bTV −1V b = bT b (since V is

orthogonal and so V T = V −1). Therefore for x 6= 0, since ‖x‖ = ‖V b‖ = ‖b‖ by

Exercise 3.7.C, we have

xTAx

xTx
=

xTAx

〈x, x〉
≤ max{ci}.

Definition. For symmetric n×n real matrix A, the function RA : Rn → R defined

as

RA(x) =
xTAx

xTx
=
〈x, Ax〉
〈x, x〉

(where x 6= 0)

is the Rayleigh quotient of A.

Note. The Rayleigh quotient is used in a numerical technique that approxi-

mates the eigenvalues of maximum modulus and the corresponding eigenvectors

(see Fraleigh and Beauregard’s Linear Algebra, 3rd Editon, Section 8.4 “Comput-

ing Eigenvalues and Eigenvectors”). It is named for John William Strut, the third
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Baron Rayleigh (1842–1919). He was a physicist and studied sound and optics. He

is most famous for explaining why the sky is blue (it is due to the physical process

called Rayleigh scattering); he also is a codiscoverer of the element argon for which

he won the 1904 Nobel prize in physics.

Note. Recall from Section 3.2 that the inner product of n×m matrices A and B

where the columns of A are a1, a2, . . . , am and the columns of B are b1, b2, . . . , bm, is

〈A, B〉 =
∑m

j=1 aT
j bj. So for orthonormal v1, v2, . . . , vm we have that the jth column

of viv
T
i is vj

i vi where vj
i is the jth entry of vi. So

〈viv
T
i , viv

T
i 〉 =

n∑
j=1

(vj
i vi)

T (vj
i vi) =

n∑
j=1

(vj
i )

2vT
i vi = ‖vi‖2〈vi, vi〉 = ‖vi‖4 = 1.

For k 6= i,

〈viv
T
i , vkv

T
k 〉 =

n∑
j=1

(vj
i vi)

T (vj
kvk) =

n∑
j=1

vj
i v

j
kv

T
i vk =

n∑
j=1

vj
i v

j
k〈vi, vk〉 = 0.

So the n × n matrices Pi = viv
T
i form an orthonormal system of matrices. So by

Corollary 2.2.2 (the Fourier expansion of matrix A), for any n×n symmetric matrix

A,

A = 〈A, v1v
T
1 〉v1v

T
1 + 〈A, v2v

T
2 〉v2v

T
2 + · · ·+ 〈A, vnv

T
n 〉vnv

T
n .

But the spectral decomposition of A is A =
∑n

i=1 civiv
T
i and since representations

with respect to a given basis are unique, then ci = 〈A, viv
T
i 〉 for i = 1, 2, . . . , n.

Theorem 3.8.13. If A is a symmetric matrix where (c, v) is an eigenpair for A

with vTv = ‖v‖2 = 1, then for any k ∈ N we have (A− cvvT )k = Ak − ckvvT .
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Note. A result related to Theorem 3.8.13 holds for nonsymmetric square matrices.

Exercise 3.8.B states: “Let A be an n×n (not necessarily symmetric) matrix. Let w

be a left eigenvector for eigenvalue c and let v be a right eigenvector for eigenvalue

c, where wTv = 1. Prove that for k ∈ N, (A− cvwT )k = Ak − ckvwT .”

Theorem 3.8.14. Any real symmetric matrix is positive definite if and only if all

of its eigenvalues are positive. Any real symmetric matrix is nonnegative definite

if and only if all of its eigenvalues are nonnegative.

Note. If square matrix A is positive definite and orthogonally diagonalizable then

A = V CV T for orthogonal V and A−1 = (V CV T )−1 = V C−1V −1 = V C−1V T .

Since the eigenvalues (i.e., the diagonal entries of C) are positive by Theorem

3.8.14, then the diagonal entries of C−1 are positive (i.e. the eigenvalues of C−1)

and so by Theorem 3.8.14, C−1 is positive definite.

Theorem 3.8.15.

(1) If symmetric matrix A is positive definite then there is nonsingular P such that

P TAP = I.

(2) Suppose symmetric matrix A is nonnegative definite and A = V CV T where V

is orthogonal (such V exists by Theorem 3.8.A) and C = diag(c1, c2, . . . , cn)

where the eigenvalues of A are c1, c2, . . . , cn. Then there is diagonal nonnega-

tive definite matrix S such that (V SV T )2 = A.
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Definition. If symmetric matrix A is nonnegative definite then the matrix V SV T

of Theorem 3.8.15(2) where (V SV T )2 = A is the square root of A, denoted A1/2.

Note. For r ∈ N we can similarly define A1/r by letting S = diag( r
√

c1, r
√

c2, . . . , r
√

cn).

If symmetric A is positive definite then all eigenvalues are positive by Theorem

3.8.14 and by Theorem 3.8.6 det(A) is the product of the eigenvalues and so A is

invertible by Theorem 3.3.16. If c is an eigenvalue of A then 1/c is an eigenvalue of

A−1 by Theorem 3.8.2(4) and so A−1 is positive definite by Theorem 3.8.14 (A−1 is

symmetric since (A−1)T = (AT )−1 by Theorem 3.3.7). So we can define the square

root of A−1, denoted A−1/2. Similarly we can define A−1/r for r ∈ N.

Definition. Let A and B be n×n matrices. A value c ∈ C such that det(A−cB) =

0 is a generalized eigenvalue of A with respect to B. If v ∈ Rn satisfies Av = cBv

then v is a generalized eigenvector of A with respect to B for c.

Note. Gentle claims without proof that every n×m matrix A has a singular value

decomposition, which we define next. We give a proof of the existence of such a

decomposition from another source.

Definition. For an n × m matrix A, a factorization A = UDV T , where U is an

n × n orthogonal matrix, V is an m × m orthogonal matrix, and D is an n × m

diagonal matrix with nonnegative entries is a singular value decomposition of A.

(An n×m diagonal matrix has min{n, m} elements on the diagonal and all other

entries are zero.) The nonzero entries of D are the singular values of A.
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Note. The following proof in the notation of Gentle is based on Harville’s Matrix

Algebra From a Statistician’s Perspective (Springer, 1997; see pages 550-51).

Theorem 3.8.16. Let A be an n×m matrix. Then there exists a singular value

decomposition of A.

Definition. Let A be an n×m matrix of rank r with singular value decomposition

A = UDV T where D = diag(d1, d2, . . . , dn) (here, D is n×m) and d1 ≥ d2 ≥ · · · ≥

dn ≥ 0 (so dr+1 = dr+2 = · · · = dn = 0). Let the columns of U be ui and the

columns of V be vi. Then we can express A as A = UDV T =
∑r

i=1 diuiv
T
i . This is

a spectral decomposition of A.

Note. If A is n×n and symmetric then A is orthogonally diagonalizable (Theorem

3.8.A) and the previous definition reduces to the definition of spectral decomposi-

tion given previously for symmetric matrices.

Theorem 3.8.17. Let A be an n × m matrix with spectral decomposition A =

UDV T =
∑r

i=1 diuiv
T
i . Then 〈uiv

T
i , ujv

T
j 〉 =

 1 if i = j

0 if i 6= j
and di = 〈A, uiv

T
i 〉.

That is, the spectral decomposition is a Fourier expansion of A.
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