Chapter 1. The Real Numbers: Sets, Sequences, and Functions
1.4. Open Sets, Closed Sets, and Borel Sets or Real Numbers—Proofs of Theorems
Table of contents

1. Theorem

2. Proposition 1.13
Theorem. Given any collection C of subsets of X, there exists a smallest algebra A which contains C. That is, if B is any algebra containing C then B contains A.

Proof. Let \mathcal{F} be the family of all algebras B of X that contain C (the power set $\mathcal{P}(X) = 2^X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$). Let $A = \cap_{B \in \mathcal{F}} B$.
Theorem. Given any collection C of subsets of X, there exists a smallest algebra A which contains C. That is, if B is any algebra containing C then B contains A.

Proof. Let \mathcal{F} be the family of all algebras B of X that contain C (the power set $\mathcal{P}(X) = 2^X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$). Let $A = \cap_{B \in \mathcal{F}} B$.

Since $C \subset B$ for all $B \in \mathcal{F}$, then $C \subset A$ and A contains C.
Theorem. Given any collection \(C \) of subsets of \(X \), there exists a smallest algebra \(A \) which contains \(C \). That is, if \(B \) is any algebra containing \(C \) then \(B \) contains \(A \).

Proof. Let \(F \) be the family of all algebras \(B \) of \(X \) that contain \(C \) (the power set \(P(X) = 2^X \in F \), so \(F \neq \emptyset \)). Let \(A = \bigcap_{B \in F} B \).

Since \(C \subset B \) for all \(B \in F \), then \(C \subset A \) and \(A \) contains \(C \).

If \(A, B \in A \), then \(A, B \in B \) for all \(B \in F \) and so \(A \cup B \in A \) since each \(B \) is an algebra. Therefore \(A \) is closed under finite unions.
Theorem. Given any collection C of subsets of X, there exists a smallest algebra A which contains C. That is, if B is any algebra containing C then B contains A.

Proof. Let \mathcal{F} be the family of all algebras B of X that contain C (the power set $\mathcal{P}(X) = 2^X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$). Let $A = \bigcap_{B \in \mathcal{F}} B$.

Since $C \subset B$ for all $B \in \mathcal{F}$, then $C \subset A$ and A contains C.

If $A, B \in A$, then $A, B \in B$ for all $B \in \mathcal{F}$ and so $A \cup B \in A$ since each B is an algebra. Therefore A is closed under finite unions.

Similarly, if $A \in A$, then $\tilde{A} = X \sim A = X \setminus A \in B$ for all $B \in \mathcal{F}$ and so $\tilde{A} \in A$. Therefore A is closed under complements and so A is an algebra.
Theorem. Given any collection C of subsets of X, there exists a smallest algebra A which contains C. That is, if B is any algebra containing C then B contains A.

Proof. Let \mathcal{F} be the family of all algebras B of X that contain C (the power set $\mathcal{P}(X) = 2^X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$). Let $A = \cap_{B \in \mathcal{F}} B$.

Since $C \subset B$ for all $B \in \mathcal{F}$, then $C \subset A$ and A contains C.

If $A, B \in A$, then $A, B \in B$ for all $B \in \mathcal{F}$ and so $A \cup B \in A$ since each B is an algebra. Therefore A is closed under finite unions.

Similarly, if $A \in A$, then $\tilde{A} = X \sim A = X \setminus A \in B$ for all $B \in \mathcal{F}$ and so $\tilde{A} \in A$. Therefore A is closed under complements and so A is an algebra.

Now, if B is an algebra containing C then $B \in \mathcal{F}$ and, by definition, $B \supset A$. So A is “the smallest” algebra containing collection C. \qed
Theorem. Given any collection \(C \) of subsets of \(X \), there exists a smallest algebra \(A \) which contains \(C \). That is, if \(B \) is any algebra containing \(C \) then \(B \) contains \(A \).

Proof. Let \(\mathcal{F} \) be the family of all algebras \(B \) of \(X \) that contain \(C \) (the power set \(\mathcal{P}(X) = 2^X \in \mathcal{F} \), so \(\mathcal{F} \neq \emptyset \)). Let \(A = \bigcap_{B \in \mathcal{F}} B \).

Since \(C \subset B \) for all \(B \in \mathcal{F} \), then \(C \subset A \) and \(A \) contains \(C \).

If \(A, B \in A \), then \(A, B \in B \) for all \(B \in \mathcal{F} \) and so \(A \cup B \in A \) since each \(B \) is an algebra. Therefore \(A \) is closed under finite unions.

Similarly, if \(A \in A \), then \(\tilde{A} = X \sim A = X \setminus A \in B \) for all \(B \in \mathcal{F} \) and so \(\tilde{A} \in A \). Therefore \(A \) is closed under complements and so \(A \) is an algebra.

Now, if \(B \) is an algebra containing \(C \) then \(B \in \mathcal{F} \) and, by definition, \(B \supset A \). So \(A \) is “the smallest” algebra containing collection \(C \).
Proposition 1.13. Let C be a collection of subsets of a set X. Then the intersection A of all σ-algebras of subsets of X that contain C is a σ-algebra that contains C. Moreover, it is the smallest σ-algebra of subsets of X that contain C in the sense that if B is a σ-algebra containing C, then $A \subset B$.

Proof. We know by “Theorem” above that the intersection of algebras containing C are again algebras.
Proposition 1.13. Let C be a collection of subsets of a set X. Then the intersection A of all σ-algebras of subsets of X that contain C is a σ-algebra that contains C. Moreover, it is the smallest σ-algebra of subsets of X that contain C in the sense that if B is a σ-algebra containing C, then $A \subset B$.

Proof. We know by “Theorem” above that the intersection of algebras containing C are again algebras. So we only need to prove the “σ” part and the “smallest” part. We leave this as homework.
Proposition 1.13. Let C be a collection of subsets of a set X. Then the intersection A of all σ-algebras of subsets of X that contain C is a σ-algebra that contains C. Moreover, it is the smallest σ-algebra of subsets of X that contain C in the sense that if B is a σ-algebra containing C, then $A \subset B$.

Proof. We know by “Theorem” above that the intersection of algebras containing C are again algebras. So we only need to prove the “σ” part and the “smallest” part. We leave this as homework.