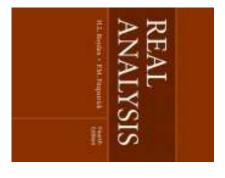
Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.1. Measures and Measurable Sets—Proofs of Theorems



Proposition 17.1

Proposition 17.1. Let (X, \mathcal{M}, μ) be a measure space

(i) For any finite disjoint collection $\{E_k\}_{k=1}^n$ of measurable sets

$$\mu\left(\bigcup_{k=1}^{n} E_k\right) = \sum_{k=1}^{n} \mu(E_k).$$

That is, μ is finite additive.

- (ii) If A and B are measurable sets and $A \subseteq B$, then
- (iii) If A and B are measurable sets, $A \subseteq B$, and $\mu(A) < \infty$, then $\mu(B \setminus A) = \mu(B) - \mu(A)$. This is the excision principle. $\mu(A) \leq \mu(B)$. That is, μ is monotone.
- (iv) For any countable collection $\{E_k\}_{k=1}^{\infty}$ of measurable sets that covers a measurable set E,

$$\mu(E) \leq \sum_{k=1}^{\infty} \mu(E_k).$$

This is called countable monotonicity.

Proposition 17.1 (continued)

The Borel-Cantelli Lemma

(ii, iii) By finite additivity we have $\mu(B) = \mu(A) + \mu(B \setminus A)$ and since $\mu(B \setminus A) \geq 0$, monotonicity follows. Rearranging this equation gives the **Proof. (i)** Finite Additivity follows from countable additivity by taking **The Borel-Cantelli Lemma.** Let (X,\mathcal{M},μ) be a measure space and $\{E_k\}_{k=1}^\infty$ be a countable collection of measurable sets for which

of the E_k 's. $\sum \mu({\sf E}_k) < \infty.$ Then almost all $x \in X$ belong to at most a finite number

(iv) Define $G_1=E_1$ and $G_k=E_k\setminus \left(\cup_{i=1}^{k-1}E_i\right)$ for $k\geq 2$. Then $\{G_k\}_{k=1}^{\infty}$ is a sequence of disjoint sets, and $\cup_{k=1}^{\infty}G_k=\cup_{k=1}^{\infty}E_k$. Also, $G_k\subset E_k$ for all

excision principle.

 $= \emptyset$ for k > n.

 $\mu(E) \leq \mu\left(\bigcup_{k=1}^{\infty} E_{k}\right)$ by monotonicity

$$= \mu\left(\cup_{k=1}^\infty G_k
ight) = \sum_{k=1}^\infty \mu(G_k)$$
 by countable additivity

$$\leq \sum_{k=1}^{\infty} \mu(E_k)$$
 by monotonicity.

 $\mu\left(\bigcup_{k=1}^{\infty}E_{k}\right)\leq\sum_{k=1}^{\infty}\mu(E_{k})$. Hence, Continuity of Measure (Proposition 17.2), since $\bigcup_{k=n}^{\infty}E_{k}$ is a descending sequence of sets, gives **Proof.** For $n \in \mathbb{N}$, countable monotonicity implies

$$\mu\left(\bigcap_{n=1}^{\infty}\left[\bigcup_{k=n}^{\infty}E_{k}\right]\right) = \lim_{n\to\infty}\mu\left(\bigcup_{k=n}^{\infty}E_{k}\right)$$

$$\lim_{n o \infty} \sum_{k=n}^{\infty} \mu(E_k)$$
 by above

 \parallel 0 since the tail of a convergent series

of real numbers goes to 0

Real Analysis

April 6, 2017

Real Analysis

April 6, 2017 5 / 6

The Dorel-Cantell Lemma

The Borel-Cantelli Lemma (continued)

The Borel-Cantelli Lemma. Let (X,\mathcal{M},μ) be a measure space and $\{E_k\}_{k=1}^\infty$ be a countable collection of measurable sets for which $\sum_{k=1}^\infty \mu(E_k) < \infty$. Then almost all $x \in X$ belong to at most a finite number of the E_k 's.

Proof (continued). Explicitly $\bigcap_{n=1}^{\infty} (\bigcup_{k=n}^{\infty} E_k)$ is the set of all points in X which belong to an infinite number of E_k 's.

() Real Analysis April 6, 2017 6 / 6