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Proposition 17.1

Proposition 17.1

Proposition 17.1. Let (X, M, ;1) be a measure space.
(i) For any finite disjoint collection {Ex}}_; of measurable sets,

7 (U Ek) =" u(E).
k=1 k=1
That is, u is finite additive.
(i) If A and B are measurable sets and A C B, then
1(A) < u(B). That is, i is monotone.
(iii) If A and B are measurable sets, A C B, and u(A) < oo, then
u(B\ A) = u(B) — u(A). This is the excision principle.
(iv) For any countable collection {Ej}2°; of measurable sets
that covers a measurable set E,

W) < ulEe)
k=1

This is called countable monotonicity.
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Proposition 17.1 (continued)

Proof. (i) Finite Additivity follows from countable additivity by taking
Ey, = @ for k > n.
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Proposition 17.1

Proposition 17.1 (continued)

Proof. (i) Finite Additivity follows from countable additivity by taking
Ey, = @ for k > n.

u(B\ A) > 0, monotonicity follows. Rearranging this equation gives the
excision principle.
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Proposition 17.1 (continued)

Proof. (i) Finite Additivity follows from countable additivity by taking
Ey, = @ for k > n.

u(B\ A) > 0, monotonicity follows. Rearranging this equation gives the
excision principle.

(v) Define Gy =y and Gy = B¢ \ (UL E;) for k > 2. Then {Ge}32,y is
a sequence of disjoint sets, and U2 ; G = U2 Ex. Also, G C Ey for all
ke N. So

w(E) < p(UgliEk) by monotonicity

= wu(Up,Gk) = ZM(Gk) by countable additivity
k=1

o0
< ZM(Ek) by monotonicity.
k=1
L]
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma. Let (X, M, 1) be a measure space and
{Ex}?2, be a countable collection of measurable sets for which
o

Z,u(Ek) < 00. Then almost all x € X belong to at most a finite number

k=1
of the E’s.
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma. Let (X, M, 1) be a measure space and
{Ex}?2, be a countable collection of measurable sets for which
o

Z,u(Ek) < 00. Then almost all x € X belong to at most a finite number
k=1
of the E’s.

Proof. For n € N, countable monotonicity implies
1 (URZy Ei) < 30020 m(Ew).
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma. Let (X, M, 1) be a measure space and
{Ex}?2, be a countable collection of measurable sets for which
o

Z,u(Ek) < 00. Then almost all x € X belong to at most a finite number
k=1
of the E’s.

Proof. For n € N, countable monotonicity implies
p (U2 Ex) < >°%2 1 (Ek). Hence, Continuity of Measure (Proposition
17.2), since U2  E is a descending sequence of sets, gives

(O [UEREd) = lim (R, Ee)

[e.e]
< i
< nLn;oZM(Ek) by above
k=n
= 0 since the tail of a convergent series

of real numbers goes to 0
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The Borel-Cantelli Lemma (continued)

The Borel-Cantelli Lemma. Let (X, M, 1) be a measure space and
{Ex}?2, be a countable collection of measurable sets for which
oo

ZM(Ek) < 00. Then almost all x € X belong to at most a finite number

k=1
of the Ej’s.

Proof (continued). Explicitly N0, (U2 Ex) is the set of all points in X
which belong to an infinite number of Ej’s. Ol
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