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Chapter 17. General Measure Spaces: Their Properties and
Construction

17.1. Measures and Measurable Sets—Proofs of Theorems
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Proposition 17.1

Proposition 17.1

Proposition 17.1. Let (X ,M, µ) be a measure space.

(i) For any finite disjoint collection {Ek}n
k=1 of measurable sets,

µ

(
n⋃
·

k=1

Ek

)
=

n∑
k=1

µ(Ek).

That is, µ is finite additive.
(ii) If A and B are measurable sets and A ⊆ B, then

µ(A) ≤ µ(B). That is, µ is monotone.
(iii) If A and B are measurable sets, A ⊆ B, and µ(A) < ∞, then

µ(B \ A) = µ(B)− µ(A). This is the excision principle.
(iv) For any countable collection {Ek}∞k=1 of measurable sets

that covers a measurable set E ,

µ(E ) ≤
∞∑

k=1

µ(Ek).

This is called countable monotonicity.
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Proposition 17.1

Proposition 17.1 (continued)

Proof. (i) Finite Additivity follows from countable additivity by taking
Ek = ∅ for k > n.
(ii, iii) By finite additivity we have µ(B) = µ(A) + µ(B \ A) and since
µ(B \ A) ≥ 0, monotonicity follows. Rearranging this equation gives the
excision principle.

(iv) Define G1 = E1 and Gk = Ek \
(
∪k−1

i=1 Ei

)
for k ≥ 2. Then {Gk}∞k=1 is

a sequence of disjoint sets, and ∪∞k=1Gk = ∪∞k=1Ek . Also, Gk ⊂ Ek for all
k ∈ N. So

µ(E ) ≤ µ (∪∞k=1Ek) by monotonicity

= µ (∪·∞k=1Gk) =
∞∑

k=1

µ(Gk) by countable additivity

≤
∞∑

k=1

µ(Ek) by monotonicity.

() Real Analysis April 6, 2017 4 / 6



Proposition 17.1

Proposition 17.1 (continued)

Proof. (i) Finite Additivity follows from countable additivity by taking
Ek = ∅ for k > n.
(ii, iii) By finite additivity we have µ(B) = µ(A) + µ(B \ A) and since
µ(B \ A) ≥ 0, monotonicity follows. Rearranging this equation gives the
excision principle.

(iv) Define G1 = E1 and Gk = Ek \
(
∪k−1

i=1 Ei

)
for k ≥ 2. Then {Gk}∞k=1 is

a sequence of disjoint sets, and ∪∞k=1Gk = ∪∞k=1Ek . Also, Gk ⊂ Ek for all
k ∈ N. So

µ(E ) ≤ µ (∪∞k=1Ek) by monotonicity

= µ (∪·∞k=1Gk) =
∞∑

k=1

µ(Gk) by countable additivity

≤
∞∑

k=1

µ(Ek) by monotonicity.

() Real Analysis April 6, 2017 4 / 6



Proposition 17.1

Proposition 17.1 (continued)
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma

The Borel-Cantelli Lemma. Let (X ,M, µ) be a measure space and
{Ek}∞k=1 be a countable collection of measurable sets for which
∞∑

k=1

µ(Ek) < ∞. Then almost all x ∈ X belong to at most a finite number

of the Ek ’s.

Proof. For n ∈ N, countable monotonicity implies
µ (∪∞k=1Ek) ≤

∑∞
k=1 µ(Ek).

Hence, Continuity of Measure (Proposition
17.2), since ∪∞k=nEk is a descending sequence of sets, gives

µ (∩∞n=1 [∪∞k=nEk ]) = lim
n→∞

µ (∪∞k=nEk)

≤ lim
n→∞

∞∑
k=n

µ(Ek) by above

= 0 since the tail of a convergent series

of real numbers goes to 0
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma (continued)

The Borel-Cantelli Lemma. Let (X ,M, µ) be a measure space and
{Ek}∞k=1 be a countable collection of measurable sets for which
∞∑

k=1

µ(Ek) < ∞. Then almost all x ∈ X belong to at most a finite number

of the Ek ’s.

Proof (continued). Explicitly ∩∞n=1 (∪∞k=nEk) is the set of all points in X
which belong to an infinite number of Ek ’s.
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