Proposition 17.4

Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.2. Signed Measures: Hahn and Jordan Decompositions—Proofs

Proof. Let $A = \bigcup_{k=1}^{\infty} A_{\mathcal{K}}$ and $E \subset A$, where $A, E, A_k \in \mathcal{M}$ for all $k \in \mathbb{N}$.

of a countable collection of positive sets is positive.

Proposition 17.4. Let ν be a signed measure on (X,\mathcal{M}) . Then the union

Define $E_1=E\cap A_1$ and for $k\geq 2$ define

$$E_k = (E \cap A_k) \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1}).$$

disjoint collection, $E=\cup_{k=1}^\infty E_k$, and so $\nu(E)=\sum_{k=1}^\infty \nu(E_k)\geq 0$. So A is Then for each $E_k \in \mathcal{M}$ and $u(E_k) \geq 0$ since A_k is positive. $\{E_k\}_{k=1}^\infty$ is a

Hahn's Lemma

of positive measure. where $0<\nu(E)<\infty$. Then there is $A\subset E,\ A\in\mathcal{M}$ that is positive and **Hahn's Lemma.** Let u be a signed measure on (X,\mathcal{M}) and $E\in\mathcal{M}$

at some $n\in\mathbb{N}$, then set $A=E\setminus \cup_{j=1}^n E_j$ is a positive subset of E. If the process does not terminate, define $A = E \setminus \bigcup_{k=1}^{\infty} E_k$. Then subset of $E\setminus \bigcup_{j=1}^{k-1} E_j$ for which $\nu(E_k)<-1/m_k$. If the process terminates measurable subset of $E\setminus \cup_{j=1}^{k-1} E_j$ of measure less than $-1/m_k$ and E_k is a $1 \le k \le n$, m_k is the smallest natural number for which there is a m_1, m_2, \ldots, m_n and measurable sets E_1, E_2, \ldots, E_n such that, for number for which there is a measurable set of measure less than $-1/m_1$. contains subsets of negative measure. Let $m_{
m I}$ be the smallest natural **Proof.** If E is positive, then we are done. If E is not positive, then E $E = A \cup (\cup_{k=1}^{\infty} E_k).$ Let $E_1 \subset E$ with $u(E_1) < -1/m_1$. Inductively define natural numbers

Hahn's Lemma (continued 1)

of positive measure. where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and **Hahn's Lemma.** Let ν be a signed measure on (X,\mathcal{M}) and $E\in\mathcal{M}$

Lemma 1 and countable additivity) **Proof (continued).** Since $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ and $\bigcup_{k=1}^{\infty} E_k \subset E$, then (by

$$-\infty < \nu\left(\cup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \nu(E_k) \le \sum_{k=1}^{\infty} -1/m_k.$$

must be that $\nu(B)>-1/(m_k-1)$. Since this holds for all $k\in\mathbb{N}$ and $m_k\to\infty$, then $\nu(B)\geq 0$. So A is a positive set. natural number such that there is a measurable subset of $E\setminus \left(\cup_{j=1}^{k-1}E_j
ight)$ of would diverge). Now to show that A is positive. Let $B \subset A$ be measurable. So $m_k o \infty$ (otherwise, if m_k converges, then the series on the right measure less than $-1/m_k$ (so $-1/(m_k-1)<
u(E_k)\le -1/m_k$), then it Then $B\subset A\subset E\setminus \left(\cup_{j=1}^{k-1}E_j
ight)$ for each $k\in \mathbb{N}.$ Since m_k is the smallest

April 19, 2017 4 / 10 Real Analysis

April 19, 2017 5 / 10

Real Analysis

Hahn Decomposition I heorem

Hahn's Lemma (continued 2)

of positive measure. where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and **Hahn's Lemma.** Let ν be a signed measure on (X,\mathcal{M}) and $E\in\mathcal{M}$

 $\nu\left(\bigcup_{k=1}^{\infty}E_{k}\right)<0$, it must be that $\nu(A)>0$. the first case), so $\nu(E) = \nu(A) + \nu\left(\bigcup_{k=1}^{\infty} E_k\right) > 0$ and since **Proof (continued).** Finally, $E = A \cup (\bigcup_{k=1}^{\infty} E_k)$ (or $E = A \cup (\bigcup_{k=1}^{n} E_k)$ in

> (X,\mathcal{M}) . Then there is a Hahn decomposition of X. The Hahn Decomposition Theorem. Let ν be a signed measure on

 $\nu(A) = \lambda$, and $\lambda < \infty$ since λ does not take on the value $+\infty$ (WLOG). $\nu(A) = \nu(A_k) + \nu(A \setminus A_k) \ge \nu(A_k)$. Hence $\nu(A) \ge \lambda$. Therefore definition of supremum). Define $A = \bigcup_{k=1}^{\infty} A_k$. By Proposition 17.4, set Asequence of positive sets such that $\lambda = \lim_{k \to \infty} \nu(A_k)$ (which exists by the for each $k \in \mathbb{N}$, $A \setminus A_n \subset A$ and so $\nu(A \setminus A_k) \geq 0$ since A is positive. Thus is a positive set, and so $\lambda \ge \nu(A)$ (by the definition of supremum). Also, $\lambda = \sup\{\nu(E) \mid E \in \mathcal{P}\}.$ Then $\lambda \geq 0$ since $\varnothing \in \mathcal{P}$. Let $\{A_k\}_{k=1}^{\infty}$ be a be the collection of positive subsets of X and define omitted by ν (otherwise, replace ν with $-\nu$ and follow this proof). Let ${\cal P}$ **Proof.** Without loss of generality, suppose $+\infty$ is the infinite value

Jordan Decomposition Theorem

Hahn Decomposition Theorem (continued)

The Hahn Decomposition Theorem. Let ν be a signed measure on (X,\mathcal{M}) . Then there is a Hahn decomposition of X.

a positive set by Proposition 17.4 and by additivity, there is $E_0 \subset B$ such that E_0 is positive and $\nu(E_0) > 0$. But then $A \cup E_0$ is negative is false and hence B is a negative set. Therefore $\{A, B\}$ is a $\nu(A \cup E_0) = \nu(A) + \nu(E_0) > \lambda$, a CONTRADICTION to the definition of there is a subset E of B with positive measure. So by Hahn's Lemma **Proof (continued).** Let $B = X \setminus A$. ASSUME B is not negative. Then Hahn decomposition of X. λ (notice that $\lambda < \infty$ is needed here). So the assumption that B is not

The Jordan Decomposition Theorem.

Moreover, there is only one such pair of mutually singular measures singular measures ν^+ and ν^- on (X, \mathcal{M}) for which $\nu = \nu^+ - \nu^-$. Let u be a signed measure on (X,\mathcal{M}) . Then there are two mutually

 $\nu^-(A)=0$, so ν^+ and ν^- are mutually singular. Also, $\nu^+(E) = \nu(E \cap A)$ and $\nu^-(E) = -\nu(E \cap B)$. Then $\nu^+(B) = 0$ and Hahn Decomposition Theorem. Then for $E \in \mathcal{M}$, define **Proof.** Let $\{A, B\}$ be a Hahn decomposition of X, which exists by the

$$\nu(E) = \nu((E \cap A) \cup (E \cap B))$$

$$= \nu(E \cap A) + \nu(E \cap B) \text{ by additivity}$$

$$= \nu^{+}(E) - \nu^{-}(E),$$

$$0 \nu = \nu^+ - \nu^-$$
.

Real Analysis

April 19, 2017 8 / 10

7 / 10

April 19, 2017 9 / 10

Real Analysis

Jordan Decomposition Theore

Jordan Decomposition Theorem (continued)

The Jordan Decomposition Theorem.

Let ν be a signed measure on (X,\mathcal{M}) . Then there are two mutually singular measures ν^+ and ν^- on (X,\mathcal{M}) for which $\nu=\nu^+-\nu^-$. Moreover, there is only one such pair of mutually singular measures.

Proof. For uniqueness is given in Problem 17.13.

() Real Analysis April 19, 2017 10 / 10