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Proposition 17.4

Proposition 17.4

Proposition 17.4. Let ν be a signed measure on (X ,M). Then the union
of a countable collection of positive sets is positive.

Proof. Let A = ∪∞k=1AK and E ⊂ A, where A,E ,Ak ∈M for all k ∈ N.
Define E1 = E ∩ A1 and for k ≥ 2 define

Ek = (E ∩ Ak) \ (A1 ∪ A2 ∪ · · · ∪ Ak−1) .

Then for each Ek ∈M and ν(Ek) ≥ 0 since Ak is positive. {Ek}∞k=1 is a
disjoint collection, E = ∪·∞k=1Ek , and so ν(E ) =

∑∞
k=1 ν(Ek) ≥ 0. So A is

positive.
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Hahn’s Lemma

Hahn’s Lemma

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E
contains subsets of negative measure. Let m1 be the smallest natural
number for which there is a measurable set of measure less than −1/m1.
Let E1 ⊂ E with ν(E1) < −1/m1.

Inductively define natural numbers
m1,m2, . . . ,mn and measurable sets E1,E2, . . . ,En such that, for
1 ≤ k ≤ n, mk is the smallest natural number for which there is a
measurable subset of E \ ∪· k−1

j=1 Ej of measure less than −1/mk and Ek is a

subset of E \ ∪· k−1
j=1 Ej for which ν(Ek) < −1/mk . If the process terminates

at some n ∈ N, then set A = E \ ∪· nj=1Ej is a positive subset of E .
If the process does not terminate, define A = E \ ∪·∞k=1Ek . Then
E = A ∪· (∪·∞k=1Ek).

() Real Analysis April 19, 2017 4 / 10



Hahn’s Lemma

Hahn’s Lemma

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E
contains subsets of negative measure. Let m1 be the smallest natural
number for which there is a measurable set of measure less than −1/m1.
Let E1 ⊂ E with ν(E1) < −1/m1. Inductively define natural numbers
m1,m2, . . . ,mn and measurable sets E1,E2, . . . ,En such that, for
1 ≤ k ≤ n, mk is the smallest natural number for which there is a
measurable subset of E \ ∪· k−1

j=1 Ej of measure less than −1/mk and Ek is a

subset of E \ ∪· k−1
j=1 Ej for which ν(Ek) < −1/mk . If the process terminates

at some n ∈ N, then set A = E \ ∪· nj=1Ej is a positive subset of E .

If the process does not terminate, define A = E \ ∪·∞k=1Ek . Then
E = A ∪· (∪·∞k=1Ek).

() Real Analysis April 19, 2017 4 / 10



Hahn’s Lemma

Hahn’s Lemma

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E
contains subsets of negative measure. Let m1 be the smallest natural
number for which there is a measurable set of measure less than −1/m1.
Let E1 ⊂ E with ν(E1) < −1/m1. Inductively define natural numbers
m1,m2, . . . ,mn and measurable sets E1,E2, . . . ,En such that, for
1 ≤ k ≤ n, mk is the smallest natural number for which there is a
measurable subset of E \ ∪· k−1

j=1 Ej of measure less than −1/mk and Ek is a

subset of E \ ∪· k−1
j=1 Ej for which ν(Ek) < −1/mk . If the process terminates

at some n ∈ N, then set A = E \ ∪· nj=1Ej is a positive subset of E .
If the process does not terminate, define A = E \ ∪·∞k=1Ek . Then
E = A ∪· (∪·∞k=1Ek).

() Real Analysis April 19, 2017 4 / 10



Hahn’s Lemma

Hahn’s Lemma

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E
contains subsets of negative measure. Let m1 be the smallest natural
number for which there is a measurable set of measure less than −1/m1.
Let E1 ⊂ E with ν(E1) < −1/m1. Inductively define natural numbers
m1,m2, . . . ,mn and measurable sets E1,E2, . . . ,En such that, for
1 ≤ k ≤ n, mk is the smallest natural number for which there is a
measurable subset of E \ ∪· k−1

j=1 Ej of measure less than −1/mk and Ek is a

subset of E \ ∪· k−1
j=1 Ej for which ν(Ek) < −1/mk . If the process terminates

at some n ∈ N, then set A = E \ ∪· nj=1Ej is a positive subset of E .
If the process does not terminate, define A = E \ ∪·∞k=1Ek . Then
E = A ∪· (∪·∞k=1Ek).

() Real Analysis April 19, 2017 4 / 10



Hahn’s Lemma

Hahn’s Lemma (continued 1)

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof (continued). Since ∪·∞k=1Ek ∈M and ∪·∞k=1Ek ⊂ E , then (by
Lemma 1 and countable additivity)

−∞ < ν (∪·∞k=1Ek) =
∞∑

k=1

ν(Ek) ≤
∞∑

k=1

−1/mk .

So mk →∞ (otherwise, if mk converges, then the series on the right
would diverge). Now to show that A is positive. Let B ⊂ A be measurable.

Then B ⊂ A ⊂ E \
(
∪· k−1

j=1 Ej

)
for each k ∈ N. Since mk is the smallest

natural number such that there is a measurable subset of E \
(
∪· k−1

j=1 Ej

)
of

measure less than −1/mk (so −1/(mk − 1) < ν(Ek) ≤ −1/mk), then it
must be that ν(B) > −1/(mk − 1).

Since this holds for all k ∈ N and
mk →∞, then ν(B) ≥ 0. So A is a positive set.
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Hahn’s Lemma

Hahn’s Lemma (continued 2)

Hahn’s Lemma. Let ν be a signed measure on (X ,M) and E ∈M
where 0 < ν(E ) < ∞. Then there is A ⊂ E , A ∈M that is positive and
of positive measure.

Proof (continued). Finally, E = A ∪· (∪∞k=1Ek) (or E = A ∪· (∪n
k=1Ek) in

the first case), so ν(E ) = ν(A) + ν (∪∞k=1Ek) > 0 and since
ν (∪∞k=1Ek) < 0, it must be that ν(A) > 0.
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Hahn Decomposition Theorem

Hahn Decomposition Theorem

The Hahn Decomposition Theorem. Let ν be a signed measure on
(X ,M). Then there is a Hahn decomposition of X .

Proof. Without loss of generality, suppose +∞ is the infinite value
omitted by ν (otherwise, replace ν with −ν and follow this proof).

Let P
be the collection of positive subsets of X and define
λ = sup{ν(E ) | E ∈ P}. Then λ ≥ 0 since ∅ ∈ P. Let {Ak}∞k=1 be a
sequence of positive sets such that λ = limk→∞ ν(Ak) (which exists by the
definition of supremum). Define A = ∪∞k=1Ak . By Proposition 17.4, set A
is a positive set, and so λ ≥ ν(A) (by the definition of supremum). Also,
for each k ∈ N, A \An ⊂ A and so ν(A \Ak) ≥ 0 since A is positive. Thus
ν(A) = ν(Ak) + ν(A \ Ak) ≥ ν(Ak). Hence ν(A) ≥ λ. Therefore
ν(A) = λ, and λ < ∞ since λ does not take on the value +∞ (WLOG).
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Hahn Decomposition Theorem

Hahn Decomposition Theorem (continued)

The Hahn Decomposition Theorem. Let ν be a signed measure on
(X ,M). Then there is a Hahn decomposition of X .

Proof (continued). Let B = X \ A. ASSUME B is not negative. Then
there is a subset E of B with positive measure. So by Hahn’s Lemma
there is E0 ⊂ B such that E0 is positive and ν(E0) > 0.

But then A∪· E0 is
a positive set by Proposition 17.4 and by additivity,
ν(A ∪· E0) = ν(A) + ν(E0) > λ, a CONTRADICTION to the definition of
λ (notice that λ < ∞ is needed here). So the assumption that B is not
negative is false and hence B is a negative set. Therefore {A,B} is a
Hahn decomposition of X .
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Jordan Decomposition Theorem

Jordan Decomposition Theorem

The Jordan Decomposition Theorem.
Let ν be a signed measure on (X ,M). Then there are two mutually
singular measures ν+ and ν− on (X ,M) for which ν = ν+ − ν−.
Moreover, there is only one such pair of mutually singular measures.

Proof. Let {A,B} be a Hahn decomposition of X , which exists by the
Hahn Decomposition Theorem. Then for E ∈M, define
ν+(E ) = ν(E ∩ A) and ν−(E ) = −ν(E ∩ B). Then ν+(B) = 0 and
ν−(A) = 0, so ν+ and ν− are mutually singular. Also,

ν(E ) = ν((E ∩ A) ∪· (E ∩ B))

= ν(E ∩ A) + ν(E ∩ B) by additivity

= ν+(E )− ν−(E ),

so ν = ν+ − ν−.
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Jordan Decomposition Theorem

Jordan Decomposition Theorem (continued)

The Jordan Decomposition Theorem.
Let ν be a signed measure on (X ,M). Then there are two mutually
singular measures ν+ and ν− on (X ,M) for which ν = ν+ − ν−.
Moreover, there is only one such pair of mutually singular measures.

Proof. For uniqueness is given in Problem 17.13.
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