Chapter 17. General Measure Spaces: Their Properties and Construction

17.2. Signed Measures: Hahn and Jordan Decompositions—Proofs
Table of contents

1 Proposition 17.4

2 Hahn’s Lemma

3 Hahn Decomposition Theorem

4 Jordan Decomposition Theorem
Proposition 17.4

Proposition 17.4. Let ν be a signed measure on (X, \mathcal{M}). Then the union of a countable collection of positive sets is positive.

Proof. Let $A = \bigcup_{k=1}^{\infty} A_k$ and $E \subset A$, where $A, E, A_k \in \mathcal{M}$ for all $k \in \mathbb{N}$. Define $E_1 = E \cap A_1$ and for $k \geq 2$ define

$$E_k = (E \cap A_k) \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1}).$$
Proposition 17.4. Let ν be a signed measure on (X, \mathcal{M}). Then the union of a countable collection of positive sets is positive.

Proof. Let $A = \bigcup_{k=1}^{\infty} A_k$ and $E \subset A$, where $A, E, A_k \in \mathcal{M}$ for all $k \in \mathbb{N}$. Define $E_1 = E \cap A_1$ and for $k \geq 2$ define

$$E_k = (E \cap A_k) \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1}).$$

Then for each $E_k \in \mathcal{M}$ and $\nu(E_k) \geq 0$ since A_k is positive. \{E_k\}_{k=1}^{\infty} is a disjoint collection, $E = \bigcup_{k=1}^{\infty} E_k$, and so $\nu(E) = \sum_{k=1}^{\infty} \nu(E_k) \geq 0$. So A is positive. \qed
Proposition 17.4. Let ν be a signed measure on (X, \mathcal{M}). Then the union of a countable collection of positive sets is positive.

Proof. Let $A = \bigcup_{k=1}^{\infty} A_k$ and $E \subset A$, where $A, E, A_k \in \mathcal{M}$ for all $k \in \mathbb{N}$. Define $E_1 = E \cap A_1$ and for $k \geq 2$ define

$$E_k = (E \cap A_k) \setminus (A_1 \cup A_2 \cup \cdots \cup A_{k-1}).$$

Then for each $E_k \in \mathcal{M}$ and $\nu(E_k) \geq 0$ since A_k is positive. $\{E_k\}_{k=1}^{\infty}$ is a disjoint collection, $E = \bigcup_{k=1}^{\infty} E_k$, and so $\nu(E) = \sum_{k=1}^{\infty} \nu(E_k) \geq 0$. So A is positive.
Hahn’s Lemma. Let ν be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E contains subsets of negative measure. Let m_1 be the smallest natural number for which there is a measurable set of measure less than $-1/m_1$. Let $E_1 \subset E$ with $\nu(E_1) < -1/m_1$.
Hahn’s Lemma. Let ν be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E contains subsets of negative measure. Let m_1 be the smallest natural number for which there is a measurable set of measure less than $-1/m_1$. Let $E_1 \subset E$ with $\nu(E_1) < -1/m_1$. Inductively define natural numbers m_1, m_2, \ldots, m_n and measurable sets E_1, E_2, \ldots, E_n such that, for $1 \leq k \leq n$, m_k is the smallest natural number for which there is a measurable subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ of measure less than $-1/m_k$ and E_k is a subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ for which $\nu(E_k) < -1/m_k$. If the process terminates at some $n \in \mathbb{N}$, then set $A = E \setminus \bigcup_{j=1}^{n} E_j$ is a positive subset of E.
Hahn’s Lemma. Let ν be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E contains subsets of negative measure. Let m_1 be the smallest natural number for which there is a measurable set of measure less than $-1/m_1$. Let $E_1 \subset E$ with $\nu(E_1) < -1/m_1$. Inductively define natural numbers m_1, m_2, \ldots, m_n and measurable sets E_1, E_2, \ldots, E_n such that, for $1 \leq k \leq n$, m_k is the smallest natural number for which there is a measurable subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ of measure less than $-1/m_k$ and E_k is a subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ for which $\nu(E_k) < -1/m_k$. If the process terminates at some $n \in \mathbb{N}$, then set $A = E \setminus \bigcup_{j=1}^{n} E_j$ is a positive subset of E. If the process does not terminate, define $A = E \setminus \bigcup_{k=1}^{\infty} E_k$. Then $E = A \cup (\bigcup_{k=1}^{\infty} E_k)$.

Hahn’s Lemma. Let ν be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and of positive measure.

Proof. If E is positive, then we are done. If E is not positive, then E contains subsets of negative measure. Let m_1 be the smallest natural number for which there is a measurable set of measure less than $-1/m_1$. Let $E_1 \subset E$ with $\nu(E_1) < -1/m_1$. Inductively define natural numbers m_1, m_2, \ldots, m_n and measurable sets E_1, E_2, \ldots, E_n such that, for $1 \leq k \leq n$, m_k is the smallest natural number for which there is a measurable subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ of measure less than $-1/m_k$ and E_k is a subset of $E \setminus \bigcup_{j=1}^{k-1} E_j$ for which $\nu(E_k) < -1/m_k$. If the process terminates at some $n \in \mathbb{N}$, then set $A = E \setminus \bigcup_{j=1}^{n} E_j$ is a positive subset of E. If the process does not terminate, define $A = E \setminus \bigcup_{k=1}^{\infty} E_k$. Then $E = A \cup (\bigcup_{k=1}^{\infty} E_k)$.
Hahn’s Lemma (continued 1)

Hahn’s Lemma. Let ν be a signed measure on (X, M) and $E \in M$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in M$ that is positive and of positive measure.

Proof (continued). Since $\bigcup_{k=1}^{\infty} E_k \in M$ and $\bigcup_{k=1}^{\infty} E_k \subset E$, then (by Lemma 1 and countable additivity)

$$-\infty < \nu\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \nu(E_k) \leq \sum_{k=1}^{\infty} -1/m_k.$$

So $m_k \to \infty$ (otherwise, if m_k converges, then the series on the right would diverge). Now to show that A is positive. Let $B \subset A$ be measurable. Then $B \subset A \subset E \setminus \left(\bigcup_{j=1}^{k-1} E_j\right)$ for each $k \in \mathbb{N}$. Since m_k is the smallest natural number such that there is a measurable subset of $E \setminus \left(\bigcup_{j=1}^{k-1} E_j\right)$ of measure less than $-1/m_k$ (so $-1/(m_k - 1) < \nu(E_k) \leq -1/m_k$), then it must be that $\nu(B) > -1/(m_k - 1)$.
Hahn’s Lemma. Let ν be a signed measure on (X, \mathcal{M}) and $E \in \mathcal{M}$ where $0 < \nu(E) < \infty$. Then there is $A \subset E$, $A \in \mathcal{M}$ that is positive and of positive measure.

Proof (continued). Since $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ and $\bigcup_{k=1}^{\infty} E_k \subset E$, then (by Lemma 1 and countable additivity)

$$-\infty < \nu \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \nu(E_k) \leq \sum_{k=1}^{\infty} -1/m_k.$$

So $m_k \to \infty$ (otherwise, if m_k converges, then the series on the right would diverge). Now to show that A is positive. Let $B \subset A$ be measurable. Then $B \subset A \subset E \setminus \left(\bigcup_{j=1}^{k-1} E_j \right)$ for each $k \in \mathbb{N}$. Since m_k is the smallest natural number such that there is a measurable subset of $E \setminus \left(\bigcup_{j=1}^{k-1} E_j \right)$ of measure less than $-1/m_k$ (so $-1/(m_k - 1) < \nu(E_k) \leq -1/m_k$), then it must be that $\nu(B) > -1/(m_k - 1)$. Since this holds for all $k \in \mathbb{N}$ and $m_k \to \infty$, then $\nu(B) \geq 0$. So A is a positive set.
Hahn’s Lemma (continued 1)

Hahn’s Lemma. Let \(\nu \) be a signed measure on \((X, \mathcal{M})\) and \(E \in \mathcal{M} \) where \(0 < \nu(E) < \infty \). Then there is \(A \subset E, A \in \mathcal{M} \) that is positive and of positive measure.

Proof (continued). Since \(\bigcup_{k=1}^{\infty} E_k \in \mathcal{M} \) and \(\bigcup_{k=1}^{\infty} E_k \subset E \), then (by Lemma 1 and countable additivity)

\[
-\infty < \nu \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} \nu(E_k) \leq \sum_{k=1}^{\infty} -1/m_k.
\]

So \(m_k \to \infty \) (otherwise, if \(m_k \) converges, then the series on the right would diverge). Now to show that \(A \) is positive. Let \(B \subset A \) be measurable. Then \(B \subset A \subset E \setminus \left(\bigcup_{j=1}^{k-1} E_j \right) \) for each \(k \in \mathbb{N} \). Since \(m_k \) is the smallest natural number such that there is a measurable subset of \(E \setminus \left(\bigcup_{j=1}^{k-1} E_j \right) \) of measure less than \(-1/m_k\) (so \(-1/(m_k - 1) < \nu(E_k) \leq -1/m_k\)), then it must be that \(\nu(B) > -1/(m_k - 1) \). Since this holds for all \(k \in \mathbb{N} \) and \(m_k \to \infty \), then \(\nu(B) \geq 0 \). So \(A \) is a positive set.
Hahn’s Lemma. Let \(\nu \) be a signed measure on \((X, \mathcal{M})\) and \(E \in \mathcal{M} \) where \(0 < \nu(E) < \infty \). Then there is \(A \subset E, A \in \mathcal{M} \) that is positive and of positive measure.

Proof (continued). Finally, \(E = A \cup (\bigcup_{k=1}^{\infty} E_k) \) (or \(E = A \cup (\bigcup_{k=1}^{n} E_k) \) in the first case), so \(\nu(E) = \nu(A) + \nu(\bigcup_{k=1}^{\infty} E_k) > 0 \) and since \(\nu(\bigcup_{k=1}^{\infty} E_k) < 0 \), it must be that \(\nu(A) > 0 \). \(\square \)
The Hahn Decomposition Theorem. Let ν be a signed measure on (X, \mathcal{M}). Then there is a Hahn decomposition of X.

Proof. Without loss of generality, suppose $+\infty$ is the infinite value omitted by ν (otherwise, replace ν with $-\nu$ and follow this proof).
The Hahn Decomposition Theorem. Let \(\nu \) be a signed measure on \((X, \mathcal{M})\). Then there is a Hahn decomposition of \(X \).

Proof. Without loss of generality, suppose \(+\infty \) is the infinite value omitted by \(\nu \) (otherwise, replace \(\nu \) with \(-\nu\) and follow this proof). Let \(\mathcal{P} \) be the collection of positive subsets of \(X \) and define
\[
\lambda = \sup\{\nu(E) \mid E \in \mathcal{P}\}.
\]
Then \(\lambda \geq 0 \) since \(\emptyset \in \mathcal{P} \). Let \(\{A_k\}_{k=1}^{\infty} \) be a sequence of positive sets such that \(\lambda = \lim_{k \to \infty} \nu(A_k) \) (which exists by the definition of supremum). Define \(A = \bigcup_{k=1}^{\infty} A_k \).
The Hahn Decomposition Theorem. Let \(\nu \) be a signed measure on \((X, \mathcal{M})\). Then there is a Hahn decomposition of \(X \).

Proof. Without loss of generality, suppose \(+\infty\) is the infinite value omitted by \(\nu \) (otherwise, replace \(\nu \) with \(-\nu\) and follow this proof). Let \(\mathcal{P} \) be the collection of positive subsets of \(X \) and define

\[
\lambda = \sup \{ \nu(E) \mid E \in \mathcal{P} \}.
\]

Then \(\lambda \geq 0 \) since \(\emptyset \in \mathcal{P} \). Let \(\{A_k\}_{k=1}^\infty \) be a sequence of positive sets such that \(\lambda = \lim_{k \to \infty} \nu(A_k) \) (which exists by the definition of supremum). Define \(A = \bigcup_{k=1}^\infty A_k \). By Proposition 17.4, set \(A \) is a positive set, and so \(\lambda \geq \nu(A) \) (by the definition of supremum). Also, for each \(k \in \mathbb{N} \), \(A \setminus A_k \subset A \) and so \(\nu(A \setminus A_k) \geq 0 \) since \(A \) is positive. Thus

\[
\nu(A) = \nu(A_k) + \nu(A \setminus A_k) \geq \nu(A_k).
\]

Hence \(\nu(A) \geq \lambda \). Therefore \(\nu(A) = \lambda \), and \(\lambda < \infty \) since \(\lambda \) does not take on the value \(+\infty\) (WLOG).
The Hahn Decomposition Theorem. Let ν be a signed measure on (X, \mathcal{M}). Then there is a Hahn decomposition of X.

Proof. Without loss of generality, suppose $+\infty$ is the infinite value omitted by ν (otherwise, replace ν with $-\nu$ and follow this proof). Let \mathcal{P} be the collection of positive subsets of X and define $\lambda = \sup \{ \nu(E) \mid E \in \mathcal{P} \}$. Then $\lambda \geq 0$ since $\emptyset \in \mathcal{P}$. Let $\{ A_k \}_{k=1}^{\infty}$ be a sequence of positive sets such that $\lambda = \lim_{k \to \infty} \nu(A_k)$ (which exists by the definition of supremum). Define $A = \bigcup_{k=1}^{\infty} A_k$. By Proposition 17.4, set A is a positive set, and so $\lambda \geq \nu(A)$ (by the definition of supremum). Also, for each $k \in \mathbb{N}$, $A \setminus A_n \subset A$ and so $\nu(A \setminus A_k) \geq 0$ since A is positive. Thus $\nu(A) = \nu(A_k) + \nu(A \setminus A_k) \geq \nu(A_k)$. Hence $\nu(A) \geq \lambda$. Therefore $\nu(A) = \lambda$, and $\lambda < \infty$ since λ does not take on the value $+\infty$ (WLOG).
The Hahn Decomposition Theorem. Let ν be a signed measure on (X, \mathcal{M}). Then there is a Hahn decomposition of X.

Proof (continued). Let $B = X \setminus A$. ASSUME B is not negative. Then there is a subset E of B with positive measure. So by Hahn’s Lemma there is $E_0 \subset B$ such that E_0 is positive and $\nu(E_0) > 0$.
The Hahn Decomposition Theorem. Let ν be a signed measure on (X, \mathcal{M}). Then there is a Hahn decomposition of X.

Proof (continued). Let $B = X \setminus A$. ASSUME B is not negative. Then there is a subset E of B with positive measure. So by Hahn’s Lemma there is $E_0 \subset B$ such that E_0 is positive and $\nu(E_0) > 0$. But then $A \cup E_0$ is a positive set by Proposition 17.4 and by additivity, $\nu(A \cup E_0) = \nu(A) + \nu(E_0) > \lambda$, a CONTRADICTION to the definition of λ (notice that $\lambda < \infty$ is needed here). So the assumption that B is not negative is false and hence B is a negative set. Therefore $\{A, B\}$ is a Hahn decomposition of X. □
The Hahn Decomposition Theorem. Let ν be a signed measure on (X, \mathcal{M}). Then there is a Hahn decomposition of X.

Proof (continued). Let $B = X \setminus A$. ASSUME B is not negative. Then there is a subset E of B with positive measure. So by Hahn’s Lemma there is $E_0 \subset B$ such that E_0 is positive and $\nu(E_0) > 0$. But then $A \cup E_0$ is a positive set by Proposition 17.4 and by additivity,

$$\nu(A \cup E_0) = \nu(A) + \nu(E_0) > \lambda,$$

a CONTRADICTION to the definition of λ (notice that $\lambda < \infty$ is needed here). So the assumption that B is not negative is false and hence B is a negative set. Therefore $\{A, B\}$ is a Hahn decomposition of X. □
The Jordan Decomposition Theorem.
Let ν be a signed measure on (X, \mathcal{M}). Then there are two mutually singular measures ν^+ and ν^- on (X, \mathcal{M}) for which $\nu = \nu^+ - \nu^-$. Moreover, there is only one such pair of mutually singular measures.

Proof. Let $\{A, B\}$ be a Hahn decomposition of X, which exists by the Hahn Decomposition Theorem. Then for $E \in \mathcal{M}$, define $\nu^+(E) = \nu(E \cap A)$ and $\nu^-(E) = -\nu(E \cap B)$. Then $\nu^+(B) = 0$ and $\nu^-(A) = 0$, so ν^+ and ν^- are mutually singular. Also,

\[
\nu(E) = \nu((E \cap A) \cup (E \cap B)) \\
= \nu(E \cap A) + \nu(E \cap B) \text{ by additivity} \\
= \nu^+(E) - \nu^-(E),
\]

so $\nu = \nu^+ - \nu^-$.

The Jordan Decomposition Theorem.
Let ν be a signed measure on (X, \mathcal{M}). Then there are two mutually singular measures ν^+ and ν^- on (X, \mathcal{M}) for which $\nu = \nu^+ - \nu^-$. Moreover, there is only one such pair of mutually singular measures.

Proof. Let $\{A, B\}$ be a Hahn decomposition of X, which exists by the Hahn Decomposition Theorem. Then for $E \in \mathcal{M}$, define $\nu^+(E) = \nu(E \cap A)$ and $\nu^-(E) = -\nu(E \cap B)$. Then $\nu^+(B) = 0$ and $\nu^-(A) = 0$, so ν^+ and ν^- are mutually singular. Also,

$$\nu(E) = \nu((E \cap A) \cup (E \cap B))$$
$$= \nu(E \cap A) + \nu(E \cap B) \text{ by additivity}$$
$$= \nu^+(E) - \nu^-(E),$$

so $\nu = \nu^+ - \nu^-$.
The Jordan Decomposition Theorem.
Let ν be a signed measure on (X, \mathcal{M}). Then there are two mutually singular measures ν^+ and ν^- on (X, \mathcal{M}) for which $\nu = \nu^+ - \nu^-$. Moreover, there is only one such pair of mutually singular measures.

Proof. For uniqueness is given in Problem 17.13.