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Proposition 17.5

Proposition 17.5

Proposition 17.5. The union of a finite collection of measurable sets is
measurable.
Proof. Let E1 and E2 be measurable and let A be a subset of X . Then

µ∗(A) = µ∗(A ∩ E1) + µ∗(A ∩ E c
1 ) since E1 is measurable

= µ∗(A ∩ E1) + µ∗([A ∩ E c
1 ] ∩ E2) + µ∗([A ∩ E c

1 ] ∩ E c
2 )

since E2 is measurable and A ∩ E c
1 ⊂ X .

We have the set identities (1) (A ∩ E c
1 ) ∩ E c

2 = A ∩ (E1 ∪ E2)
c (by

DeMorgan’s Law), and (2) (A ∩ E1) ∪ (A ∩ E2 ∩ E c
1 ) = A ∩ (E1 ∪ E2)

(consider the Venn diagram). So

µ∗(A) = µ∗(A ∩ E1) + µ∗([A ∩ E c
1 ] ∩ E2) + µ∗([A ∩ E c

1 ] ∩ E c
2 ) by above

= µ∗(A ∩ E1) + µ∗([A ∩ E c
1 ] ∩ E2) + µ∗(A ∩ [E1 ∪ E2]

c) by the

first identity

≥ µ∗(A ∩ [E1 ∪ E2]) + µ∗(A ∩ [E1 ∪ E2]
c)

by finite monotonicity and the second identity.
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Proposition 17.5

Proposition 17.5 (continued)

Proposition 17.5. The union of a finite collection of measurable sets is
measurable.

Proof (continued).

µ∗(A) ≥ µ∗(A ∩ [E1 ∪ E2]) + µ∗(A ∩ [E1 ∪ E2]
c).

Monotonicity then implies that E1 ∪ E2 is measurable. The general result
then follows by induction.
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Proposition 17.5 (continued)
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Proposition 17.6

Proposition 17.6

Proposition 17.6. Let A ⊂ X and {Ek}n
k=1 be a finite disjoint collection

of measurable sets. Then

µ∗ (A ∩ [∪· nk=1Ek ]) =
n∑

k=1

µ∗(A ∩ Ek).

That is, µ∗ is finite additive on the measurable sets (which follows with
A = X ).

Proof. Let E1and E2 be measurable and disjoint. Then
A ∩ [E1 ∪· E2] ∩ E c

2 = A ∩ E1.

µ∗(A ∩ (E1 ∪· E2)) = µ∗([A ∩ (E1 ∪· E2)] ∩ E2) + µ∗([A ∩ (E1 ∪· E2)] ∩ E c
2 )

since E2 is measurable and A ∩ (E1 ∪· E2) ⊂ X

= µ∗(A ∩ E2) + µ∗(A ∩ E1) by the set identity.

So the result holds for n = 2. By induction, the general result follows.

() Real Analysis April 15, 2019 5 / 9



Proposition 17.6

Proposition 17.6

Proposition 17.6. Let A ⊂ X and {Ek}n
k=1 be a finite disjoint collection

of measurable sets. Then

µ∗ (A ∩ [∪· nk=1Ek ]) =
n∑

k=1

µ∗(A ∩ Ek).

That is, µ∗ is finite additive on the measurable sets (which follows with
A = X ).

Proof. Let E1and E2 be measurable and disjoint. Then
A ∩ [E1 ∪· E2] ∩ E c

2 = A ∩ E1.

µ∗(A ∩ (E1 ∪· E2)) = µ∗([A ∩ (E1 ∪· E2)] ∩ E2) + µ∗([A ∩ (E1 ∪· E2)] ∩ E c
2 )

since E2 is measurable and A ∩ (E1 ∪· E2) ⊂ X

= µ∗(A ∩ E2) + µ∗(A ∩ E1) by the set identity.

So the result holds for n = 2. By induction, the general result follows.
() Real Analysis April 15, 2019 5 / 9



Proposition 17.6

Proposition 17.6

Proposition 17.6. Let A ⊂ X and {Ek}n
k=1 be a finite disjoint collection

of measurable sets. Then

µ∗ (A ∩ [∪· nk=1Ek ]) =
n∑

k=1

µ∗(A ∩ Ek).

That is, µ∗ is finite additive on the measurable sets (which follows with
A = X ).

Proof. Let E1and E2 be measurable and disjoint. Then
A ∩ [E1 ∪· E2] ∩ E c

2 = A ∩ E1.

µ∗(A ∩ (E1 ∪· E2)) = µ∗([A ∩ (E1 ∪· E2)] ∩ E2) + µ∗([A ∩ (E1 ∪· E2)] ∩ E c
2 )

since E2 is measurable and A ∩ (E1 ∪· E2) ⊂ X

= µ∗(A ∩ E2) + µ∗(A ∩ E1) by the set identity.

So the result holds for n = 2. By induction, the general result follows.
() Real Analysis April 15, 2019 5 / 9



Proposition 17.7

Proposition 17.7

Proposition 17.7. The union of a countable collection of measurable sets
is measurable.

Proof. Let E = ∪∞k=1Ek where each Ek is measurable. We may assume
without loss of generality that the Ek are disjoint (or else we can replace
Ek with Ek \ ∪k−1

i=1 Ei since the measurable sets form an algebra). Let
A ⊂ X .

For n ∈ N, define Fn = ∪· nk=1Ek . Since Fn is measurable and
F c

n ⊃ E c = (∪·∞k=1Ek)c , then

µ∗(A) = µ∗(A ∩ Fn) + µ∗(A ∩ F c
n ) since Fn is measurable

≥ µ∗(A ∩ Fn) + µ∗(A ∩ E c) by monotonicity

=
n∑

k=1

µ∗(A ∩ Ek) + µ∗(A ∩ E c) by Proposition 17.6

for all n ∈ N.
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Proposition 17.7

Proposition 17.7 (continued)

Proposition 17.7. The union of a countable collection of measurable sets
is measurable.

Proof (continued). Therefore,

µ∗(A) ≥
∞∑

k=1

µ∗(A ∩ Ek) + µ∗(A ∩ E c)

≥ µ∗(∪·∞k=1(A ∩ Ek)) + µ∗(A ∩ E c) by countable monotonicity

= µ∗(A ∩ (∪·∞k=1Ek)) + µ∗(A ∩ E c)

= µ∗(A ∩ E ) + µ∗(A ∩ E c).

So E = ∪·∞k=1Ek is measurable.
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Theorem 17.8

Theorem 17.8

Theorem 17.8. Let µ∗ be an outer measure on 2X . Then the collection
M of sets that are measurable with respect to µ∗ is a σ-algebra. If µ is
the restriction of µ∗ to M, then (X ,M, µ) is a complete measure space.

Proof. We’ve already commented that M is a σ-algebra. To show µ is a
measure space, we must show that µ(∅) = 0 (which follows from the
definition of outer measure) and that µ is countably additive.

For
“complete” we need to show that all subsets of measure zero sets are
measurable. Let E0 ∈M where µ∗(E0) = 0 and E ⊂ E0. Then, by
monotonicity, for all A ⊂ R µ∗(A∩E ) ≤ µ∗(A∩E0) ≤ µ∗(E0) = 0, so that
µ∗(A ∩ E ) = 0 for all A ⊂ R. Also, by monotonicity, µ∗(A ∩ E c) ≤ µ∗(A)
for all A ⊂ R, so that µ∗(A) ≥ 0 + µ∗(A ∩ E c) = µ∗(A ∩ E ) + µ∗(A ∩ E c)
for all A ⊂ R. Hence, E ⊂ E0 is measurable and completeness holds.
Monotonicity of µ∗ implies subsets of measure zero sets are measure zero.
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Theorem 17.8

Theorem 17.8 (continued)

Theorem 17.8. Let µ∗ be an outer measure on 2X . Then the collection
M of sets that are measurable with respect to µ∗ is a σ-algebra. If µ is
the restriction of µ∗ to M, then (X ,M, µ) is a complete measure space.

Proof (continued). For countable additivity, suppose {Ek}∞k=1 is a
sequence of disjoint, measurable sets. Proposition 17.6 gives finite
additivity, so we have

µ∗ (∪·∞k=1Ek) ≥ µ∗ (∪· nk=1Ek) by monotonicity

=
n∑

k=1

µ∗(Ek)

for all n ∈ N. Since n is arbitrary, we have µ∗ (∪·∞k=1Ek) ≥
∑∞

k=1 µ∗(Ek).
Countable additivity follows by countable monotonicity.
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