Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.3. The Carathédory Measure Induced by an Outer Measure—Proofs

Real Analysis

- 2 Proposition 17.6
- 3 Proposition 17.7

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof. Let E_1 and E_2 be measurable and let A be a subset of X. Then

 $\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c) \text{ since } E_1 \text{ is measurable} \\ = \mu^*(A \cap E_1) + \mu^*([A \cap E_1^c] \cap E_2) + \mu^*([A \cap E_1^c] \cap E_2^c)$

since E_2 is measurable and $A \cap E_1^c \subset X$.

Real Analysis

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof. Let E_1 and E_2 be measurable and let A be a subset of X. Then

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c) \text{ since } E_1 \text{ is measurable}$$

=
$$\mu^*(A \cap E_1) + \mu^*([A \cap E_1^c] \cap E_2) + \mu^*([A \cap E_1^c] \cap E_2^c)$$

since E_2 is measurable and $A \cap E_1^c \subset X$.

We have the set identities (1) $(A \cap E_1^c) \cap E_2^c = A \cap (E_1 \cup E_2)^c$ (by DeMorgan's Law), and (2) $(A \cap E_1) \cup (A \cap E_2 \cap E_1^c) = A \cap (E_1 \cup E_2)$ (consider the Venn diagram).

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof. Let E_1 and E_2 be measurable and let A be a subset of X. Then

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c) \text{ since } E_1 \text{ is measurable}$$

=
$$\mu^*(A \cap E_1) + \mu^*([A \cap E_1^c] \cap E_2) + \mu^*([A \cap E_1^c] \cap E_2^c)$$

since E_2 is measurable and $A \cap E_1^c \subset X$.

We have the set identities (1) $(A \cap E_1^c) \cap E_2^c = A \cap (E_1 \cup E_2)^c$ (by DeMorgan's Law), and (2) $(A \cap E_1) \cup (A \cap E_2 \cap E_1^c) = A \cap (E_1 \cup E_2)$ (consider the Venn diagram). So

 $\mu^{*}(A) = \mu^{*}(A \cap E_{1}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}^{c}) \text{ by above}$ = $\mu^{*}(A \cap E_{1}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}) + \mu^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by the}$ first identity

 $\geq \ \mu^*(A \cap [E_1 \cup E_2]) + \mu^*(A \cap [E_1 \cup E_2]^c)$

by finite monotonicity and the second identity.

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof. Let E_1 and E_2 be measurable and let A be a subset of X. Then

$$\mu^*(A) = \mu^*(A \cap E_1) + \mu^*(A \cap E_1^c) \text{ since } E_1 \text{ is measurable}$$

=
$$\mu^*(A \cap E_1) + \mu^*([A \cap E_1^c] \cap E_2) + \mu^*([A \cap E_1^c] \cap E_2^c)$$

since E_2 is measurable and $A \cap E_1^c \subset X$.

We have the set identities (1) $(A \cap E_1^c) \cap E_2^c = A \cap (E_1 \cup E_2)^c$ (by DeMorgan's Law), and (2) $(A \cap E_1) \cup (A \cap E_2 \cap E_1^c) = A \cap (E_1 \cup E_2)$ (consider the Venn diagram). So

$$\mu^{*}(A) = \mu^{*}(A \cap E_{1}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}^{c}) \text{ by above}$$

= $\mu^{*}(A \cap E_{1}) + \mu^{*}([A \cap E_{1}^{c}] \cap E_{2}) + \mu^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by the}$
first identity

$$\geq \mu^*(A \cap [E_1 \cup E_2]) + \mu^*(A \cap [E_1 \cup E_2]^c)$$

by finite monotonicity and the second identity.

Proposition 17.5 (continued)

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof (continued).

$\mu^*(A) \ge \mu^*(A \cap [E_1 \cup E_2]) + \mu^*(A \cap [E_1 \cup E_2]^c).$

Proposition 17.5 (continued)

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof (continued).

$\mu^*(A) \ge \mu^*(A \cap [E_1 \cup E_2]) + \mu^*(A \cap [E_1 \cup E_2]^c).$

Monotonicity then implies that $E_1 \cup E_2$ is measurable. The general result then follows by induction.

Real Analysis

Proposition 17.5 (continued)

Proposition 17.5. The union of a finite collection of measurable sets is measurable.

Proof (continued).

$$\mu^*(A) \ge \mu^*(A \cap [E_1 \cup E_2]) + \mu^*(A \cap [E_1 \cup E_2]^c).$$

Monotonicity then implies that $E_1 \cup E_2$ is measurable. The general result then follows by induction.

Proposition 17.6. Let $A \subset X$ and $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then

$$\mu^*\left(A\cap \left[\bigcup_{k=1}^n E_k\right]\right)=\sum_{k=1}^n \mu^*(A\cap E_k).$$

That is, μ^* is finite additive on the measurable sets (which follows with A = X).

Proof. Let E_1 and E_2 be measurable and disjoint. Then $A \cap [E_1 \cup E_2] \cap E_2^c = A \cap E_1$.

 $\mu^*(A \cap (E_1 \cup E_2)) = \mu^*([A \cap (E_1 \cup E_2)] \cap E_2) + \mu^*([A \cap (E_1 \cup E_2)] \cap E_2^c)$ since E_2 is measurable and $A \cap (E_1 \cup E_2) \subset X$ $= \mu^*(A \cap E_2) + \mu^*(A \cap E_1)$ by the set identity.

Proposition 17.6. Let $A \subset X$ and $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then

$$\mu^*\left(A\cap \left[\bigcup_{k=1}^n E_k\right]\right)=\sum_{k=1}^n \mu^*(A\cap E_k).$$

That is, μ^* is finite additive on the measurable sets (which follows with A = X).

Proof. Let E_1 and E_2 be measurable and disjoint. Then $A \cap [E_1 \cup E_2] \cap E_2^c = A \cap E_1$.

 $\mu^*(A \cap (E_1 \cup E_2)) = \mu^*([A \cap (E_1 \cup E_2)] \cap E_2) + \mu^*([A \cap (E_1 \cup E_2)] \cap E_2^c)$ since E_2 is measurable and $A \cap (E_1 \cup E_2) \subset X$ $= \mu^*(A \cap E_2) + \mu^*(A \cap E_1)$ by the set identity.

So the result holds for n = 2. By induction, the general result follows.

April 15, 2019 5 / 9

Proposition 17.6. Let $A \subset X$ and $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then

$$\mu^*\left(A\cap \left[\bigcup_{k=1}^n E_k\right]\right)=\sum_{k=1}^n \mu^*(A\cap E_k).$$

That is, μ^* is finite additive on the measurable sets (which follows with A = X).

Proof. Let E_1 and E_2 be measurable and disjoint. Then $A \cap [E_1 \cup E_2] \cap E_2^c = A \cap E_1$.

$$\begin{split} \mu^*(A \cap (E_1 \cup E_2)) &= \mu^*([A \cap (E_1 \cup E_2)] \cap E_2) + \mu^*([A \cap (E_1 \cup E_2)] \cap E_2^c) \\ &\text{since } E_2 \text{ is measurable and } A \cap (E_1 \cup E_2) \subset X \\ &= \mu^*(A \cap E_2) + \mu^*(A \cap E_1) \text{ by the set identity.} \end{split}$$

So the result holds for n = 2. By induction, the general result follows.

Proposition 17.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $E = \bigcup_{k=1}^{\infty} E_k$ where each E_k is measurable. We may assume without loss of generality that the E_k are disjoint (or else we can replace E_k with $E_k \setminus \bigcup_{i=1}^{k-1} E_i$ since the measurable sets form an algebra). Let $A \subset X$.

Proposition 17.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $E = \bigcup_{k=1}^{\infty} E_k$ where each E_k is measurable. We may assume without loss of generality that the E_k are disjoint (or else we can replace E_k with $E_k \setminus \bigcup_{i=1}^{k-1} E_i$ since the measurable sets form an algebra). Let $A \subset X$. For $n \in \mathbb{N}$, define $F_n = \bigcup_{k=1}^n E_k$. Since F_n is measurable and $F_n^c \supset E^c = (\bigcup_{k=1}^{\infty} E_k)^c$, then

$$\mu^{*}(A) = \mu^{*}(A \cap F_{n}) + \mu^{*}(A \cap F_{n}^{c}) \text{ since } F_{n} \text{ is measurable}$$

$$\geq \mu^{*}(A \cap F_{n}) + \mu^{*}(A \cap E^{c}) \text{ by monotonicity}$$

$$= \sum_{k=1}^{n} \mu^{*}(A \cap E_{k}) + \mu^{*}(A \cap E^{c}) \text{ by Proposition 17.6}$$

for all $n \in \mathbb{N}$.

Proposition 17.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $E = \bigcup_{k=1}^{\infty} E_k$ where each E_k is measurable. We may assume without loss of generality that the E_k are disjoint (or else we can replace E_k with $E_k \setminus \bigcup_{i=1}^{k-1} E_i$ since the measurable sets form an algebra). Let $A \subset X$. For $n \in \mathbb{N}$, define $F_n = \bigcup_{k=1}^n E_k$. Since F_n is measurable and $F_n^c \supset E^c = (\bigcup_{k=1}^{\infty} E_k)^c$, then

$$\mu^{*}(A) = \mu^{*}(A \cap F_{n}) + \mu^{*}(A \cap F_{n}^{c}) \text{ since } F_{n} \text{ is measurable}$$

$$\geq \mu^{*}(A \cap F_{n}) + \mu^{*}(A \cap E^{c}) \text{ by monotonicity}$$

$$= \sum_{k=1}^{n} \mu^{*}(A \cap E_{k}) + \mu^{*}(A \cap E^{c}) \text{ by Proposition 17.6}$$

for all $n \in \mathbb{N}$.

Proposition 17.7 (continued)

Proposition 17.7. The union of a countable collection of measurable sets is measurable.

Proof (continued). Therefore,

$$\mu^{*}(A) \geq \sum_{k=1}^{\infty} \mu^{*}(A \cap E_{k}) + \mu^{*}(A \cap E^{c})$$

$$\geq \mu^{*}(\bigcup_{k=1}^{\infty}(A \cap E_{k})) + \mu^{*}(A \cap E^{c}) \text{ by countable monotonicity}$$

$$= \mu^{*}(A \cap (\bigcup_{k=1}^{\infty}E_{k})) + \mu^{*}(A \cap E^{c})$$

$$= \mu^{*}(A \cap E) + \mu^{*}(A \cap E^{c}).$$

So $E = \bigcup_{k=1}^{\infty} E_k$ is measurable.

Theorem 17.8

Theorem 17.8. Let μ^* be an outer measure on 2^X . Then the collection \mathcal{M} of sets that are measurable with respect to μ^* is a σ -algebra. If $\overline{\mu}$ is the restriction of μ^* to \mathcal{M} , then $(X, \mathcal{M}, \overline{\mu})$ is a complete measure space.

Proof. We've already commented that \mathcal{M} is a σ -algebra. To show $\overline{\mu}$ is a measure space, we must show that $\overline{\mu}(\emptyset) = 0$ (which follows from the definition of outer measure) and that $\overline{\mu}$ is countably additive.

Theorem 17.8

Theorem 17.8. Let μ^* be an outer measure on 2^X . Then the collection \mathcal{M} of sets that are measurable with respect to μ^* is a σ -algebra. If $\overline{\mu}$ is the restriction of μ^* to \mathcal{M} , then $(X, \mathcal{M}, \overline{\mu})$ is a complete measure space.

Proof. We've already commented that \mathcal{M} is a σ -algebra. To show $\overline{\mu}$ is a measure space, we must show that $\overline{\mu}(\emptyset) = 0$ (which follows from the definition of outer measure) and that $\overline{\mu}$ is countably additive. For "complete" we need to show that all subsets of measure zero sets are measurable. Let $E_0 \in \mathcal{M}$ where $\mu^*(E_0) = 0$ and $E \subset E_0$. Then, by monotonicity, for all $A \subset \mathbb{R}$ $\mu^*(A \cap E) \leq \mu^*(A \cap E_0) \leq \mu^*(E_0) = 0$, so that $\mu^*(A \cap E) = 0$ for all $A \subset \mathbb{R}$. Also, by monotonicity, $\mu^*(A \cap E^c) \leq \mu^*(A)$ for all $A \subset \mathbb{R}$, so that $\mu^*(A) \geq 0 + \mu^*(A \cap E^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$ for all $A \subset \mathbb{R}$. Hence, $E \subset E_0$ is measurable and completeness holds. Monotonicity of μ^* implies subsets of measure zero sets are measure zero.

Theorem 17.8

Theorem 17.8. Let μ^* be an outer measure on 2^X . Then the collection \mathcal{M} of sets that are measurable with respect to μ^* is a σ -algebra. If $\overline{\mu}$ is the restriction of μ^* to \mathcal{M} , then $(X, \mathcal{M}, \overline{\mu})$ is a complete measure space.

Proof. We've already commented that \mathcal{M} is a σ -algebra. To show $\overline{\mu}$ is a measure space, we must show that $\overline{\mu}(\emptyset) = 0$ (which follows from the definition of outer measure) and that $\overline{\mu}$ is countably additive. For "complete" we need to show that all subsets of measure zero sets are measurable. Let $E_0 \in \mathcal{M}$ where $\mu^*(E_0) = 0$ and $E \subset E_0$. Then, by monotonicity, for all $A \subset \mathbb{R}$ $\mu^*(A \cap E) \leq \mu^*(A \cap E_0) \leq \mu^*(E_0) = 0$, so that $\mu^*(A \cap E) = 0$ for all $A \subset \mathbb{R}$. Also, by monotonicity, $\mu^*(A \cap E^c) \leq \mu^*(A)$ for all $A \subset \mathbb{R}$, so that $\mu^*(A) \geq 0 + \mu^*(A \cap E^c) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$ for all $A \subset \mathbb{R}$. Hence, $E \subset E_0$ is measurable and completeness holds. Monotonicity of μ^* implies subsets of measure zero sets are measure zero.

Theorem 17.8 (continued)

Theorem 17.8. Let μ^* be an outer measure on 2^X . Then the collection \mathcal{M} of sets that are measurable with respect to μ^* is a σ -algebra. If $\overline{\mu}$ is the restriction of μ^* to \mathcal{M} , then $(X, \mathcal{M}, \overline{\mu})$ is a complete measure space.

Proof (continued). For countable additivity, suppose $\{E_k\}_{k=1}^{\infty}$ is a sequence of disjoint, measurable sets. Proposition 17.6 gives finite additivity, so we have

$$\mu^* \left(\bigcup_{k=1}^{\infty} E_k \right) \geq \mu^* \left(\bigcup_{k=1}^{n} E_k \right) \text{ by monotonicity}$$
$$= \sum_{k=1}^{n} \mu^*(E_k)$$

for all $n \in \mathbb{N}$. Since *n* is arbitrary, we have $\mu^*(\bigcup_{k=1}^{\infty} E_k) \ge \sum_{k=1}^{\infty} \mu^*(E_k)$. Countable additivity follows by countable monotonicity.