Theorem 17.9

Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.4. The Construction of Outer Measure—Proofs

define $\mu^*(E) = \inf\left(\sum_{k=1}^\infty \mu(E_k)\right)$, where the infimum is taken over all countable collections $\{E_k\}_{k=1}^\infty$ of sets in $\mathcal S$ that cover E. Then the set induced by μ). function $\mu^*: 2^{\mathcal{X}} \to [0,\infty]$ is an outer measure (called the *outer measure* $\mu: \mathcal{S} \to [0, \infty]$ a set function. Define $\mu^*(\varnothing) = 0$ and for $E \subset X$, $E \neq \varnothing$ **Theorem 17.9.** Let S be a collection of subsets of a set X and

follows trivially. generality, $\mu^*(E_k)<\infty$ for all $k\in\mathbb{N}$, otherwise countable monotonicity be a collection of subsets of X that covers a set E. Without loss of **Proof.** We need only show that μ^* is countably monotone. Let $\{E_k\}_{k=1}^{\infty}$

definition of infimum. Then $\{E_{i,k}\}_{i,k=1}^{\infty}$ is a sequence of sets in S which cover $\bigcup_{k=1}^{\infty} E_k$ and, therefore, also covers E. in S that covers E_k such that $\sum_{i=1}^{\infty} \mu(E_{i,k}) < \mu^*(E_k) + \varepsilon/2^k$, by the Let $\varepsilon > 0$. For each $k \in \mathbb{N}$, there is a countable collection $\{E_{i,k}\}_{i=1}^{\infty}$ of sets

Real Analysis

Proposition 17.9 (continued)

Proof (continued). So

 $\mu^*(E) \leq \sum_{i=1}^\infty \mu(E_{i,k})$ since $\{E_{i,k}\}$ is some specific cover

$$=\sum_{k=1}^{\infty}\left(\sum_{i=1}^{\infty}\mu(E_{i,k})\right)$$

$$\leq \sum_{k=1} (\mu^*(E_k) + arepsilon/2^k)$$
 by the above inequality

$$= \sum_{k=1}^{\infty} \mu^*(E_k) + \varepsilon.$$

countable monotone Since $\varepsilon > 0$ is arbitrary, we have $\mu^*(E) \leq \sum_{k=1}^{\infty} \mu^*(E_k)$ and μ^* is

Proposition 17.10

there is $A \subset X$ for which $A \in \mathcal{S}_{\sigma\delta}$, $E \subset A$, and $\mu^*(E) = \mu^*(A)$. Furthermore, if $E \in \mathcal{M}$ and $\mathcal{S} \subset \mathcal{M}$, then $A \in \mathcal{M}$ and $\overline{\mu}(A \setminus E) = 0$. **Proposition 17.10.** Let $\mu:\mathcal{S}\to [0,\infty]$ be a set function defined on a Carathéodory measure induced by μ . Let $E \subset X$ satisfy $\mu(E) < \infty$. Then collection S of subsets of a set X and let $\overline{\mu}:\mathcal{M}\to [0,\infty]$ be the

 $\{E_k\}_{k=1}^{\infty}$ of sets in S for which $\sum_{k=1}^{\infty} \mu(E_k) < \mu^*(E) + \varepsilon$ by the definition of infimum. Define $A_{\varepsilon} = \bigcup_{k=1}^{\infty} E_k$. Then $A_{\varepsilon} \in S_{\sigma}$ and $E \subset A_{\varepsilon}$. Since $\{E_k\}_{k=1}^\infty$ is a specific cover of A_ε by elements of $\mathcal S$, then **Proof.** Let $\varepsilon > 0$. Since $\mu^*(E) < \infty$, there is a cover of E by a collection

$$\mu^*(A_{arepsilon}) \leq \sum_{k=1}^{\infty} \mu(E_k) \leq \mu^*(E) + arepsilon.$$

 $\mathcal{S}_{\sigma\delta}$ and $E\subset A$ (since $E\subset A_{1/k}$ for $k\in\mathbb{N}$). For $k\in\mathbb{N}$, take arepsilon=1/k and define $A=\cap_{k=1}^\infty A_{1/k}$. Then A belongs to

Real Analysis

May 5, 2017 4 / 6

May 5, 2017 5 / 6

Proposition 17.10 (continued)

Proof (continued). Then

$$\mu^*(E) \le \mu^*(A)$$
 by monotonicity of μ^* $\le \mu^*(A_{1/k})$ by monotonicity of μ^* $\le \mu^*(E) + 1/k$ by above.

$$0 \ \mu^*(E) = \mu^*(A)$$

additivity), so So $\mu^*(E)=\mu^*(A)$. Now assume that E and each set in S is μ^* measurable. Since the measurable sets form a σ -algebra, then set A defined above is measurable. The excision property holds for $\overline{\mu}$ since it is a measure (and we have finite

$$\overline{\mu}(A \setminus E) = \overline{\mu}(A) - \overline{\mu}(E)$$

$$= \mu^*(A) - \mu^*(E) \text{ since } \mu^* \text{ is an extension of } \overline{\mu}$$

$$= 0 \text{ because } \mu^*(A) = \mu^*(E) \text{ as shown above.}$$

May 5, 2017 6 / 6