Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.4. The Construction of Outer Measure-Proofs

Real Analysis

Table of contents

Theorem 17.9

Theorem 17.9. Let S be a collection of subsets of a set X and $\mu : S \to [0, \infty]$ a set function. Define $\mu^*(\emptyset) = 0$ and for $E \subset X$, $E \neq \emptyset$, define $\mu^*(E) = \inf \left(\sum_{k=1}^{\infty} \mu(E_k) \right)$, where the infimum is taken over all countable collections $\{E_k\}_{k=1}^{\infty}$ of sets in S that cover E. Then the set function $\mu^* : 2^X \to [0, \infty]$ is an outer measure (called the *outer measure induced* by μ).

Proof. We need only show that μ^* is countably monotone. Let $\{E_k\}_{k=1}^{\infty}$ be a collection of subsets of X that covers a set E. Without loss of generality, $\mu^*(E_k) < \infty$ for all $k \in \mathbb{N}$, otherwise countable monotonicity follows trivially.

Theorem 17.9

Theorem 17.9. Let S be a collection of subsets of a set X and $\mu : S \to [0, \infty]$ a set function. Define $\mu^*(\emptyset) = 0$ and for $E \subset X$, $E \neq \emptyset$, define $\mu^*(E) = \inf \left(\sum_{k=1}^{\infty} \mu(E_k) \right)$, where the infimum is taken over all countable collections $\{E_k\}_{k=1}^{\infty}$ of sets in S that cover E. Then the set function $\mu^* : 2^X \to [0, \infty]$ is an outer measure (called the *outer measure induced* by μ).

Proof. We need only show that μ^* is countably monotone. Let $\{E_k\}_{k=1}^{\infty}$ be a collection of subsets of X that covers a set E. Without loss of generality, $\mu^*(E_k) < \infty$ for all $k \in \mathbb{N}$, otherwise countable monotonicity follows trivially.

Let $\varepsilon > 0$. For each $k \in \mathbb{N}$, there is a countable collection $\{E_{i,k}\}_{i=1}^{\infty}$ of sets in S that covers E_k such that $\sum_{i=1}^{\infty} \mu(E_{i,k}) < \mu^*(E_k) + \varepsilon/2^k$, by the definition of infimum. Then $\{E_{i,k}\}_{i,k=1}^{\infty}$ is a sequence of sets in S which cover $\bigcup_{k=1}^{\infty} E_k$ and, therefore, also covers E.

Theorem 17.9

Theorem 17.9. Let S be a collection of subsets of a set X and $\mu : S \to [0, \infty]$ a set function. Define $\mu^*(\emptyset) = 0$ and for $E \subset X$, $E \neq \emptyset$, define $\mu^*(E) = \inf \left(\sum_{k=1}^{\infty} \mu(E_k) \right)$, where the infimum is taken over all countable collections $\{E_k\}_{k=1}^{\infty}$ of sets in S that cover E. Then the set function $\mu^* : 2^X \to [0, \infty]$ is an outer measure (called the *outer measure induced* by μ).

Proof. We need only show that μ^* is countably monotone. Let $\{E_k\}_{k=1}^{\infty}$ be a collection of subsets of X that covers a set E. Without loss of generality, $\mu^*(E_k) < \infty$ for all $k \in \mathbb{N}$, otherwise countable monotonicity follows trivially.

Let $\varepsilon > 0$. For each $k \in \mathbb{N}$, there is a countable collection $\{E_{i,k}\}_{i=1}^{\infty}$ of sets in S that covers E_k such that $\sum_{i=1}^{\infty} \mu(E_{i,k}) < \mu^*(E_k) + \varepsilon/2^k$, by the definition of infimum. Then $\{E_{i,k}\}_{i,k=1}^{\infty}$ is a sequence of sets in S which cover $\bigcup_{k=1}^{\infty} E_k$ and, therefore, also covers E.

Proof (continued). So

ł

$$\begin{split} \iota^*(E) &\leq \sum_{i,k=1}^{\infty} \mu(E_{i,k}) \text{ since } \{E_{i,k}\} \text{ is some specific cover} \\ &= \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} \mu(E_{i,k})\right) \\ &\leq \sum_{k=1}^{\infty} (\mu^*(E_k) + \varepsilon/2^k) \text{ by the above inequality} \\ &= \sum_{k=1}^{\infty} \mu^*(E_k) + \varepsilon. \end{split}$$

Since $\varepsilon > 0$ is arbitrary, we have $\mu^*(E) \le \sum_{k=1}^{\infty} \mu^*(E_k)$ and μ^* is countable monotone.

Proposition 17.10. Let $\mu : S \to [0, \infty]$ be a set function defined on a collection S of subsets of a set X and let $\overline{\mu} : \mathcal{M} \to [0, \infty]$ be the Carathéodory measure induced by μ . Let $E \subset X$ satisfy $\mu(E) < \infty$. Then there is $A \subset X$ for which $A \in S_{\sigma\delta}$, $E \subset A$, and $\mu^*(E) = \mu^*(A)$. Furthermore, if $E \in \mathcal{M}$ and $S \subset \mathcal{M}$, then $A \in \mathcal{M}$ and $\overline{\mu}(A \setminus E) = 0$.

Proof. Let $\varepsilon > 0$. Since $\mu^*(E) < \infty$, there is a cover of *E* by a collection $\{E_k\}_{k=1}^{\infty}$ of sets in *S* for which $\sum_{k=1}^{\infty} \mu(E_k) < \mu^*(E) + \varepsilon$ by the definition of infimum.

Real Analysis

Proposition 17.10. Let $\mu : S \to [0, \infty]$ be a set function defined on a collection S of subsets of a set X and let $\overline{\mu} : \mathcal{M} \to [0, \infty]$ be the Carathéodory measure induced by μ . Let $E \subset X$ satisfy $\mu(E) < \infty$. Then there is $A \subset X$ for which $A \in S_{\sigma\delta}$, $E \subset A$, and $\mu^*(E) = \mu^*(A)$. Furthermore, if $E \in \mathcal{M}$ and $S \subset \mathcal{M}$, then $A \in \mathcal{M}$ and $\overline{\mu}(A \setminus E) = 0$.

Proof. Let $\varepsilon > 0$. Since $\mu^*(E) < \infty$, there is a cover of *E* by a collection $\{E_k\}_{k=1}^{\infty}$ of sets in *S* for which $\sum_{k=1}^{\infty} \mu(E_k) < \mu^*(E) + \varepsilon$ by the definition of infimum. Define $A_{\varepsilon} = \bigcup_{k=1}^{\infty} E_k$. Then $A_{\varepsilon} \in S_{\sigma}$ and $E \subset A_{\varepsilon}$. Since $\{E_k\}_{k=1}^{\infty}$ is a specific cover of A_{ε} by elements of *S*, then

$$\mu^*(A_{\varepsilon}) \leq \sum_{k=1}^{\infty} \mu(E_k) \leq \mu^*(E) + \varepsilon.$$

Proposition 17.10. Let $\mu : S \to [0, \infty]$ be a set function defined on a collection S of subsets of a set X and let $\overline{\mu} : \mathcal{M} \to [0, \infty]$ be the Carathéodory measure induced by μ . Let $E \subset X$ satisfy $\mu(E) < \infty$. Then there is $A \subset X$ for which $A \in S_{\sigma\delta}$, $E \subset A$, and $\mu^*(E) = \mu^*(A)$. Furthermore, if $E \in \mathcal{M}$ and $S \subset \mathcal{M}$, then $A \in \mathcal{M}$ and $\overline{\mu}(A \setminus E) = 0$.

Proof. Let $\varepsilon > 0$. Since $\mu^*(E) < \infty$, there is a cover of *E* by a collection $\{E_k\}_{k=1}^{\infty}$ of sets in *S* for which $\sum_{k=1}^{\infty} \mu(E_k) < \mu^*(E) + \varepsilon$ by the definition of infimum. Define $A_{\varepsilon} = \bigcup_{k=1}^{\infty} E_k$. Then $A_{\varepsilon} \in S_{\sigma}$ and $E \subset A_{\varepsilon}$. Since $\{E_k\}_{k=1}^{\infty}$ is a specific cover of A_{ε} by elements of *S*, then

$$\mu^*(A_{\varepsilon}) \leq \sum_{k=1}^{\infty} \mu(E_k) \leq \mu^*(E) + \varepsilon.$$

For $k \in \mathbb{N}$, take $\varepsilon = 1/k$ and define $A = \bigcap_{k=1}^{\infty} A_{1/k}$. Then A belongs to $S_{\sigma\delta}$ and $E \subset A$ (since $E \subset A_{1/k}$ for $k \in \mathbb{N}$).

Proposition 17.10. Let $\mu : S \to [0, \infty]$ be a set function defined on a collection S of subsets of a set X and let $\overline{\mu} : \mathcal{M} \to [0, \infty]$ be the Carathéodory measure induced by μ . Let $E \subset X$ satisfy $\mu(E) < \infty$. Then there is $A \subset X$ for which $A \in S_{\sigma\delta}$, $E \subset A$, and $\mu^*(E) = \mu^*(A)$. Furthermore, if $E \in \mathcal{M}$ and $S \subset \mathcal{M}$, then $A \in \mathcal{M}$ and $\overline{\mu}(A \setminus E) = 0$.

Proof. Let $\varepsilon > 0$. Since $\mu^*(E) < \infty$, there is a cover of *E* by a collection $\{E_k\}_{k=1}^{\infty}$ of sets in *S* for which $\sum_{k=1}^{\infty} \mu(E_k) < \mu^*(E) + \varepsilon$ by the definition of infimum. Define $A_{\varepsilon} = \bigcup_{k=1}^{\infty} E_k$. Then $A_{\varepsilon} \in S_{\sigma}$ and $E \subset A_{\varepsilon}$. Since $\{E_k\}_{k=1}^{\infty}$ is a specific cover of A_{ε} by elements of *S*, then

$$\mu^*(A_{\varepsilon}) \leq \sum_{k=1}^{\infty} \mu(E_k) \leq \mu^*(E) + \varepsilon.$$

For $k \in \mathbb{N}$, take $\varepsilon = 1/k$ and define $A = \bigcap_{k=1}^{\infty} A_{1/k}$. Then A belongs to $S_{\sigma\delta}$ and $E \subset A$ (since $E \subset A_{1/k}$ for $k \in \mathbb{N}$).

Proposition 17.10 (continued)

Proof (continued). Then

$$\begin{array}{rcl} \mu^*(E) & \leq & \mu^*(A) \text{ by monotonicity of } \mu^* \\ & \leq & \mu^*(A_{1/k}) \text{ by monotonicity of } \mu^* \\ & \leq & \mu^*(E) + 1/k \text{ by above.} \end{array}$$

So $\mu^*(E) = \mu^*(A)$.

Now assume that E and each set in S is μ^* measurable. Since the measurable sets form a σ -algebra, then set A defined above is measurable. The excision property holds for $\overline{\mu}$ since it is a measure (and we have finite additivity), so

$$\overline{\mu}(A \setminus E) = \overline{\mu}(A) - \overline{\mu}(E)$$

= $\mu^*(A) - \mu^*(E)$ since μ^* is an extension of $\overline{\mu}$
= 0 because $\mu^*(A) = \mu^*(E)$ as shown above.

Proposition 17.10 (continued)

Proof (continued). Then

$$\mu^*(E) \leq \mu^*(A)$$
 by monotonicity of μ^*
 $\leq \mu^*(A_{1/k})$ by monotonicity of μ^*
 $\leq \mu^*(E) + 1/k$ by above.

So $\mu^*(E) = \mu^*(A)$.

Now assume that E and each set in S is μ^* measurable. Since the measurable sets form a σ -algebra, then set A defined above is measurable. The excision property holds for $\overline{\mu}$ since it is a measure (and we have finite additivity), so

$$\overline{\mu}(A \setminus E) = \overline{\mu}(A) - \overline{\mu}(E)$$

= $\mu^*(A) - \mu^*(E)$ since μ^* is an extension of $\overline{\mu}$
= 0 because $\mu^*(A) = \mu^*(E)$ as shown above.