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Theorem 17.9

Theorem 17.9

Theorem 17.9. Let S be a collection of subsets of a set X and
µ : S → [0,∞] a set function. Define µ∗(∅) = 0 and for E ⊂ X , E 6= ∅,
define µ∗(E ) = inf (

∑∞
k=1 µ(Ek)) , where the infimum is taken over all

countable collections {Ek}∞k=1 of sets in S that cover E . Then the set
function µ∗ : 2X → [0,∞] is an outer measure (called the outer measure
induced by µ).

Proof. We need only show that µ∗ is countably monotone. Let {Ek}∞k=1

be a collection of subsets of X that covers a set E . Without loss of
generality, µ∗(Ek) < ∞ for all k ∈ N, otherwise countable monotonicity
follows trivially.

Let ε > 0. For each k ∈ N, there is a countable collection {Ei ,k}∞i=1 of sets
in S that covers Ek such that

∑∞
i=1 µ(Ei ,k) < µ∗(Ek) + ε/2k , by the

definition of infimum. Then {Ei ,k}∞i ,k=1 is a sequence of sets in S which
cover ∪∞k=1Ek and, therefore, also covers E .
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Theorem 17.9

Proposition 17.9 (continued)

Proof (continued). So

µ∗(E ) ≤
∞∑

i ,k=1

µ(Ei ,k) since {Ei ,k} is some specific cover

=
∞∑

k=1

( ∞∑
i=1

µ(Ei ,k)

)

≤
∞∑

k=1

(µ∗(Ek) + ε/2k) by the above inequality

=
∞∑

k=1

µ∗(Ek) + ε.

Since ε > 0 is arbitrary, we have µ∗(E ) ≤
∑∞

k=1 µ∗(Ek) and µ∗ is
countable monotone.
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Proposition 17.10

Proposition 17.10

Proposition 17.10. Let µ : S → [0,∞] be a set function defined on a
collection S of subsets of a set X and let µ : M→ [0,∞] be the
Carathéodory measure induced by µ. Let E ⊂ X satisfy µ(E ) < ∞. Then
there is A ⊂ X for which A ∈ Sσδ, E ⊂ A, and µ∗(E ) = µ∗(A).
Furthermore, if E ∈M and S ⊂M, then A ∈M and µ(A \ E ) = 0.

Proof. Let ε > 0. Since µ∗(E ) < ∞, there is a cover of E by a collection
{Ek}∞k=1 of sets in S for which

∑∞
k=1 µ(Ek) < µ∗(E ) + ε by the definition

of infimum.

Define Aε = ∪∞k=1Ek . Then Aε ∈ Sσ and E ⊂ Aε. Since
{Ek}∞k=1 is a specific cover of Aε by elements of S, then

µ∗(Aε) ≤
∞∑

k=1

µ(Ek) ≤ µ∗(E ) + ε.

For k ∈ N, take ε = 1/k and define A = ∩∞k=1A1/k . Then A belongs to
Sσδ and E ⊂ A (since E ⊂ A1/k for k ∈ N).
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Proposition 17.10

Proposition 17.10 (continued)

Proof (continued). Then

µ∗(E ) ≤ µ∗(A) by monotonicity of µ∗

≤ µ∗(A1/k) by monotonicity of µ∗

≤ µ∗(E ) + 1/k by above.

So µ∗(E ) = µ∗(A).
Now assume that E and each set in S is µ∗ measurable. Since the
measurable sets form a σ-algebra, then set A defined above is measurable.
The excision property holds for µ since it is a measure (and we have finite
additivity), so

µ(A \ E ) = µ(A)− µ(E )

= µ∗(A)− µ∗(E ) since µ∗ is an extension of µ

= 0 because µ∗(A) = µ∗(E ) as shown above.
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