Real Analysis

Chapter 17. General Measure Spaces: Their Properties and Construction

17.5. The Carathédory-Hahn Theorem—Proofs of Theorems

Real Analysis

April 28, 2019 1 / 17

Proposition 17.1:

Proposition 17.11 (continued)

Proof (continued). For such E and $\{E_k\}_{k=1}^{\infty}$, we have $\mu^*(E) \leq \sum_{k=1}^{\infty} \mu(E_k)$ by the definition of μ^* . For $E \in \mathcal{S}$ we have $\mu^*(E) = \inf \{\sum_{k=1}^{\infty} \mu(A_k)\} \leq \mu(E)$ and

$$\begin{array}{rcl} \mu(E) & = & \overline{\mu}(E) \leq \overline{\mu} \left(\cup_{k=1}^{\infty} A_k \right) \text{ since } \overline{\mu} \text{ is monotone} \\ & \leq & \sum_{k=1}^{\infty} \overline{\mu}(A_k) \text{ since } \overline{\mu} \text{ is countably monotone} \\ & = & \sum_{k=1}^{\infty} \mu(A_k) \text{ since } \overline{\mu} \text{ extends } \mu. \end{array}$$

Taking an infimum over all such coverings of E we have $\mu(E) \leq \mu^*(E)$, so that $\mu^*(E) = \mu(E)$. Hence $\mu(E) = \mu^*(E) \leq \sum_{k=1}^{\infty} \mu(E_k)$ and μ is countably monotone.

Proposition 17.11

Proposition 17.11. Let $\mathcal S$ be a collection of subsets of X and $\mu:\mathcal S\to [0,\infty]$ a set function. In order that the Carathéodory measure $\overline\mu$ induced by μ be an extension of μ (that is, $\overline\mu=\mu$ on $\mathcal S$) it is necessary that μ be both finitely additive and countably monotone and, if $\varnothing\in\mathcal S$, then $\mu(\varnothing)=0$.

Proof. Let $(X,\mathcal{M},\overline{\mu})$ be the Carathéodory measure space induced by μ and suppose $\overline{\mu}:\mathcal{M}\to[0,\infty]$ extends $\mu:\mathcal{S}\to[0,\infty]$. First, if $\varnothing\in\mathcal{S}$ then $\overline{\mu}(\varnothing)=0$ since $\overline{\mu}$ is a measure (by the definition of measure, page 338) and $\mu(\varnothing)=\overline{\mu}(\varnothing)=0$ since $\overline{\mu}$ extends μ . A measure is finitely additive by Proposition 17.6, so if $\{E_k\}_{k=1}^\infty\subset\mathcal{S}$ and $\bigcup_{k=1}^n E_k\in\mathcal{S}$, then $\overline{\mu}$ is finitely additive on the E_k 's and so μ is finitely additive on the E_k 's since $\overline{\mu}$ extends μ . For countable monotonicity, we must show that (by definition, see page 346) for each $E\in\mathcal{S}$ and each $\{E_k\}_{k=1}^\infty\subset\mathcal{S}$ with $E\subset\bigcup_{k=1}^\infty E_k$, $\mu(E)\leq\sum_{k=1}^\infty \mu(E_k)$.

Real Analysis

Theorem 17.1

Theorem 17.12

Theorem 17.12. Let $\mu: \mathcal{S} \to [0,\infty]$ be a premeasure on a nonempty collection \mathcal{S} of subsets of X that is closed with respect to the formation of relative complements. Then the Carathéodory measure $\overline{\mu}: \mathcal{M} \to [0,\infty]$ induced by μ is an extension of μ called the *Carathéodory extension* of μ .

Proof. Let $A \in \mathcal{S}$. We need to show A is measurable and $\mu(A) = \overline{\mu}(A)$. Let $\varepsilon > 0$. We show that for all $E \subset X$ with $\mu^*(E) < \infty$ that

$$\mu^*(E) + \varepsilon \ge \mu^*(E \cap A) + \mu^*(E \cap A^c) \tag{8}$$

(the restriction $\mu^*(E) < \infty$ is justified by the finite monotonicity of μ^* ; see page 347). By definition of outer measure in terms of infimum, there exists set $\{E_k\}_{k=1}^{\infty}$ of sets in $\mathcal S$ that covers E and such that

$$\mu^*(E) + \varepsilon \ge \sum_{k=1}^{\infty} \mu(E_k). \tag{9}$$

Real Analysis April 28, 2019 5 / 17

April 28, 2019 3 / 17

Theorem 17 12

Theorem 17.12 (continued 1)

Proof (continued). Since S is closed with respect to the formation of relative complements, then $E_k \cap A^c = E_k \setminus A \in S$ and $E_k \cap A = E_k \setminus (E_k \setminus A) \in S$ for all $k \in \mathbb{N}$. Since premeasures are finitely additive by definition, then $\mu(E_k) = \mu(E_k \cap A) + \mu(E_k \cap A^c)$ for all $k \in \mathbb{N}$, and so

$$\sum_{k=1}^{\infty} \mu(E_k) = \sum_{k=1}^{\infty} \mu(E_k \cap A) + \sum_{k=1}^{\infty} \mu(E_k \cap A^c).$$
 (10)

Next, $\{E_k \cap A\}_{k=1}^{\infty}$ and $\{E_k \cap A^c\}_{k=1}^{\infty}$ are subsets of S which cover $E \cap A$ and $E \cap A^c$, respectively. So from the definition of outer measure and infimum.

$$\sum_{k=1}^{\infty} \mu(E_k \cap A) \ge \mu^*(E \cap A) \text{ and } \sum_{k=1}^{\infty} \mu(E_k \cap A^c) \ge \mu^*(E \cap A^c),$$

from (10),

Real Analysis

April 28, 2019 6 / 1

Proposition 17.13

Proposition 17.13

Proposition 17.13. Let $\mathcal S$ be a semiring of subsets of a set X. Define $\mathcal S'$ to be the collection of unions of finite disjoint collections of sets in $\mathcal S$. Then $\mathcal S'$ is closed with respect to the formation of relative complements. Furthermore, any premeasure on $\mathcal S$ has a unique extension to a premeasure on $\mathcal S'$.

Proof. (1) Since S' consists of all unions of finite disjoint collections of sets in S, then an element of S' is of the form $\bigcup_{k=1}^n S_k$ where $S_k \in S$. So the union of two sets in S' is of the form $\bigcup_{k=1}^n A_n) \cup (\bigcup_{j=1}^m B_j)$ where each $A_k, B_j \in S$. If some A_k intersects some B_j then $A_k \cap B_j \in S$, since S is a semiring, and $A_k \setminus B_j$ and $B_j \setminus A_k$ are each unions of disjoint elements of S. It follows that S' is closed under finite unions. Similarly, $(\bigcup_{k=1}^n A_k) \cap (\bigcup_{j=1}^m B_j)$ can be expressed as a union of disjoint elements of S, and S' is closed under finite intersections.

Theorem 17.12 (continued 2)

Proof (continued).

$$\sum_{k=1}^{\infty} \mu(E_k) \ge \mu^*(E \cap A) + \mu^*(E \cap A^c),$$

and from (9), this implies

$$\mu^*(E) + \varepsilon \ge \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Since $\varepsilon > 0$ is arbitrary, we have (8) and so A is measurable.

Next, for any $A \in \mathcal{S}$ we have $\mu(A) = \mu^*(A)$ by monotonicity of μ and the definition of μ^* . So for $A \in \mathcal{S}$, $\overline{\mu}(A) = \mu^*(A) = \mu(A)$. Therefore, $\overline{\mu}$ is an extension of μ .

Real Analysis April 28, 2019 7 / 17

Proposition 17

Proposition 17.13 (continued 1)

Proof (continued). With the above notation,

 $(\bigcup_{k=1}^n A_k) \setminus (\bigcup_{j=1}^m B_j) = \bigcup_{k=1}^n (\bigcap_{j=1}^m (A_k \setminus B_j))$. Now each $A_k \setminus B_j$ is a union of a finite union of disjoint elements of S since S is a semiring, and so S' is closed with respect to relative complements.

(2) Let $\mu: \mathcal{S} \to [0,\infty]$ be a premeasure on \mathcal{S} . For $E \subset X$ such that $E = \bigcup_{k=1}^n A_k \in \mathcal{S}'$ where the A_k are disjoint elements of \mathcal{S} , define $\mu'(E) = \sum_{k=1}^n \mu(A_k)$. Since we have defined $\mu'(E)$ in terms of a representation of E as a union of disjoint elements of \mathcal{S} , we need to verify that $\mu'(E)$ is independent of the representation of E as such a union (i.e., we need to make sure $\mu(E)$ is well defined). Suppose $E = \bigcup_{j=1}^m B_j$ where the B_j are disjoint elements of \mathcal{S} . Then $\mu(B_j) = \sum_{j=1}^n \mu(B_j \cap A_k)$ for $1 \leq j \leq m$ (by finite additivity of premeasure μ), and $\mu(A_k) = \sum_{j=1}^m \mu(B_j \cap A_k)$ for $1 \leq k \leq n$ (by the finite additivity of premeasure μ).

Real Analysis April 28, 2019 8 / 17 () Real Analysis April 28, 2019 9 / 17

Proposition 17.13 (continued 2)

Proof (continued). Therefore

$$\sum_{j=1}^{m} \mu(B_j) = \sum_{j=1}^{m} \left(\sum_{k=1}^{n} \mu(B_j \cap A_k) \right) = \sum_{k=1}^{n} \left(\sum_{j=1}^{m} \mu(B_j \cap A_k) \right) = \sum_{k=1}^{n} \mu(A_k).$$

Thus μ' is properly defined on \mathcal{S}' and uniquely determined by μ . We now need to show that μ' is a premeasure on \mathcal{S}' . Since μ is finitely additive, then μ' inherits finite additivity from μ . For countable monotonicity of μ' , let $E \in \mathcal{S}'$ be covered by $\{E_K\}_{k=1}^{\infty}$ of set in \mathcal{S}' . By Problem 17.31(iii), we may assume the E_k are disjoint. Since $E \in \mathcal{S}$, $E = \bigcup_{j=1}^m A_j$ where the $A_j \in \mathcal{S}$ are disjoint (by the definition of \mathcal{S}'). For each $1 \leq j \leq m$, A_j is covered by $\bigcup_{k=1}^{\infty} (A_j \cap E_k)$, which is a countable collection of sets in \mathcal{S} (since \mathcal{S} is a semiring and so closed under intersections), and so by countable monotonicity of μ ,

$$\mu(A_j) \le \sum_{k=1}^{\infty} \mu(A_j \cap E_k). \tag{*}$$

Proposition 17.13

Proposition 17.13 (continued 4)

Proposition 17.13. Let \mathcal{S} be a semiring of subsets of a set X. Define \mathcal{S}' to be the collection of unions of finite disjoint collections of sets in \mathcal{S} . Then \mathcal{S}' is closed with respect to the formation of relative complements. Furthermore, any premeasure on \mathcal{S} has a unique extension to a premeasure on \mathcal{S}' .

Proof (continued).

$$\mu'(E) \leq \sum_{k=1}^{\infty} \mu(E_k)$$
 by monotonicity of μ

$$= \sum_{k=1}^{\infty} \mu'(E_k) \text{ since } \mu = \mu' \text{ on } \mathcal{S} \text{ and } E_k \in \mathcal{S}.$$

So μ' is countably monotone.

Finally, countable monotonicity of μ' implies that if $\varnothing \in \mathcal{S}'$ then $\mu'(\varnothing) = 0$. So μ' is a premeasure on \mathcal{S}' .

Proposition 17.13 (continued 3)

Proof (continued). Next,

$$\nu'(E) = \mu'\left(\cup_{j=1}^{m} A_{j}\right) = \mu\left(\cup_{j=1}^{m} A_{j}\right) \text{ since } A_{j} \in \mathcal{S}$$

$$= \sum_{j=1}^{m} \mu(A_{j}) \text{ by the finite additivity of } \mu$$

$$\leq \sum_{j=1}^{m} \left(\sum_{k=1}^{\infty} \mu(A_{j} \cap E_{k})\right) \text{ by } (*)$$

$$= \sum_{k=1}^{\infty} \left(\sum_{j=1}^{m} \mu(A_{j} \cap E_{k})\right)$$

$$= \sum_{k=1}^{\infty} \mu(E \cap E_{k}) \text{ since } E = \bigcup_{j=1}^{m} A_{j} \text{ and finite additivity of } \mu$$

April 28, 2019 11 / 17

The Carathéodory-Hahn Theore

The Carathéodory-Hahn Theorem

The Carathéodory-Hahn Theorem.

Let $\mu: \mathcal{S} \to [0,\infty]$ be a premeasure on a semiring \mathcal{S} of subsets of X. Then the Carathéodory measure $\overline{\mu}$ induced by μ is an extension of μ . Furthermore, if μ is σ -finite, then so is $\overline{\mu}$ and $\overline{\mu}$ is the unique measure on the σ -algebra of μ^* -measurable sets that extends μ .

Proof. (This is much more detailed than the text's proof.) Define \mathcal{S}' to be the collection of unions of finite disjoint collections of sets in \mathcal{S} . Then premeasure μ on \mathcal{S} has a unique extension to a premeasure on \mathcal{S}' by Proposition 17.13. Also by Proposition 17.13, \mathcal{S}' is closed with respect to the formation of relative complements. By Theorem 17.12, the Carathéodory extension $\overline{\mu}$ of μ from \mathcal{S}' to \mathcal{M} (the σ -algebra of measurable sets) is in fact an extension of μ on \mathcal{S}' (and therefore an extension of μ on \mathcal{S}).

The Carathéodory-Hahn Theorem (continued 1)

Proof (continued). Now suppose μ is σ -finite. Then $X = \bigcup_{k=1}^{\infty} S_k$ where $S_k \in \mathcal{S}$ and $\mu(S_k) < \infty$ for all $k \in \mathbb{N}$. So $\overline{\mu}(S_k) < \infty$ since $\overline{\mu}$ extends μ , and so $\overline{\mu}$ is σ -finite. For uniqueness, suppose μ_1 is another measure on \mathcal{M} that extends μ . We express $X = \bigcup_{k=1}^{\infty} X_k$ where the X_k are disjoint, $X_k \in \mathcal{S}'$ and $\mu(X_k) < \infty$ (this can be done with disjoint sets since \mathcal{S}' is closed under relative complements). Since a measure (here, $\overline{\mu}$ and μ_1) is countably additive (as is required by the definition of measure), to prove uniqueness it suffices to show that $\overline{\mu}$ and μ_1 agree on the measurable subsets in each X_k (since any subset of X can be written as a countable union of such sets: $A \subset X$ satisfies $A = \bigcup (A \cap X_k)$. Let E be measurable, $E \in \mathcal{M}$, and $E \subset E_0$ where $E_0 \in \mathcal{S}'$ and $\mu(E_0) < \infty$. We need to show that $\overline{\mu}(E) = \mu_1(E)$.

The Carathéodory-Hahn Theorem (continued 3)

The Carathéodory-Hahn Theorem.

Let $\mu: \mathcal{S} \to [0, \infty]$ be a premeasure on a semiring \mathcal{S} of subsets of X. Then the Carathéodory measure $\overline{\mu}$ induced by μ is an extension of μ . Furthermore, if μ is σ -finite, then so is $\overline{\mu}$ and $\overline{\mu}$ is the unique measure on the σ -algebra of μ^* -measurable sets that extends μ .

Proof (continued). Then define $D_n = \bigcap_{k=1}^n S_k$. Then each $D_n \in \mathcal{S}_{\sigma}$ (since S is a semiring) and $\{D_n\}$ is a descending sequence with $\lim D_n = S$. So, by continuity of measure (Proposition 17.2), since $\mu(E_0)<\infty$,

$$\overline{\mu}(S) = \overline{\mu}(\lim D_n) = \lim \overline{\mu}(D_n) = \lim \mu_1(D_n) = \mu_1(\lim D_n) = \mu_1(S).$$

So μ_1 and $\overline{\mu}$ agree on $S_{\sigma\delta}$ subsets of E_0 . Therefore $\mu_1(A) = \overline{\mu}(A)$. Hence $\mu_1(A \setminus E) = \overline{\mu}(A \setminus E) = 0$ implies by the excision principle (Proposition 17.1) that $\mu_1(A) - \mu_1(E) = \overline{\mu}(A) - \overline{\mu}(E)$ (since $E \subset A \subset E_0$ and $\mu(E_0) < \infty$) and so $\mu_1(E) = \overline{\mu}(E)$. It follows that μ_1 and $\overline{\mu}$ are equal on the σ -algebra of μ^* -measurable sets, and so $\overline{\mu}$ is unique.

The Carathéodory-Hahn Theorem (continued 2)

Proof (continued). By Proposition 17.10, there is $A \in S_{\sigma\delta}$ for which $E \subset A$ and $\overline{\mu}(A \setminus E) = 0$. We may assume $A \subset E_0$ (otherwise we replace A with $A \cap E_0 \in S_{\sigma\delta}$); notice that E_0 is a finite union of disjoint sets in S so $E_0 \in S_{\sigma\delta}$. Now if B is measurable and $\mu^*(B) = 0$ (and so $\overline{\mu}(B) = 0$), then $\mu^*(B) = \inf\{\sum \mu(E_k)\}\$ where the infimum is taken over all coverings of B of the form $\{E_k\} \subset S$. Since μ_1 extends μ then the countable monotonicity of μ_1 (a property of measure μ_1 by Proposition 17.1), $\mu_1(E) \leq \sum \mu_1(E_k) = \sum \mu(E_k)$ for any cover $\{E_k\} \subset \mathcal{S}$ of B, and so $\mu_1(B) = 0$. Therefore (considering the $\overline{\mu}$ -measure zero set $B = A \setminus E$), $\mu_1(A \setminus E) = 0$. By the countable additivity of μ_1 and $\overline{\mu}$, these measures agree on S_{σ} (since S is a semiring, each element of S_{σ} can be written as a countable *disjoint* union of elements of S). Now for any $S \in S_{\sigma\delta}$ with $S \subset E_0$, we have $S = \bigcap_{k=1}^{\infty} S_k$ for some $S_k \in \mathcal{S}_{\sigma}$.

Corollary 17.14

Corollary 17.14. Let S be a semiring of subsets of a set X and B the smallest σ -algebra of subsets of X that contain S. Then two σ -finite measures on \mathcal{B} are equal if and only if they agree on sets in \mathcal{S} .

Proof. Let μ_1 and μ_2 be σ -finite measures on \mathcal{B} . First, if μ_1 and μ_2 do not agree on S, then they are not equal on B (since $S \subset B$). Second, if μ_1 and μ_2 are σ -finite measures on \mathcal{B} , then their restrictions to \mathcal{S} are σ -finite, finite additive (by the definition of measure), and countably monotone (by Proposition 17.1). So the restrictions of μ_1 and μ_2 to S are σ -finite premeasures which agree on S. Therefore, by the Carathédory-Hahn Theorem, their extensions to \mathcal{B} (a sub- σ -algebra of \mathcal{M}) are unique. That is, $\mu_1 = \mu_2$ on \mathcal{B} .

April 28, 2019 15 / 17