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Proposition 17.11

Proposition 17.11. Let S be a collection of subsets of X and
p: S — [0,00] a set function. In order that the Carathéodory measure i

induced by u be an extension of u (that is, 7 = 1 on S) it is necessary
that u be both finitely additive and countably monotone and, if @ € S,

then u(@) = 0.
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Proposition 17.11

Proposition 17.11. Let S be a collection of subsets of X and

p: S — [0,00] a set function. In order that the Carathéodory measure i
induced by u be an extension of u (that is, 7 = 1 on S) it is necessary
that u be both finitely additive and countably monotone and, if @ € S,
then u(@) = 0.

Proof. Let (X, M, i) be the Carathéodory measure space induced by p
and suppose 7z : M — [0, 00] extends p: S — [0, cq].
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Proposition 17.11

Proposition 17.11. Let S be a collection of subsets of X and

p: S — [0,00] a set function. In order that the Carathéodory measure i
induced by u be an extension of u (that is, 7 = 1 on S) it is necessary
that u be both finitely additive and countably monotone and, if @ € S,
then u(@) = 0.

Proof. Let (X, M, i) be the Carathéodory measure space induced by p
and suppose 7 : M — [0, 00] extends p : S — [0, 00]. First, if @ € S then
7(2) = 0 since 1 is a measure (by the definition of measure, page 338)
and u(@) = () = 0 since & extends p. A measure is finitely additive by
Proposition 17.6, so if {Ex}2,; C S and UJ_, Ex € S, then [ is finitely
additive on the Ej's and so y is finitely additive on the Ej's since T
extends .
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Proposition 17.11

Proposition 17.11. Let S be a collection of subsets of X and

p: S — [0,00] a set function. In order that the Carathéodory measure i
induced by u be an extension of u (that is, 7 = 1 on S) it is necessary
that u be both finitely additive and countably monotone and, if @ € S,
then u(@) = 0.

Proof. Let (X, M, i) be the Carathéodory measure space induced by p
and suppose 7 : M — [0, 00] extends p : S — [0, 00]. First, if @ € S then
7(2) = 0 since 1 is a measure (by the definition of measure, page 338)
and u(@) = () = 0 since & extends p. A measure is finitely additive by
Proposition 17.6, so if {Ex}2,; C S and UJ_, Ex € S, then [ is finitely
additive on the Ej's and so y is finitely additive on the Ej's since T
extends p. For countable monotonicity, we must show that (by definition,
see page 346) for each E € S and each {Ex}72, C S with E C U2 Ey,

(E) < 220:1 f1(Ek).-
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Proposition 17.11 (continued)

Proof (continued). For such E and {E,}{°,, we have
p(E) < 322, i(Ex) by the definition of p*.
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Proposition 17.11 (continued)

Proof (continued). For such E and {E,}{°,, we have
p*(E) < 3722, 1(Ex) by the definition of p*. For E € S we have

w*(E) = inf {302, u(AK)} < u(E) and

w(E) = [(E) < (UgZi1Ak) since [t is monotone
o0
< ZH(Ak) since [ is countably monotone

k=1
oo

= Z w(Ag) since i extends p.
k=1

Taking an infimum over all such coverings of E we have p(E) < p*(E), so
that u*(E) = u(E).
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Proposition 17.11 (continued)

Proof (continued). For such E and {E,}{°,, we have
p*(E) < 3722, 1(Ex) by the definition of p*. For E € S we have

w*(E) = inf {302, u(AK)} < u(E) and

w(E) = [(E) < (UgZi1Ak) since [t is monotone
o0
< ZH(Ak) since [ is countably monotone

k=1
oo

= Z w(Ag) since i extends p.
k=1

Taking an infimum over all such coverings of E we have p(E) < p*(E), so
that p*(E) = w(E). Hence p(E) = p*(E) < > 72 u(Ek) and o is
countably monotone. ]
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Theorem 17.12
Theorem 17.12. Let ;1 : S — [0, 00| be a premeasure on a nonempty
collection S of subsets of X that is closed with respect to the formation of

relative complements. Then the Carathéodory measure 71 : M — [0, x]
induced by p is an extension of p called the Carathéodory extension of .
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Theorem 17.12
Theorem 17.12. Let ;1 : S — [0, 00| be a premeasure on a nonempty
collection S of subsets of X that is closed with respect to the formation of

relative complements. Then the Carathéodory measure 71 : M — [0, x]
induced by p is an extension of p called the Carathéodory extension of .

Proof. Let A € S. We need to show A is measurable and p(A) = fi(A).
Let € > 0.
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Theorem 17.12

Theorem 17.12. Let ;1 : S — [0, 00| be a premeasure on a nonempty
collection S of subsets of X that is closed with respect to the formation of
relative complements. Then the Carathéodory measure 71 : M — [0, x]
induced by p is an extension of p called the Carathéodory extension of .

Proof. Let A € S. We need to show A is measurable and p(A) = fi(A).
Let € > 0. We show that for all E C X with u*(E) < oo that

W (E) + e > 1" (E N A) + i*(E N A°) (8)

(the restriction p*(E) < oo is justified by the finite monotonicity of u*;
see page 347).
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Theorem 17.12

Theorem 17.12. Let ;1 : S — [0, 00| be a premeasure on a nonempty
collection S of subsets of X that is closed with respect to the formation of
relative complements. Then the Carathéodory measure 71 : M — [0, x]
induced by p is an extension of p called the Carathéodory extension of .

Proof. Let A € S. We need to show A is measurable and p(A) = fi(A).
Let € > 0. We show that for all E C X with u*(E) < oo that

W (E) + e > 1" (E N A) + i*(E N A°) (8)

(the restriction p*(E) < oo is justified by the finite monotonicity of u*;
see page 347). By definition of outer measure in terms of infimum, there
exists set { Ex}7° ; of sets in S that covers E and such that

p(E) +e=) nlEx). (9)
k=1
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Theorem 17.12 (continued 1)

Proof (continued). Since S is closed with respect to the formation of
relative complements, then Ex N A = E,\ A€ S and
ExNA=Ec\ (Ex\A)eS forall keN,
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Theorem 17.12 (continued 1)

Proof (continued). Since S is closed with respect to the formation of
relative complements, then Ex N A = E,\ A€ S and

Ex N A= Ex\ (Ex\ A) €S for all k € N. Since premeasures are finitely
additive by definition, then pu(Ex) = pu(Ex N A) + u(Ex N A) for all k € N,
and so

> E) =Y (ENA)+Y  u(ENAS). (10)
k=1 k=1 k=1

Next, {Ex N A}2°,; and {E, N A}, are subsets of S which cover EN A
and E N A€, respectively.
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Theorem 17.12 (continued 1)

Proof (continued). Since S is closed with respect to the formation of
relative complements, then Ex N A = E,\ A€ S and

Ex N A= Ex\ (Ex\ A) €S for all k € N. Since premeasures are finitely
additive by definition, then p(Ex) = u(Ex N A) 4+ p(Ex N AC) for all k € N,
and so

> E) =Y (ENA)+Y  u(ENAS). (10)
k=1 k=1 k=1

Next, {Ex N A}2°,; and {E, N A}, are subsets of S which cover EN A
and E N A€, respectively. So from the definition of outer measure and
infimum,

> w(EcnA) = p(EnA)and Y p(ExNAS) > p*(ENA),
k=1 k=1

from (10),
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Theorem 17.12 (continued 2)

Proof (continued).

S () > i (E 0 A) + (€0 A°),
k=1

and from (9), this implies
p(E)+e > p*(ENA)+ u*(ENAS).

Since € > 0 is arbitrary, we have (8) and so A is measurable.
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Theorem 17.12 (continued 2)

Proof (continued).

> (Ex) = it (E N A) + i (E N A%),

k=1
and from (9), this implies

p(E)+e > p*(ENA)+ u*(ENAS).
Since € > 0 is arbitrary, we have (8) and so A is measurable.

Next, for any A € S we have u(A) = p*(A) by monotonicity of p and the
definition of p*. So for A € S, i(A) = p*(A) = u(A). Therefore, [ is an
extension of . O
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Proposition 17.13

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &’ is closed with respect to the formation of relative complements.
Furthermore, any premeasure on S has a unique extension to a premeasure

on S’
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Proposition 17.13

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &’ is closed with respect to the formation of relative complements.
Furthermore, any premeasure on S has a unique extension to a premeasure
on &'

Proof. (1) Since &’ consists of all unions of finite disjoint collections of
sets in S, then an element of S’ is of the form W}]_; Sk where S, € S. So
the union of two sets in &' is of the form Wj_; An) U (UL, B;) where each
Ax, Bj €S.
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Proposition 17.13

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &’ is closed with respect to the formation of relative complements.
Furthermore, any premeasure on S has a unique extension to a premeasure
on &'

Proof. (1) Since &’ consists of all unions of finite disjoint collections of
sets in S, then an element of S’ is of the form W}]_; Sk where S, € S. So
the union of two sets in &' is of the form Wj_; An) U (UL, B;) where each
Ak, Bj € S. If some Ay intersects some B; then A, N B; € S, since S'is a
semiring, and Ay \ Bj and B;j \ A are each unions of disjoint elements of
S. It follows that S’ is closed under finite unions.
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Proposition 17.13

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &’ is closed with respect to the formation of relative complements.
Furthermore, any premeasure on S has a unique extension to a premeasure
on &'

Proof. (1) Since &’ consists of all unions of finite disjoint collections of
sets in S, then an element of S’ is of the form W}]_; Sk where S, € S. So
the union of two sets in &' is of the form Wj_; An) U (UL, B;) where each
Ak, Bj € S. If some Ay intersects some B; then A, N B; € S, since S'is a
semiring, and Ay \ Bj and B;j \ A are each unions of disjoint elements of
S. It follows that S8’ is closed under finite unions. Similarly,

(Wr—1Ak) N (UL, B;) can be expressed as a union of disjoint elements of
S, and S’ is closed under finite intersections.
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Proposition 17.13

Proposition 17.13 (continued 1)

Proof (continued). With the above notation,
(Ur=1AK) \ (U1 Bj) = U1 (N1 (Ak \ Bj)). Now each A, \ B; is a union
of a finite union of disjoint elements of S since S is a semiring, and so &’
is closed with respect to relative complements.
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Proposition 17.13 (continued 1)

Proof (continued). With the above notation,

(Ur=1AK) \ (U1 Bj) = U1 (N1 (Ak \ Bj)). Now each A, \ B; is a union
of a finite union of disjoint elements of S since S is a semiring, and so &’
is closed with respect to relative complements.

(2) Let o : S — [0, 00] be a premeasure on S. For E C X such that

E = W]_,;Ac € S’ where the Ay are disjoint elements of S, define

W (E) =3"r_1 #(Ak). Since we have defined p/(E) in terms of a
representation of E as a union of disjoint elements of S, we need to verify
that 1/(E) is independent of the representation of E as such a union (i.e.,
we need to make sure u(E) is well defined).
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Proposition 17.13 (continued 1)

Proof (continued). With the above notation,

(Ur=1AK) \ (U1 Bj) = U1 (N1 (Ak \ Bj)). Now each A, \ B; is a union
of a finite union of disjoint elements of S since S is a semiring, and so &’
is closed with respect to relative complements.

(2) Let o : S — [0, 00] be a premeasure on S. For E C X such that

E = W]_,;Ac € S’ where the Ay are disjoint elements of S, define

W (E) =3"r_1 #(Ak). Since we have defined p/(E) in terms of a
representation of E as a union of disjoint elements of S, we need to verify
that 1/(E) is independent of the representation of E as such a union (i.e.,
we need to make sure p(E) is well defined). Suppose E = T, B; where
the B; are disjoint elements of S. Then u(B;) = >_7_; u(B; N Ag) for

1 <j < m (by finite additivity of premeasure 1), and

1(Ax) = 3701 w(Bj N Ak) for 1 < k < n (by the finite additivity of
premeasure f1).
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Proposition 17.13 (continued 2)

Proof (continued). Therefore
p(B) =Y
=1 =1

J

J

<ZM(BjﬂAk)> = p(Bi N A | = (A,
1

k=1 k=1 \j= k=1

Thus y/ is properly defined on &’ and uniquely determined by .
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Proposition 17.13 (continued 2)
Proof (continued). Therefore

B) =3

J

m
Jj=1

m n n m n
(ZM(BjﬂAk)> = p(Bi N A | = (A,

=1 \k=1 k=1 \ j=1 k=1

Thus y/ is properly defined on &’ and uniquely determined by 1. We now

need to show that ' is a premeasure on S&’. Since p is finitely additive,

then 1/ inherits finite additivity from . For countable monotonicity of 1/,

let E € S’ be covered by {Ex}72; of set in S’. By Problem 17.31(iii), we
may assume the Ej are disjoint.
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Proposition 17.13 (continued 2)

Proof (continued). Therefore

<ZM(BjﬂAk)> = p(Bi N A | = (A,
1

m m
p(B) =Y
=1 =1 \k=1 k=1 \ j= k=1

J

J
Thus y/ is properly defined on &’ and uniquely determined by 1. We now
need to show that ' is a premeasure on S&’. Since p is finitely additive,
then 1/ inherits finite additivity from . For countable monotonicity of 1/,
let E € S’ be covered by {Ex}72; of set in S’. By Problem 17.31(iii), we
may assume the Ej are disjoint. Since E € S, E = U2, Aj where the

Aj € S are disjoint (by the definition of S’). For each 1 <j < m, A;is
covered by U2, (A; N Ex), which is a countable collection of sets in S
(since S is a semiring and so closed under intersections), and so by
countable monotonicity of p,

oo
u(A) <D u(A; N E). (%)
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Proposition 17.13 (continued 3)

Proof (continued). Next,

V(E)

=y (UZ1A) = 1 (U1 A)) since Aje S

= Z“( ;) by the finite additivity of u

\g

> A ma) by (+)

= Z E N Ex) since E = U2, A; and finite additivity of p
k=1
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Proposition 17.13

Proposition 17.13 (continued 4)

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &' is closed with respect to the formation of relative complements.

Furthermore, any premeasure on S has a unique extension to a premeasure
/
on &',

Proof (continued).

W(E) < ZM(Ek) by monotonicity of i
k=1
= Z//(Ek) since p =y on S and E, € S.
k=1

So u' is countably monotone.
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Proposition 17.13

Proposition 17.13 (continued 4)

Proposition 17.13. Let S be a semiring of subsets of a set X. Define &’
to be the collection of unions of finite disjoint collections of sets in S.
Then &' is closed with respect to the formation of relative complements.

Furthermore, any premeasure on S has a unique extension to a premeasure
/
on &',

Proof (continued).

W(E) < ZM(Ek) by monotonicity of i
k=1
= Z//(Ek) since p =y on S and E, € S.
k=1

So u' is countably monotone.

Finally, countable monotonicity of u’ implies that if @ € S’ then
p' (&) =0. So ' is a premeasure on §'. O
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The Carathéodory-Hahn Theorem

The Carathéodory-Hahn Theorem

The Carathéodory-Hahn Theorem.

Let 1 : S — [0,00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure 7z induced by p is an extension of .
Furthermore, if u is o-finite, then so is i and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.
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The Carathéodory-Hahn Theorem

The Carathéodory-Hahn Theorem.

Let 1 : S — [0,00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure 7z induced by p is an extension of .
Furthermore, if u is o-finite, then so is i and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.

Proof. (This is much more detailed than the text's proof.) Define S’ to
be the collection of unions of finite disjoint collections of sets in S. Then
premeasure i, on S has a unique extension to a premeasure on S’ by
Proposition 17.13.
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The Carathéodory-Hahn Theorem

The Carathéodory-Hahn Theorem.

Let 1 : S — [0,00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure 7z induced by p is an extension of .
Furthermore, if u is o-finite, then so is i and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.

Proof. (This is much more detailed than the text's proof.) Define S’ to
be the collection of unions of finite disjoint collections of sets in S. Then
premeasure i, on S has a unique extension to a premeasure on S’ by
Proposition 17.13. Also by Proposition 17.13, S’ is closed with respect to
the formation of relative complements. By Theorem 17.12, the
Carathéodory extension 1z of p from S’ to M (the o-algebra of measurable

sets) is in fact an extension of 1 on 8’ (and therefore an extension of y on
S).
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The Carathéodory-Hahn Theorem (continued 1)

Proof (continued). Now suppose 1 is o-finite. Then X = U2, Sx where
Sk € S and p(Sk) < oo for all k € N. So 7i(Sk) < oo since i extends p,
and so 1 is o-finite.
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The Carathéodory-Hahn Theorem (continued 1)

Proof (continued). Now suppose 1 is o-finite. Then X = U2, Sx where
Sk € S and p(Sk) < oo for all k € N. So 7i(Sk) < oo since i extends p,
and so & is o-finite. For uniqueness, suppose p1 is another measure on M
that extends p. We express X = W32 ; Xk where the X are disjoint,

X € 8" and pu(Xk) < oo (this can be done with disjoint sets since S’ is
closed under relative complements).
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The Carathéodory-Hahn Theorem (continued 1)

Proof (continued). Now suppose 1 is o-finite. Then X = U2, Sx where
Sk € S and p(Sk) < oo for all k € N. So 7i(Sk) < oo since i extends p,
and so & is o-finite. For uniqueness, suppose p1 is another measure on M
that extends p. We express X = W32 ; Xk where the X are disjoint,

X € 8" and pu(Xk) < oo (this can be done with disjoint sets since S’ is
closed under relative complements). Since a measure (here, 7 and p1) is
countably additive (as is required by the definition of measure), to prove
uniqueness it suffices to show that 7z and w1 agree on the measurable
subsets in each Xj (since any subset of X can be written as a countable
union of such sets: A C X satisfies A = (AN X)).
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The Carathéodory-Hahn Theorem (continued 1)

Proof (continued). Now suppose 1 is o-finite. Then X = U2, Sx where
Sk € S and p(Sk) < oo for all k € N. So 7i(Sk) < oo since i extends p,
and so & is o-finite. For uniqueness, suppose p1 is another measure on M
that extends p. We express X = W32 ; Xk where the X are disjoint,

X € 8" and pu(Xk) < oo (this can be done with disjoint sets since S’ is
closed under relative complements). Since a measure (here, 7 and p1) is
countably additive (as is required by the definition of measure), to prove
uniqueness it suffices to show that 7z and w1 agree on the measurable
subsets in each Xj (since any subset of X can be written as a countable
union of such sets: A C X satisfies A = U(AN X)). Let E be measurable,
E € M, and E C Ey where Eg € 8" and pu(Ep) < co. We need to show

that 7i(E) = ju(E).
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The Carathéodory-Hahn Theorem (continued 2)

Proof (continued). By Proposition 17.10, there is A € S,s for which
ECAand i(A\ E) = 0. We may assume A C Ey (otherwise we replace
A with AN Ey € Sy5); notice that Ep is a finite union of disjoint sets in S

so Eg € S5,5.
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The Carathéodory-Hahn Theorem (continued 2)

Proof (continued). By Proposition 17.10, there is A € S,s for which
ECAand i(A\ E) = 0. We may assume A C Ey (otherwise we replace
A with AN Ey € Sy5); notice that Ep is a finite union of disjoint sets in S
so Eg € Sy5. Now if B is measurable and p*(B) = 0 (and so 1z(B) = 0),
then p*(B) = inf{>_ u(Ex)} where the infimum is taken over all coverings
of B of the form {Ex} C S. Since i extends p then the countable
monotonicity of 11 (a property of measure py by Proposition 17.1),
p1(E) <> ui(Ex) =D u(Ek) for any cover {Ex} C S of B, and so
n1(B) =0.
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The Carathéodory-Hahn Theorem (continued 2)

Proof (continued). By Proposition 17.10, there is A € S,s for which
ECAand i(A\ E) = 0. We may assume A C Ey (otherwise we replace
A with AN Ey € Sy5); notice that Ep is a finite union of disjoint sets in S
so Eg € Sy5. Now if B is measurable and p*(B) = 0 (and so 1z(B) = 0),
then p*(B) = inf{>_ u(Ex)} where the infimum is taken over all coverings
of B of the form {Ex} C S. Since i extends p then the countable
monotonicity of 11 (a property of measure py by Proposition 17.1),
p1(E) <> ui(Ex) =D u(Ek) for any cover {Ex} C S of B, and so
p1(B) = 0. Therefore (considering the 7i-measure zero set B = A\ E),
p1(A\ E) = 0. By the countable additivity of x; and 7, these measures
agree on S, (since S is a semiring, each element of S, can be written as a
countable disjoint union of elements of ). Now for any S € S, with

S C Eg, we have S = N2 ; Sy for some S, € S, .
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The Carathéodory-Hahn Theorem (continued 3)

The Carathéodory-Hahn Theorem.

Let 4 : S — [0, 00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure i induced by p is an extension of .
Furthermore, if © is o-finite, then so is & and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.

Proof (continued). Then define D, = N]_;Sk. Then each D, € S,

(since S is a semiring) and {D,} is a descending sequence with
limD, =S.
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The Carathéodory-Hahn Theorem (continued 3)

The Carathéodory-Hahn Theorem.

Let 4 : S — [0, 00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure i induced by p is an extension of .
Furthermore, if © is o-finite, then so is & and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.

Proof (continued). Then define D, = N]_;Sk. Then each D, € S,
(since S is a semiring) and {D,} is a descending sequence with

lim D, = S. So, by continuity of measure (Proposition 17.2), since
1(Eo) < oo,

ﬁ(S) = ﬁ(“m Dn) = “mﬁ(Dn) = “mﬂl(Dn) = ,U'l(”m Dn) = Nl(s)'
So p1 and 11 agree on S, subsets of Eg. Therefore p1(A) = 1i(A).
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The Carathéodory-Hahn Theorem (continued 3)

The Carathéodory-Hahn Theorem.

Let 4 : S — [0, 00] be a premeasure on a semiring S of subsets of X.
Then the Carathéodory measure i induced by p is an extension of .
Furthermore, if © is o-finite, then so is & and [ is the unique measure on
the o-algebra of p*-measurable sets that extends pu.

Proof (continued). Then define D, = N]_;Sk. Then each D, € S,
(since S is a semiring) and {D,} is a descending sequence with

lim D, = S. So, by continuity of measure (Proposition 17.2), since
1(Eo) < oo,

(S) = (lim D) = lima(Dy) = lim p1(Dy) = pa(lim Dy) = pi(S).
So p1 and 71 agree on S, subsets of Ey. Therefore p1(A) = fi(A). Hence
p1(A\ E) =7(A\ E) = 0 implies by the excision principle (Proposition
17.1) that p1(A) — p1(E) = a(A) — (E) (since E C A C Ep and
p(Eg) < 00) and so p1(E) = @(E). It follows that py and i are equal on
the o-algebra of p*-measurable sets, and so 7 is unique. O
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Corollary 17.14

Corollary 17.14. Let S be a semiring of subsets of a set X and B the
smallest o-algebra of subsets of X that contain S. Then two o-finite
measures on B are equal if and only if they agree on sets in S.

Real Analysis April 28, 2019 17 / 17



Corollary 17.14

Corollary 17.14. Let S be a semiring of subsets of a set X and B the
smallest o-algebra of subsets of X that contain S. Then two o-finite
measures on B are equal if and only if they agree on sets in S.

Proof. Let p1 and po be o-finite measures on B. First, if u3 and po do
not agree on S, then they are not equal on B (since S C B). Second, if 3
and pup are o-finite measures on B, then their restrictions to S are o-finite,
finite additive (by the definition of measure), and countably monotone (by
Proposition 17.1). So the restrictions of p; and uy to S are o-finite
premeasures which agree on S. Therefore, by the Carathédory-Hahn
Theorem, their extensions to B (a sub-o-algebra of M) are unique. That
is, 41 = W2 on B. O
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