Real Analysis

Chapter 18. Integration Over General Measure Spaces
18.1. Measurable Functions—Proofs of Theorems
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Theorem 18.5

Theorem 18.5

Proposition 18.5. Let (X, M) be a measurable space, f a measurable
real-valued function on X, and ¢ : R — R continuous. Then the
composition o f : X — R also is measurable.

Proof. Let O be an open set of real numbers. Since ¢ : R — R is
continuous, ¢~ *(O) is open. By Proposition 18.2,

fF 1 1O)) = (p o f)7L(O) is a measurable set since f is measurable,
and so p o f is a measurable function.
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Proposition 18.3

Proposition 18.3

Proposition 18.3. Let (X, M, 1) be a complete measure space and Xp a
measurable subset of X for which p(X \ Xo) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
Xp is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and
only if h is measurable.

Proof. Define fy to be the restriction of f to Xy. Let ¢ € R and

E = (c,00). If f is measurable, then f~1(E) is measurable and therefore
so is fH(E)N Xo = f;*(E). So fy is measurable.

Now assume fy is measurable. Then f~3(E) = f; }(E) U A where A is a
subset of X \ Xp. Since (X, M, p) is complete, A is measurable and
therefore f~1(E) = f; 1(E) U A is measurable. So f is measurable.

For g = ha.e. on X, we let Xo{x € X | g(x) # h(x)} and we have that g
is measurable if and only if h is measurable, as above. ]
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Theorem 18.6

Theorem 18.6

Theorem 18.6. Let (X, M, 1) be a measure space and {f,} a sequence
of measurable functions on X for which {f,} — f pointwise a.e. on X. If
either the measure space (X, M, ) is complete or the convergence is
pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from
X, without loss of generality we can assume that {f,} converges pointwise
on all of X (completeness is needed here). Let ¢ € R be finite. For x € X,
we have lim,_. fr(x) = f(x), so f(x) < c if and only if there are n,k € N
such that for all j > k, fj(x) < ¢ —1/n. But for any natural numbers n
and j, the set {x € X | fi(x) < ¢ —1/n} is measurable since function f; is
measurable. Since M is a o-algebra, then

NZ{x € X[ fi(x) <c—1/n} € M. So

{x e X[ f(x) < c} = Unen (NZy{x € X | fi(x) < c—1/n})

is measurable. Therefore, f is measurable. ]
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The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.

Let (X, M) be a measurable space and f a measurable function on X that
is bounded on X. Then for each ¢ > 0, there are simple functions ¢, and
e on X such that ¢, < f <. and 0 < ¢ — P < € on X.

Proof. Since f is bounded, there is [c, d) such that [c,d) D f(X). Let
c=yp<y1 <---<yn=d be a partition of [c, d] such that

Yk — yk_1 < € for g < k < n. Define Iy = [yx=1,yx) and Xx = f~1(l) for
1 < k < n. Since f is a measurable function, then each X, is measurable.
Define simple . and 9. as

n n
Pe =D Yio1Xx, and e = > YixXx,-
k=1 k=1

Let x € X. Since f(X) C [c, d), there is a unique k for which

F(x) € Ik = [yk—1,¥k)- S0 @e(x) = yr—1 < F(x) < yk = ¥<(x), and

Yk = Yk—1 = the — pe <& O
0
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 1)

Proof (continued). For x € E,, define

0 if f(x
max{hn(x),0} if f(x
min{g,(x),0} if f(x

Extend 1, to all of X by defining ¢,(x) = n if f(x) > n and ¥p(x) = —n
if f(x) < —n. By construction, [i,| < |f| for all n. If f(x) is finite, then
there is N € N such that |f(x)| < N. Then for n > N,

0 < f(x) — Yn(x) < gn(x) — ha(x) < 1/n and so limp_oo ¥n(x) = f(x). If
|f(x)| = oo, then |pn(x)| = n (and the sign of ¢,(x) is the same as the
sign of f(x)), and lim,_o ¢n(x) = f(x). So {®n} converges to f
pointwise on X.

)
Un(x) = )>0
) < 0.
)

0 ]
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The Simple Approximation Theorem

The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1,} of simple functions on X that converges
pointwise on X to f and |1, < |f| on X for all n € N,

(i) If X is o-finite, then we may choose the sequence {,} so
that each 1), vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {1,} to be
increasing and each i, > 0 on X.

Proof. Fix n € N and define E, = {x € X | |f(x)| < n}. Since |f] is a
measurable function, then E,, is a measurable set. The restriction of f to
E, is measurable and bounded by —n and n. Applying the Simple
Approximation Lemma to the restriction of f to E, with ¢ = 1/n, there
are simple functions h, and g, on E, for which h, < f < g, and
0<gh—h,<1l/nonE,.
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.
Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1,} of simple functions on X that converges
pointwise on X to f and |¢,| < |f| on X for all n € N,
(i) If X is o-finite, then we may choose the sequence {¢,} so
that each 1), vanishes outside a set of finite measure.
(ii) If f is nonnegative, we may choose the sequence {1,} to be
increasing and each ¢, > 0 on X.

Proof (continued). If X is o-finite, then X can be written as
X =152, X, where {X,} is an ascending collection of measurable sets,
each of finite measure. Replace each v, by ¥,xx, and then each v,

vanishes outside a set of finite measure, and the pointwise convergence
still holds. So (i) holds.

If f is nonnegative, replace psi, by maxi<j<p{t;}, which is measurable by
Corollary 18.7 and is simple. Also, {1} is an increasing sequence of

nonnegative functions, so (ii) holds. O
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