Proposition 18.3

Real Analysis

Chapter 18. Integration Over General Measure Spaces 18.1. Measurable Functions—Proofs of Theorems

so is $f^{-1}(E) \cap X_0 = f_0^{-1}(E)$. So f_0 is measurable. only if h is measurable. $E=(c,\infty)$. If f is measurable, then $f^{-1}(E)$ is measurable and therefore **Proof.** Define f_0 to be the restriction of f to X_0 . Let $c \in \mathbb{R}$ and

functions on X for which g = h a.e. on X, then g is measurable if and

 X_0 is measurable. In particular, if g and h are extended real-valued

real-valued function f on X is measurable if and only if its restriction to measurable subset of X for which $\mu(X \setminus X_0) = 0$. Then an extended **Proposition 18.3.** Let (X, \mathcal{M}, μ) be a complete measure space and X_0 a

subset of $X \setminus X_0$. Since (X, \mathcal{M}, μ) is complete, A is measurable and therefore $f^{-1}(E) = f_0^{-1}(E) \cup A$ is measurable. So f is measurable. Now assume f_0 is measurable. Then $f^{-1}(E) = f_0^{-1}(E) \cup A$ where A is a

is measurable if and only if h is measurable, as above For g=h a.e. on X, we let $X_0\{x\in X\mid g(x)\neq h(x)\}$ and we have that g

Theorem 18.5

Theorem 18.6

pointwise on all of X, then f is measurable. either the measure space (X,\mathcal{M},μ) is complete or the convergence is of measurable functions on X for which $\{f_n\} \to f$ pointwise a.e. on X. If **Theorem 18.6.** Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence

composition $\varphi \circ f: X \to \mathbb{R}$ also is measurable. real-valued function on X, and $\varphi:\mathbb{R}\to\mathbb{R}$ continuous. Then the **Proposition 18.5.** Let (X, \mathcal{M}) be a measurable space, f a measurable

and so $\varphi \circ f$ is a measurable function $f^{-1}(\varphi^{-1}(\mathcal{O})) = (\varphi \circ f)^{-1}(\mathcal{O})$ is a measurable set since f is measurable, continuous, $\varphi^{-1}(\mathcal{O})$ is open. By Proposition 18.2, **Proof.** Let \mathcal{O} be an open set of real numbers. Since $\varphi : \mathbb{R} \to \mathbb{R}$ is

 $\cap_{j=k}^{\infty}\{x\in X\mid f_j(x)< c-1/n\}\in \mathcal{M}.$ So such that for all $j \ge k$, $f_j(x) < c - 1/n$. But for any natural numbers n and j, the set $\{x \in X \mid f_j(x) < c - 1/n\}$ is measurable since function f_j is on all of X (completeness is needed here). Let $c \in \mathbb{R}$ be finite. For $x \in X$, measurable. Since ${\mathcal M}$ is a σ -algebra, then we have $\lim_{n\to\infty} f_n(x) = f(x)$, so f(x) < c if and only if there are $n,k\in\mathbb{N}$ **Proof.** By Proposition 18.3, possibly be excising a set of measure 0 from X, without loss of generality we can assume that $\{f_n\}$ converges pointwise

$$\{x \in X \mid f(x) < c\} = \bigcup_{k,n \in \mathbb{N}} \left(\bigcap_{j=k}^{\infty} \{x \in X \mid f_j(x) < c - 1/n\} \right)$$

is measurable. Therefore, f is measurable

Real Analysis

December 14, 2016 4 / 9

December 14, 2016 5 / 9

Real Analysis

The Simple Approximation Theorem

The Simple Approximation Lemma

The Simple Approximation Lemma.

 ψ_{ϵ} on X such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \phi_{\epsilon} < \epsilon$ on X. is bounded on X. Then for each $\epsilon>0$, there are simple functions ϕ_ϵ and Let (X,\mathcal{M}) be a measurable space and f a measurable function on X that

 $1 \le k \le n$. Since f is a measurable function, then each X_k is measurable. $y_k - y_{k-1} < \varepsilon$ for $q \le k \le n$. Define $I_k = [y_{k-1}, y_k]$ and $X_k = f^{-1}(I_k)$ for $c = y_0 < y_1 < \cdots < y_n = d$ be a partition of [c, d] such that **Proof.** Since f is bounded, there is [c,d) such that $[c,d) \supset f(X)$. Let Define simple $\varphi_{arepsilon}$ and $\psi_{arepsilon}$ as

$$\varphi_{\varepsilon} = \sum_{k=1}^{n} y_{k-1} \chi_{X_k} \text{ and } \psi_{\varepsilon} = \sum_{k=1}^{n} y_k \chi_{X_k}.$$

 $f(x) \in I_k = [y_{k-1}, y_k)$. So $\varphi_{\varepsilon}(x) = y_{k-1} \le f(x) < y_k = \psi_{\varepsilon}(x)$, and $y_k - y_{k-1} = \psi_{\epsilon} - \varphi_{\varepsilon} < \varepsilon.$ Let $x \in X$. Since $f(X) \subset [c, d)$, there is a unique k for which

The Simple Approximation Theorem

pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$. Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure
- $\mathsf{(ii)}\ \mathsf{lf}\ f$ is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \geq 0$ on X.

 $0 \leq g_n - h_n < 1/n$ on E_n . are simple functions h_n and g_n on E_n for which $h_n \leq f \leq g_n$ and Approximation Lemma to the restriction of f to E_n with $\varepsilon=1/n$, there measurable function, then E_n is a measurable set. The restriction of f to **Proof.** Fix $n \in \mathbb{N}$ and define $E_n = \{x \in X \mid |f(x)| \le n\}$. Since |f| is E_n is measurable and bounded by -n and n. Applying the Simple

Real Analysis

December 14, 2016

December 14, 2016

The Simple Approximation Theorem (continued 1)

Proof (continued). For $x \in E_n$ define

$$\psi_n(x) = \begin{cases} 0 & \text{if } f(x) = 0\\ \max\{h_n(x), 0\} & \text{if } f(x) > 0\\ \min\{g_n(x), 0\} & \text{if } f(x) < 0. \end{cases}$$

there is $N \in \mathbb{N}$ such that |f(x)| < N. Then for $n \geq N$, if f(x) < -n. By construction, $|\psi_n| \le |f|$ for all n. If f(x) is finite, then Extend ψ_n to all of X by defining $\psi_n(x) = n$ if f(x) > n and $\psi_n(x) = -n$

pointwise on X. sign of f(x), and $\lim_{n\to\infty} \varphi_n(x) = f(x)$. So $\{\varphi_n\}$ converges to f $0 \le f(x) - \psi_n(x) \le g_n(x) - h_n(x) < 1/n \text{ and so } \lim_{n \to \infty} \psi_n(x) = f(x).$ If $|f(x)|=\infty$, then $|arphi_n(x)|=n$ (and the sign of $arphi_n(x)$ is the same as the

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.

pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$. Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \geq 0$ on X.

still holds. So (i) holds. vanishes outside a set of finite measure, and the pointwise convergence each of finite measure. Replace each ψ_n by $\psi_n \chi_{X_n}$ and then each ψ_n $X = \bigcup_{n=1}^{\infty} X_n$ where $\{X_n\}$ is an ascending collection of measurable sets, **Proof (continued).** If X is σ -finite, then X can be written as

nonnegative functions, so (ii) holds. If f is nonnegative, replace psi_n by $\max_{1 \leq i \leq n} \{\psi_i\}$, which is measurable by Corollary 18.7 and is simple. Also, $\{\psi_n\}$ is an increasing sequence of