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Proposition 18.3

Proposition 18.3

Proposition 18.3. Let (X ,M, µ) be a complete measure space and X0 a
measurable subset of X for which µ(X \ X0) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
X0 is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X , then g is measurable if and
only if h is measurable.

Proof. Define f0 to be the restriction of f to X0. Let c ∈ R and
E = (c ,∞). If f is measurable, then f −1(E ) is measurable and therefore
so is f −1(E ) ∩ X0 = f −1

0 (E ). So f0 is measurable.

Now assume f0 is measurable. Then f −1(E ) = f −1
0 (E ) ∪ A where A is a

subset of X \ X0. Since (X ,M, µ) is complete, A is measurable and
therefore f −1(E ) = f −1

0 (E ) ∪ A is measurable. So f is measurable.

For g = h a.e. on X , we let X0{x ∈ X | g(x) 6= h(x)} and we have that g
is measurable if and only if h is measurable, as above.
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Theorem 18.5

Theorem 18.5

Proposition 18.5. Let (X ,M) be a measurable space, f a measurable
real-valued function on X , and ϕ : R → R continuous. Then the
composition ϕ ◦ f : X → R also is measurable.

Proof. Let O be an open set of real numbers. Since ϕ : R → R is
continuous, ϕ−1(O) is open. By Proposition 18.2,
f −1(ϕ−1(O)) = (ϕ ◦ f )−1(O) is a measurable set since f is measurable,
and so ϕ ◦ f is a measurable function.
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Theorem 18.6

Theorem 18.6. Let (X ,M, µ) be a measure space and {fn} a sequence
of measurable functions on X for which {fn} → f pointwise a.e. on X . If
either the measure space (X ,M, µ) is complete or the convergence is
pointwise on all of X , then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from
X , without loss of generality we can assume that {fn} converges pointwise
on all of X (completeness is needed here). Let c ∈ R be finite.

For x ∈ X ,
we have limn→∞ fn(x) = f (x), so f (x) < c if and only if there are n, k ∈ N
such that for all j ≥ k, fj(x) < c − 1/n. But for any natural numbers n
and j , the set {x ∈ X | fj(x) < c − 1/n} is measurable since function fj is
measurable. Since M is a σ-algebra, then
∩∞j=k{x ∈ X | fj(x) < c − 1/n} ∈ M. So

{x ∈ X | f (x) < c} = ∪k,n∈N
(
∩∞j=k{x ∈ X | fj(x) < c − 1/n}

)
is measurable. Therefore, f is measurable.
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The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.
Let (X ,M) be a measurable space and f a measurable function on X that
is bounded on X . Then for each ε > 0, there are simple functions φε and
ψε on X such that φε ≤ f ≤ ψε and 0 ≤ ψε − φε < ε on X .

Proof. Since f is bounded, there is [c , d) such that [c , d) ⊃ f (X ). Let
c = y0 < y1 < · · · < yn = d be a partition of [c , d ] such that
yk − yk−1 < ε for q ≤ k ≤ n.

Define Ik = [yk=1, yk) and Xk = f −1(Ik) for
1 ≤ k ≤ n. Since f is a measurable function, then each Xk is measurable.
Define simple ϕε and ψε as

ϕε =
n∑

k=1

yk−1χXk
and ψε =

n∑
k=1

ykχXk
.

Let x ∈ X . Since f (X ) ⊂ [c , d), there is a unique k for which
f (x) ∈ Ik = [yk−1, yk). So ϕε(x) = yk−1 ≤ f (x) < yk = ψε(x), and
yk − yk−1 = ψε − ϕε < ε.
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The Simple Approximation Theorem

The Simple Approximation Theorem

The Simple Approximation Theorem.
Let (X ,M, µ) be a measure space and f a measurable function on X .
Then there is a sequence {ψn} of simple functions on X that converges
pointwise on X to f and |ψn| ≤ |f | on X for all n ∈ N.

(i) If X is σ-finite, then we may choose the sequence {ψn} so
that each ψε vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {ψn} to be
increasing and each ψn ≥ 0 on X .

Proof. Fix n ∈ N and define En = {x ∈ X | |f (x)| ≤ n}. Since |f | is a
measurable function, then En is a measurable set. The restriction of f to
En is measurable and bounded by −n and n.

Applying the Simple
Approximation Lemma to the restriction of f to En with ε = 1/n, there
are simple functions hn and gn on En for which hn ≤ f ≤ gn and
0 ≤ gn − hn < 1/n on En.
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 1)

Proof (continued). For x ∈ En define

ψn(x) =


0 if f (x) = 0

max{hn(x), 0} if f (x) > 0
min{gn(x), 0} if f (x) < 0.

Extend ψn to all of X by defining ψn(x) = n if f (x) > n and ψn(x) = −n
if f (x) < −n. By construction, |ψn| ≤ |f | for all n. If f (x) is finite, then
there is N ∈ N such that |f (x)| < N. Then for n ≥ N,
0 ≤ f (x)− ψn(x) ≤ gn(x)− hn(x) < 1/n and so limn→∞ ψn(x) = f (x). If
|f (x)| = ∞, then |ϕn(x)| = n (and the sign of ϕn(x) is the same as the
sign of f (x)), and limn→∞ ϕn(x) = f (x). So {ϕn} converges to f
pointwise on X .
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The Simple Approximation Theorem

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.
Let (X ,M, µ) be a measure space and f a measurable function on X .
Then there is a sequence {ψn} of simple functions on X that converges
pointwise on X to f and |ψn| ≤ |f | on X for all n ∈ N.

(i) If X is σ-finite, then we may choose the sequence {ψn} so
that each ψε vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {ψn} to be
increasing and each ψn ≥ 0 on X .

Proof (continued). If X is σ-finite, then X can be written as
X = ∪·∞n=1Xn where {Xn} is an ascending collection of measurable sets,
each of finite measure. Replace each ψn by ψnχXn and then each ψn

vanishes outside a set of finite measure, and the pointwise convergence
still holds. So (i) holds.

If f is nonnegative, replace psin by max1≤i≤n{ψi}, which is measurable by
Corollary 18.7 and is simple. Also, {ψn} is an increasing sequence of
nonnegative functions, so (ii) holds.
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