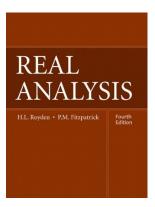
Real Analysis

Chapter 18. Integration Over General Measure Spaces 18.1. Measurable Functions—Proofs of Theorems



Real Analysis

- Proposition 18.3
 - 2 Theorem 18.5
- 3 Theorem 18.6
- 4 The Simple Approximation Lemma
- 5 The Simple Approximation Theorem

Proposition 18.3. Let (X, \mathcal{M}, μ) be a complete measure space and X_0 a measurable subset of X for which $\mu(X \setminus X_0) = 0$. Then an extended real-valued function f on X is measurable if and only if its restriction to X_0 is measurable. In particular, if g and h are extended real-valued functions on X for which g = h a.e. on X, then g is measurable if and only if h is measurable.

Proof. Define f_0 to be the restriction of f to X_0 . Let $c \in \mathbb{R}$ and $E = (c, \infty)$. If f is measurable, then $f^{-1}(E)$ is measurable and therefore so is $f^{-1}(E) \cap X_0 = f_0^{-1}(E)$. So f_0 is measurable.

Proposition 18.3. Let (X, \mathcal{M}, μ) be a complete measure space and X_0 a measurable subset of X for which $\mu(X \setminus X_0) = 0$. Then an extended real-valued function f on X is measurable if and only if its restriction to X_0 is measurable. In particular, if g and h are extended real-valued functions on X for which g = h a.e. on X, then g is measurable if and only if h is measurable.

Proof. Define f_0 to be the restriction of f to X_0 . Let $c \in \mathbb{R}$ and $E = (c, \infty)$. If f is measurable, then $f^{-1}(E)$ is measurable and therefore so is $f^{-1}(E) \cap X_0 = f_0^{-1}(E)$. So f_0 is measurable.

Now assume f_0 is measurable. Then $f^{-1}(E) = f_0^{-1}(E) \cup A$ where A is a subset of $X \setminus X_0$. Since (X, \mathcal{M}, μ) is complete, A is measurable and therefore $f^{-1}(E) = f_0^{-1}(E) \cup A$ is measurable. So f is measurable.

Proposition 18.3. Let (X, \mathcal{M}, μ) be a complete measure space and X_0 a measurable subset of X for which $\mu(X \setminus X_0) = 0$. Then an extended real-valued function f on X is measurable if and only if its restriction to X_0 is measurable. In particular, if g and h are extended real-valued functions on X for which g = h a.e. on X, then g is measurable if and only if h is measurable.

Proof. Define f_0 to be the restriction of f to X_0 . Let $c \in \mathbb{R}$ and $E = (c, \infty)$. If f is measurable, then $f^{-1}(E)$ is measurable and therefore so is $f^{-1}(E) \cap X_0 = f_0^{-1}(E)$. So f_0 is measurable.

Now assume f_0 is measurable. Then $f^{-1}(E) = f_0^{-1}(E) \cup A$ where A is a subset of $X \setminus X_0$. Since (X, \mathcal{M}, μ) is complete, A is measurable and therefore $f^{-1}(E) = f_0^{-1}(E) \cup A$ is measurable. So f is measurable.

For g = h a.e. on X, we let $X_0 \{x \in X \mid g(x) \neq h(x)\}$ and we have that g is measurable if and only if h is measurable, as above.

Proposition 18.3. Let (X, \mathcal{M}, μ) be a complete measure space and X_0 a measurable subset of X for which $\mu(X \setminus X_0) = 0$. Then an extended real-valued function f on X is measurable if and only if its restriction to X_0 is measurable. In particular, if g and h are extended real-valued functions on X for which g = h a.e. on X, then g is measurable if and only if h is measurable.

Proof. Define f_0 to be the restriction of f to X_0 . Let $c \in \mathbb{R}$ and $E = (c, \infty)$. If f is measurable, then $f^{-1}(E)$ is measurable and therefore so is $f^{-1}(E) \cap X_0 = f_0^{-1}(E)$. So f_0 is measurable.

Now assume f_0 is measurable. Then $f^{-1}(E) = f_0^{-1}(E) \cup A$ where A is a subset of $X \setminus X_0$. Since (X, \mathcal{M}, μ) is complete, A is measurable and therefore $f^{-1}(E) = f_0^{-1}(E) \cup A$ is measurable. So f is measurable.

For g = h a.e. on X, we let $X_0 \{x \in X \mid g(x) \neq h(x)\}$ and we have that g is measurable if and only if h is measurable, as above.

Proposition 18.5. Let (X, \mathcal{M}) be a measurable space, f a measurable real-valued function on X, and $\varphi : \mathbb{R} \to \mathbb{R}$ continuous. Then the composition $\varphi \circ f : X \to \mathbb{R}$ also is measurable.

Proof. Let \mathcal{O} be an open set of real numbers. Since $\varphi : \mathbb{R} \to \mathbb{R}$ is continuous, $\varphi^{-1}(\mathcal{O})$ is open. By Proposition 18.2, $f^{-1}(\varphi^{-1}(\mathcal{O})) = (\varphi \circ f)^{-1}(\mathcal{O})$ is a measurable set since f is measurable, and so $\varphi \circ f$ is a measurable function.

Proposition 18.5. Let (X, \mathcal{M}) be a measurable space, f a measurable real-valued function on X, and $\varphi : \mathbb{R} \to \mathbb{R}$ continuous. Then the composition $\varphi \circ f : X \to \mathbb{R}$ also is measurable.

Proof. Let \mathcal{O} be an open set of real numbers. Since $\varphi : \mathbb{R} \to \mathbb{R}$ is continuous, $\varphi^{-1}(\mathcal{O})$ is open. By Proposition 18.2, $f^{-1}(\varphi^{-1}(\mathcal{O})) = (\varphi \circ f)^{-1}(\mathcal{O})$ is a measurable set since f is measurable, and so $\varphi \circ f$ is a measurable function.

Real Analysis

Theorem 18.6. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X for which $\{f_n\} \rightarrow f$ pointwise a.e. on X. If <u>either</u> the measure space (X, \mathcal{M}, μ) is complete <u>or</u> the convergence is pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from X, without loss of generality we can assume that $\{f_n\}$ converges pointwise on all of X (completeness is needed here). Let $c \in \mathbb{R}$ be finite.

Theorem 18.6. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X for which $\{f_n\} \to f$ pointwise a.e. on X. If <u>either</u> the measure space (X, \mathcal{M}, μ) is complete <u>or</u> the convergence is pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from X, without loss of generality we can assume that $\{f_n\}$ converges pointwise on all of X (completeness is needed here). Let $c \in \mathbb{R}$ be finite. For $x \in X$, we have $\lim_{n\to\infty} f_n(x) = f(x)$, so f(x) < c if and only if there are $n, k \in \mathbb{N}$ such that for all $j \ge k$, $f_j(x) < c - 1/n$. But for any natural numbers n and j, the set $\{x \in X \mid f_j(x) < c - 1/n\}$ is measurable since function f_j is measurable.

Theorem 18.6. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X for which $\{f_n\} \to f$ pointwise a.e. on X. If <u>either</u> the measure space (X, \mathcal{M}, μ) is complete <u>or</u> the convergence is pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from X, without loss of generality we can assume that $\{f_n\}$ converges pointwise on all of X (completeness is needed here). Let $c \in \mathbb{R}$ be finite. For $x \in X$, we have $\lim_{n\to\infty} f_n(x) = f(x)$, so f(x) < c if and only if there are $n, k \in \mathbb{N}$ such that for all $j \ge k$, $f_j(x) < c - 1/n$. But for any natural numbers n and j, the set $\{x \in X \mid f_j(x) < c - 1/n\}$ is measurable since function f_j is measurable. Since \mathcal{M} is a σ -algebra, then $\bigcap_{i=k}^{\infty} \{x \in X \mid f_j(x) < c - 1/n\} \in \mathcal{M}$. So

 $\{x \in X \mid f(x) < c\} = \bigcup_{k,n \in \mathbb{N}} \left(\bigcap_{j=k}^{\infty} \{x \in X \mid f_j(x) < c - 1/n\} \right)$

is measurable. Therefore, f is measurable.

(

Theorem 18.6. Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ a sequence of measurable functions on X for which $\{f_n\} \to f$ pointwise a.e. on X. If <u>either</u> the measure space (X, \mathcal{M}, μ) is complete <u>or</u> the convergence is pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from X, without loss of generality we can assume that $\{f_n\}$ converges pointwise on all of X (completeness is needed here). Let $c \in \mathbb{R}$ be finite. For $x \in X$, we have $\lim_{n\to\infty} f_n(x) = f(x)$, so f(x) < c if and only if there are $n, k \in \mathbb{N}$ such that for all $j \ge k$, $f_j(x) < c - 1/n$. But for any natural numbers n and j, the set $\{x \in X \mid f_j(x) < c - 1/n\}$ is measurable since function f_j is measurable. Since \mathcal{M} is a σ -algebra, then $\bigcap_{j=k}^{\infty} \{x \in X \mid f_j(x) < c - 1/n\} \in \mathcal{M}$. So

$$\{x \in X \mid f(x) < c\} = \cup_{k,n \in \mathbb{N}} \left(\cap_{j=k}^{\infty} \{x \in X \mid f_j(x) < c - 1/n\} \right)$$

is measurable. Therefore, f is measurable.

The Simple Approximation Lemma.

Let (X, \mathcal{M}) be a measurable space and f a measurable function on X that is bounded on X. Then for each $\epsilon > 0$, there are simple functions ϕ_{ϵ} and ψ_{ϵ} on X such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \phi_{\epsilon} < \epsilon$ on X.

Proof. Since f is bounded, there is [c, d) such that $[c, d) \supset f(X)$. Let $c = y_0 < y_1 < \cdots < y_n = d$ be a partition of [c, d] such that $y_k - y_{k-1} < \varepsilon$ for $q \le k \le n$.

The Simple Approximation Lemma.

Let (X, \mathcal{M}) be a measurable space and f a measurable function on X that is bounded on X. Then for each $\epsilon > 0$, there are simple functions ϕ_{ϵ} and ψ_{ϵ} on X such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \phi_{\epsilon} < \epsilon$ on X.

Proof. Since *f* is bounded, there is [c, d) such that $[c, d) \supset f(X)$. Let $c = y_0 < y_1 < \cdots < y_n = d$ be a partition of [c, d] such that $y_k - y_{k-1} < \varepsilon$ for $q \le k \le n$. Define $l_k = [y_{k=1}, y_k)$ and $X_k = f^{-1}(l_k)$ for $1 \le k \le n$. Since *f* is a measurable function, then each X_k is measurable. Define simple φ_{ε} and ψ_{ε} as

$$\varphi_{\varepsilon} = \sum_{k=1}^{n} y_{k-1} \chi_{X_k} \text{ and } \psi_{\varepsilon} = \sum_{k=1}^{n} y_k \chi_{X_k}.$$

The Simple Approximation Lemma.

Let (X, \mathcal{M}) be a measurable space and f a measurable function on X that is bounded on X. Then for each $\epsilon > 0$, there are simple functions ϕ_{ϵ} and ψ_{ϵ} on X such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \phi_{\epsilon} < \epsilon$ on X.

Proof. Since f is bounded, there is [c, d) such that $[c, d) \supset f(X)$. Let $c = y_0 < y_1 < \cdots < y_n = d$ be a partition of [c, d] such that $y_k - y_{k-1} < \varepsilon$ for $q \le k \le n$. Define $I_k = [y_{k=1}, y_k)$ and $X_k = f^{-1}(I_k)$ for $1 \le k \le n$. Since f is a measurable function, then each X_k is measurable. Define simple φ_{ε} and ψ_{ε} as

$$\varphi_{\varepsilon} = \sum_{k=1}^{n} y_{k-1} \chi_{X_k} \text{ and } \psi_{\varepsilon} = \sum_{k=1}^{n} y_k \chi_{X_k}.$$

Let $x \in X$. Since $f(X) \subset [c, d)$, there is a unique k for which $f(x) \in I_k = [y_{k-1}, y_k)$. So $\varphi_{\varepsilon}(x) = y_{k-1} \leq f(x) < y_k = \psi_{\varepsilon}(x)$, and $y_k - y_{k-1} = \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$.

The Simple Approximation Lemma.

Let (X, \mathcal{M}) be a measurable space and f a measurable function on X that is bounded on X. Then for each $\epsilon > 0$, there are simple functions ϕ_{ϵ} and ψ_{ϵ} on X such that $\phi_{\epsilon} \leq f \leq \psi_{\epsilon}$ and $0 \leq \psi_{\epsilon} - \phi_{\epsilon} < \epsilon$ on X.

Proof. Since f is bounded, there is [c, d) such that $[c, d) \supset f(X)$. Let $c = y_0 < y_1 < \cdots < y_n = d$ be a partition of [c, d] such that $y_k - y_{k-1} < \varepsilon$ for $q \le k \le n$. Define $I_k = [y_{k=1}, y_k)$ and $X_k = f^{-1}(I_k)$ for $1 \le k \le n$. Since f is a measurable function, then each X_k is measurable. Define simple φ_{ε} and ψ_{ε} as

$$\varphi_{\varepsilon} = \sum_{k=1}^{n} y_{k-1} \chi_{X_k} \text{ and } \psi_{\varepsilon} = \sum_{k=1}^{n} y_k \chi_{X_k}.$$

Let $x \in X$. Since $f(X) \subset [c, d)$, there is a unique k for which $f(x) \in I_k = [y_{k-1}, y_k)$. So $\varphi_{\varepsilon}(x) = y_{k-1} \leq f(x) < y_k = \psi_{\varepsilon}(x)$, and $y_k - y_{k-1} = \psi_{\varepsilon} - \varphi_{\varepsilon} < \varepsilon$.

The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$.

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \ge 0$ on X.

Proof. Fix $n \in \mathbb{N}$ and define $E_n = \{x \in X \mid |f(x)| \le n\}$. Since |f| is a measurable function, then E_n is a measurable set. The restriction of f to E_n is measurable and bounded by -n and n.

The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$.

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \ge 0$ on X.

Proof. Fix $n \in \mathbb{N}$ and define $E_n = \{x \in X \mid |f(x)| \le n\}$. Since |f| is a measurable function, then E_n is a measurable set. The restriction of f to E_n is measurable and bounded by -n and n. Applying the Simple Approximation Lemma to the restriction of f to E_n with $\varepsilon = 1/n$, there are simple functions h_n and g_n on E_n for which $h_n \le f \le g_n$ and $0 \le g_n - h_n < 1/n$ on E_n .

The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$.

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_ϵ vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \ge 0$ on X.

Proof. Fix $n \in \mathbb{N}$ and define $E_n = \{x \in X \mid |f(x)| \le n\}$. Since |f| is a measurable function, then E_n is a measurable set. The restriction of f to E_n is measurable and bounded by -n and n. Applying the Simple Approximation Lemma to the restriction of f to E_n with $\varepsilon = 1/n$, there are simple functions h_n and g_n on E_n for which $h_n \le f \le g_n$ and $0 \le g_n - h_n < 1/n$ on E_n .

Real Analysis

The Simple Approximation Theorem (continued 1)

Proof (continued). For $x \in E_n$ define

$$\psi_n(x) = \begin{cases} 0 & \text{if } f(x) = 0\\ \max\{h_n(x), 0\} & \text{if } f(x) > 0\\ \min\{g_n(x), 0\} & \text{if } f(x) < 0. \end{cases}$$

Extend ψ_n to all of X by defining $\psi_n(x) = n$ if f(x) > n and $\psi_n(x) = -n$ if f(x) < -n. By construction, $|\psi_n| \le |f|$ for all n. If f(x) is finite, then there is $N \in \mathbb{N}$ such that |f(x)| < N. Then for $n \ge N$, $0 \le f(x) - \psi_n(x) \le g_n(x) - h_n(x) < 1/n$ and so $\lim_{n\to\infty} \psi_n(x) = f(x)$. If $|f(x)| = \infty$, then $|\varphi_n(x)| = n$ (and the sign of $\varphi_n(x)$ is the same as the sign of f(x)), and $\lim_{n\to\infty} \varphi_n(x) = f(x)$. So $\{\varphi_n\}$ converges to fpointwise on X.

The Simple Approximation Theorem (continued 1)

Proof (continued). For $x \in E_n$ define

$$\psi_n(x) = \begin{cases} 0 & \text{if } f(x) = 0\\ \max\{h_n(x), 0\} & \text{if } f(x) > 0\\ \min\{g_n(x), 0\} & \text{if } f(x) < 0. \end{cases}$$

Extend ψ_n to all of X by defining $\psi_n(x) = n$ if f(x) > n and $\psi_n(x) = -n$ if f(x) < -n. By construction, $|\psi_n| \le |f|$ for all n. If f(x) is finite, then there is $N \in \mathbb{N}$ such that |f(x)| < N. Then for $n \ge N$, $0 \le f(x) - \psi_n(x) \le g_n(x) - h_n(x) < 1/n$ and so $\lim_{n\to\infty} \psi_n(x) = f(x)$. If $|f(x)| = \infty$, then $|\varphi_n(x)| = n$ (and the sign of $\varphi_n(x)$ is the same as the sign of f(x)), and $\lim_{n\to\infty} \varphi_n(x) = f(x)$. So $\{\varphi_n\}$ converges to fpointwise on X.

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.

Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$.

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence {ψ_n} to be increasing and each ψ_n ≥ 0 on X.

Proof (continued). If X is σ -finite, then X can be written as $X = \bigcup_{n=1}^{\infty} X_n$ where $\{X_n\}$ is an ascending collection of measurable sets, each of finite measure. Replace each ψ_n by $\psi_n \chi_{X_n}$ and then each ψ_n vanishes outside a set of finite measure, and the pointwise convergence still holds. So (i) holds.

If f is nonnegative, replace psi_n by $\max_{1 \le i \le n} \{\psi_i\}$, which is measurable by Corollary 18.7 and is simple. Also, $\{\psi_n\}$ is an increasing sequence of nonnegative functions, so (ii) holds.

The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.

Let (X, \mathcal{M}, μ) be a measure space and f a measurable function on X. Then there is a sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and $|\psi_n| \leq |f|$ on X for all $n \in \mathbb{N}$.

- (i) If X is σ -finite, then we may choose the sequence $\{\psi_n\}$ so that each ψ_{ϵ} vanishes outside a set of finite measure.
- (ii) If f is nonnegative, we may choose the sequence $\{\psi_n\}$ to be increasing and each $\psi_n \ge 0$ on X.

Proof (continued). If X is σ -finite, then X can be written as $X = \bigcup_{n=1}^{\infty} X_n$ where $\{X_n\}$ is an ascending collection of measurable sets, each of finite measure. Replace each ψ_n by $\psi_n \chi_{X_n}$ and then each ψ_n vanishes outside a set of finite measure, and the pointwise convergence still holds. So (i) holds.

If f is nonnegative, replace psi_n by $\max_{1 \le i \le n} \{\psi_i\}$, which is measurable by Corollary 18.7 and is simple. Also, $\{\psi_n\}$ is an increasing sequence of nonnegative functions, so (ii) holds.