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Proposition 18.3

Proposition 18.3. Let (X, M, 1) be a complete measure space and Xj a
measurable subset of X for which u(X \ Xp) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
Xp is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and
only if h is measurable.
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Proposition 18.3

Proposition 18.3. Let (X, M, 1) be a complete measure space and Xj a
measurable subset of X for which u(X \ Xp) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
Xp is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and
only if h is measurable.

Proof. Define fy to be the restriction of f to Xy. Let ¢ € R and
E = (c,00). If f is measurable, then f~1(E) is measurable and therefore
sois fY(E)N Xg = f; *(E). So fy is measurable.
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Proposition 18.3. Let (X, M, 1) be a complete measure space and Xj a
measurable subset of X for which u(X \ Xp) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
Xp is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and
only if h is measurable.

Proof. Define fy to be the restriction of f to Xy. Let ¢ € R and

E = (c,00). If f is measurable, then f~1(E) is measurable and therefore
sois fY(E)N Xg = f; *(E). So fy is measurable.

Now assume fy is measurable. Then f~*(E) = f;1(E) U A where A is a
subset of X \ Xp. Since (X, M, u) is complete, A is measurable and
therefore f~1(E) = f; *(E) U A is measurable. So f is measurable.
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Proposition 18.3

Proposition 18.3. Let (X, M, 1) be a complete measure space and Xj a
measurable subset of X for which u(X \ Xp) = 0. Then an extended
real-valued function f on X is measurable if and only if its restriction to
Xp is measurable. In particular, if g and h are extended real-valued
functions on X for which g = h a.e. on X, then g is measurable if and
only if h is measurable.

Proof. Define fy to be the restriction of f to Xy. Let ¢ € R and

E = (c,00). If f is measurable, then f~1(E) is measurable and therefore
sois fY(E)N Xg = f; *(E). So fy is measurable.

Now assume fy is measurable. Then f~*(E) = f;1(E) U A where A is a
subset of X \ Xp. Since (X, M, u) is complete, A is measurable and
therefore f~1(E) = f; *(E) U A is measurable. So f is measurable.

For g = h a.e. on X, we let Xo{x € X | g(x) # h(x)} and we have that g
is measurable if and only if h is measurable, as above. O
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Theorem 18.5

Proposition 18.5. Let (X, M) be a measurable space, f a measurable
real-valued function on X, and ¢ : R — R continuous. Then the
composition @ o f : X — R also is measurable.
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Theorem 18.5

Proposition 18.5. Let (X, M) be a measurable space, f a measurable
real-valued function on X, and ¢ : R — R continuous. Then the
composition @ o f : X — R also is measurable.

Proof. Let O be an open set of real numbers. Since ¢ : R — R is
continuous, ¢~ 1(0O) is open. By Proposition 18.2,

e 1(O)) = (¢ o f)~(O) is a measurable set since f is measurable,
and so ¢ o f is a measurable function. O
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Theorem 18.6

Theorem 18.6. Let (X, M, 1) be a measure space and {f,} a sequence
of measurable functions on X for which {f,} — f pointwise a.e. on X. If
either the measure space (X, M, 1) is complete or the convergence is
pointwise on all of X, then f is measurable.
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Theorem 18.6

Theorem 18.6. Let (X, M, 1) be a measure space and {f,} a sequence
of measurable functions on X for which {f,} — f pointwise a.e. on X. If
either the measure space (X, M, 1) is complete or the convergence is
pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from
X, without loss of generality we can assume that {f,} converges pointwise
on all of X (completeness is needed here). Let ¢ € R be finite.
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Theorem 18.6. Let (X, M, 1) be a measure space and {f,} a sequence
of measurable functions on X for which {f,} — f pointwise a.e. on X. If
either the measure space (X, M, 1) is complete or the convergence is
pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from
X, without loss of generality we can assume that {f,} converges pointwise
on all of X (completeness is needed here). Let ¢ € R be finite. For x € X,
we have lim,_. f,(x) = f(x), so f(x) < c if and only if there are n, k € N
such that for all j > k, fj(x) < ¢ —1/n. But for any natural numbers n
and j, the set {x € X | fi(x) < ¢ — 1/n} is measurable since function f; is
measurable.
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Theorem 18.6

Theorem 18.6. Let (X, M, 1) be a measure space and {f,} a sequence
of measurable functions on X for which {f,} — f pointwise a.e. on X. If
either the measure space (X, M, 1) is complete or the convergence is
pointwise on all of X, then f is measurable.

Proof. By Proposition 18.3, possibly be excising a set of measure 0 from
X, without loss of generality we can assume that {f,} converges pointwise
on all of X (completeness is needed here). Let ¢ € R be finite. For x € X,
we have lim,_. f,(x) = f(x), so f(x) < c if and only if there are n, k € N
such that for all j > k, fj(x) < ¢ —1/n. But for any natural numbers n
and j, the set {x € X | fi(x) < ¢ — 1/n} is measurable since function f; is
measurable. Since M is a o-algebra, then

NZe{x € X[ fi(x) <c—1/n} € M. So

{x € X | F(x) < €} = Ugnen (NZ4{x € X | i(x) < ¢ — 1/n})

is measurable. Therefore, f is measurable. O
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The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.

Let (X, M) be a measurable space and f a measurable function on X that
is bounded on X. Then for each € > 0, there are simple functions ¢, and
e on X such that ¢, < f <1 and 0 < ¢ — P < € on X.

Real Analysis December 14, 2016 6/9



The Simple Approximation Lemma

The Simple Approximation Lemma.

Let (X, M) be a measurable space and f a measurable function on X that
is bounded on X. Then for each € > 0, there are simple functions ¢, and
e on X such that ¢, < f <1 and 0 < ¢ — P < € on X.

Proof. Since f is bounded, there is [c, d) such that [c,d) D f(X). Let
c=yo<y1<---<yp=d be a partition of [c, d] such that
Yk —Yk—1 <eforg<k<n.

Real Analysis December 14, 2016 6/ 9



The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.

Let (X, M) be a measurable space and f a measurable function on X that
is bounded on X. Then for each € > 0, there are simple functions ¢, and
e on X such that ¢, < f <1 and 0 < ¢ — P < € on X.

Proof. Since f is bounded, there is [c, d) such that [c,d) D f(X). Let
c=yp<y1 <--<y,=d be a partition of [c, d] such that

Yk — k1 < € for ¢ < k < n. Define Iy = [yk=1,yx) and X = F=1(ly) for
1 < k < n. Since f is a measurable function, then each X, is measurable.
Define simple ¢, and v, as

n n
e = ZYkAXXk and 9. = ZYkXxk-
k=1 k=1
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The Simple Approximation Lemma

The Simple Approximation Lemma

The Simple Approximation Lemma.

Let (X, M) be a measurable space and f a measurable function on X that
is bounded on X. Then for each € > 0, there are simple functions ¢, and
e on X such that ¢, < f <1 and 0 < ¢ — P < € on X.

Proof. Since f is bounded, there is [c, d) such that [c,d) D f(X). Let
c=yp<y1 <--<y,=d be a partition of [c, d] such that

Yk — k1 < € for ¢ < k < n. Define Iy = [yk=1,yx) and X = F=1(ly) for
1 < k < n. Since f is a measurable function, then each X, is measurable.
Define simple ¢, and v, as

n n
Pe =D Yie1xx, and . = D yixx,-
k=1 k=1
Let x € X. Since f(X) C [c, d), there is a unique k for which
f(x) € Ik = [Yk—1,Yk)- S0 pe(x) = yk—1 < f(x) < yx = 9e(x), and
Yk — Yk—1 = e — pe < €. L]
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The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1, } of simple functions on X that converges
pointwise on X to f and [¢,| < |f| on X for all n € N.

(i) If X is o-finite, then we may choose the sequence {¢,} so
that each ), vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {1} to be
increasing and each v, > 0 on X.
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The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1, } of simple functions on X that converges
pointwise on X to f and [¢,| < |f| on X for all n € N.

(i) If X is o-finite, then we may choose the sequence {¢,} so
that each ), vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {1} to be
increasing and each v, > 0 on X.

Proof. Fix n € N and define E, = {x € X | |f(x)| < n}. Since |f| is a
measurable function, then E, is a measurable set. The restriction of f to
E, is measurable and bounded by —n and n.

Real Analysis December 14, 2016 7 /9



The Simple Approximation Theorem

The Simple Approximation Theorem.

Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1, } of simple functions on X that converges
pointwise on X to f and [¢,| < |f| on X for all n € N.

(i) If X is o-finite, then we may choose the sequence {¢,} so
that each ), vanishes outside a set of finite measure.

(ii) If f is nonnegative, we may choose the sequence {1} to be
increasing and each v, > 0 on X.

Proof. Fix n € N and define E, = {x € X | |f(x)| < n}. Since |f| is a
measurable function, then E, is a measurable set. The restriction of f to
E, is measurable and bounded by —n and n. Applying the Simple
Approximation Lemma to the restriction of f to E, with e = 1/n, there
are simple functions h, and g, on E, for which h, < f < g, and
0<g,—h,<1/non E,.
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The Simple Approximation Theorem (continued 1)

Proof (continued). For x € E, define

0 if f(x) =0
Yn(x) = ¢ max{hn(x),0} if f(x)>0
min{gn(x),0} if f(x) <O.
Extend 1, to all of X by defining 1,(x) = n if f(x) > n and ¢,(x) = —n
if f(x) < —n. By construction, || < |f| for all n.
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The Simple Approximation Theorem (continued 1)

Proof (continued). For x € E, define

0 if f(x) =0
Yn(x) = ¢ max{hn(x),0} if f(x)>0
min{gn(x),0} if f(x) <O.

Extend 1, to all of X by defining 1,(x) = n if f(x) > n and ¢,(x) = —n
if f(x) < —n. By construction, |1, < |f| for all n. If f(x) is finite, then
there is N € N such that |f(x)| < N. Then for n > N,

0 < f(x) — ¥n(x) < gn(x) — hn(x) < 1/n and so limp_o P¥n(x) = f(x). If
|f(x)| = oo, then |pn(x)| = n (and the sign of ¢,(x) is the same as the
sign of f(x)), and lim,—.oc @n(x) = f(x). So {@n} converges to f
pointwise on X.
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The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.
Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1, } of simple functions on X that converges
pointwise on X to f and [¢,| < |f| on X for all n € N.
(i) If X is o-finite, then we may choose the sequence {1, } so
that each ). vanishes outside a set of finite measure.
(ii) If f is nonnegative, we may choose the sequence {1} to be
increasing and each v, > 0 on X.
Proof (continued). If X is o-finite, then X can be written as
X =%, X, where {X,} is an ascending collection of measurable sets,
each of finite measure. Replace each v, by ¥,xx, and then each v,
vanishes outside a set of finite measure, and the pointwise convergence
still holds. So (i) holds.

Real Analysis December 14, 2016 9/ 9



The Simple Approximation Theorem (continued 2)

The Simple Approximation Theorem.
Let (X, M, 1) be a measure space and f a measurable function on X.
Then there is a sequence {1, } of simple functions on X that converges
pointwise on X to f and [¢,| < |f| on X for all n € N.
(i) If X is o-finite, then we may choose the sequence {1, } so
that each ). vanishes outside a set of finite measure.
(ii) If f is nonnegative, we may choose the sequence {1} to be
increasing and each v, > 0 on X.

Proof (continued). If X is o-finite, then X can be written as

X =%, X, where {X,} is an ascending collection of measurable sets,
each of finite measure. Replace each v, by ¥,xx, and then each v,
vanishes outside a set of finite measure, and the pointwise convergence
still holds. So (i) holds.

If f is nonnegative, replace psi, by maxi<j<p{ti}, which is measurable by
Corollary 18.7 and is simple. Also, {t¢,} is an increasing sequence of
nonnegative functions, so (ii) holds. O
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