Chapter 18. Integration Over General Measure Spaces

18.2. Integration of Nonnegative Measurable Functions—Proofs of I heorems

Proposition 18.8

nonnegative simple functions on X. If α and β are positive real numbers, **Proposition 18.8.** Let (X, \mathcal{M}, μ) be a measure space and let φ and ψ be

$$\int_{X} (\alpha \psi + \beta \varphi) \, d\mu = \alpha \int_{X} \psi \, d\mu + \beta \int_{X} \varphi \, d\mu. \tag{2}$$

If A and B are disjoint measurable subsets of X, then

$$\int_{A \cup B} \psi \, d\mu = \int_{A} \psi \, d\mu + \int_{B} \psi \, d\mu. \tag{3}$$

In particular, if $X_0\subset X$ is measurable and $\mu(X\setminus X_0)=0$, then

$$\int_{X} \psi \, d\mu = \int_{X_0} \psi \, d\mu. \tag{4}$$

Furthermore, if $\psi \leq \varphi$ a.e. on X, then

$$\int_{X} \psi \, d\mu \le \int_{X} \varphi \, d\mu. \tag{5}$$

Proposition 18.8 (continued 2)

Proposition 18.8 (continued 1)

Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72). $\alpha\psi + \beta\varphi$. The proof of linearity, (2), now follows exactly as it did in both ψ and φ vanish outside a set of finite measure, and hence so does **Proof.** If either ψ or φ is positive on a set of infinite measure, then the linear combination $\alpha\psi + \beta\varphi$ is also positive on a set of infinite measure (and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose

over domains, (3), then follows from (2). For disjoint A and B, we have $\psi\chi_{A\cup B}=\psi\chi_A+\psi\chi_B$ on X, and additivity

simple function over a set of measure zero is zero by definition Next, (4) follows from (3) since the integral of a since the integral of a

> definition of integral, disjoint and measurable and $\psi = \sum_{k=1}^{n} a_k \chi_{X_k}$ and $\phi = \sum_{k=1}^{n} b_k \chi_{X_k}$ where $0 \le a_k \le b_k$ for $1 \le k \le n$. Then by linearity, (2), and the finite number of values, then we can write $X = \cup_{k=1}^n X_k$ where the X_k are that $\psi \leq \varphi$ on all of X. Since φ and ψ are simple and so only take on a **Proof.** For monotonicity of the integral, (5), we may assume from (4)

$$\int_X \psi \, d\mu = \sum_{k=1}^n a_k \mu)(X_k) \leq \sum_{k=1}^n b_k \mu(X_k) = \int_X \varphi \, d\mu,$$

and so (5) follows.

Real Analysis

December 18, 2016 4 / 17

December 18, 2016 5 / 17

Proposition 18.9

Chebyshev's Inequality

Chebyshev's Inequality.

on X, and $\lambda > 0$ a real number. Then Let (X, \mathcal{M}, μ) be a measure space, f a nonnegative measurable function

$$\mu\{x \in X \mid f(x) > \lambda\} \le \frac{1}{\lambda} \int_X f d\mu.$$

simple and $0 \le \varphi \le f$ on X. So by definition (and by Lemma) $\lambda \mu(X_{\lambda}) = \int_{X} \varphi \, d\mu \le \int_{X} f \, d\mu$. The result now follows. **Proof.** Define $X_{\lambda} = \{x \in X \mid f(x) \geq \lambda\}$ and $\varphi = \lambda \chi_{X_{X_{\lambda}}}$. Then φ is

> X and $\{x \in X \mid f(x) > 0\}$ is σ -finite. measurable function on X for which $\int_X f d\mu < \infty$. Then f is finite a.e. on **Proposition 18.9.** Let (X, \mathcal{M}) be a measure space and f nonnegative

 $\mu(X_n) \leq \frac{1}{n} \int_X f \, d\mu < \infty$ for $n \in \mathbb{N}$, and so $\mu(X_\infty) \leq \mu(X_n) \leq \frac{1}{n} \int_X f \, d\mu$ for all $n \in \mathbb{N}$. Since $\int_X f \, d\mu$ is finite, $\mu(X_\infty) = 0$. (This is the same as the proof of Chebyshev's Inequality from Chapter 4; see page 84.) 17.1) $\mu(X_{\infty}) \leq \mu(X_n)$ for all $n \in \mathbb{N}$. By Chebyshev's Inequality with $\lambda = n$, **Proof.** Define $X_{\infty} = \{x \in X \mid f(x) = \infty\}$ and $X_n = \{x \in X \mid f(x) \ge n\}$. Then $X_\infty\subset X_n$ for all $n\in\mathbb{N}$ and by monotonicity of measure (Proposition

countable union of finite measurable sets. That is, it is σ -finite measure. So $\{x \in X \mid f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$, and $\{x \in X \mid f(x) > 0\}$ is a with $\lambda=1/n$, $\mu(X_n)\leq n\int_X f\,d\mu<\infty$, and each $\mu(X_n)$ is of finite Now define $X_n = \{x \in X \mid f(x) \ge 1/n\}$. Then by Chebyshev's Inequality

Fatou's Lemma

Fatou's Lemma.

measurable functions on X where $\{f_n\} \to f$ a.e. on X. Assume f is measurable. Then Let (X,\mathcal{M},μ) be a measure space and $\{f_n\}$ be a sequence of nonnegative

$$\int_X f\, d\mu \leq \liminf \int_X f_n\, d\mu.$$

Proof. Let X_0 be a measurable subset of X for which $\mu(X \setminus X_0) = 0$ and loss of generality, $\{f_n\} o f$ pointwise on X. Since $\int_X f \ d\mu$ is defined in Fatou's Lemma remains unchanged if X is replaced by X_0 . So, without terms of simple functions arphi for which $0 \leq arphi \leq f$, if we establish that $\{f_n\}
ightarrow f$ pointwise on X_0 . By (9) of "Lemma," each side of the claim of

$$\int_{\mathbf{X}} \varphi \, d\mu \le \liminf \int_{\mathbf{X}} f_n \, d\mu \tag{12}$$

such φ . So let φ be simple with $0 \le \varphi \le f$ on X. for all such arphi, then Fatou's lemma will follow by taking a supremum over

Fatou's Lemma (continued 1)

assume $\int_X \varphi \, d\mu > 0$. **Proof (continued).** If $\int_X \varphi d\mu = 0$ then the desired inequality holds, so

a>0 for which $\mu(X_{\infty})=\infty$ and $\varphi=a$ on X_{∞} . **Case 1.** Suppose $\int_X \varphi d\mu = \infty$. Then there is a measurable $X_\infty \subset X$ and

(Proposition 17.1), Continuity of Measure (Proposition 17.2) and Monotonicity of Measure For each $n \in \mathbb{N}$, define $A_n = \{x \in X \mid f_k(x) \geq a/2 \text{ for all } k \geq n\}$. Then implies fewer f_k and so more x values). Since $X_\infty\subset \cup_{n=1}^\infty A_n$ then by $\{A_n\}$ is an ascending sequence of measurable sets $(A_n\subset A_{n+1};$ larger n

$$\lim_{n\to\infty}\mu(A_n)=\mu\left(\lim_{n\to\infty}A_n\right)=\mu\left(\bigcup_{n=1}^{\infty}A_n\right)\geq\mu(X_\infty)=\infty.$$

But by Chebyshev's Inequality, for each $n \in \mathbb{N}$,

$$\mu(A_n) \leq rac{2}{a} \int_{A_n} f_n \, d\mu \leq rac{2}{a} \int_X f_n \, d\mu.$$

Real Analysis

Real Analysis

December 18, 2016 9 / 17

December 18, 2016 8 / 17

Fatou's Lemma (continued 3)

 $\mu(X\setminus X_n)<\varepsilon$ for all $n\geq N$. Define M>0 to be the maximum of the (Proposition 17.2) $\lim_{n\to\infty}\mu(X\setminus X_n)=0$. So choose $N\in\mathbb{N}$ such that **Proof (continued).** Since $\mu(X) < \infty$, by the Continuity of Measure

Fatou's Lemma (continued 2)

so the right hand side approaches ∞ and **Proof (continued).** So as $n \to \infty$, the left hand side approaches ∞ and

$$\lim_{n\to\infty}\int_X f_n\,d\mu=\infty=\int_X \varphi\,d\mu.$$

say X_0 . Then $\int_X \varphi d\mu = \int_{X_0} \varphi d\mu$. Also, $\lim\inf \int_{X_0} f_n d\mu \leq \lim\inf \int_X f_n d\mu$. So if we can verify that **Case 2.** Suppose $0 < \int_X \varphi d\mu < \infty$. Now $\varphi = 0$ on some subset of X,

that $\int_X \varphi \, d\mu < \infty$, this implies that $\mu(X) < \infty$. Let $\varepsilon > 0$ and define generality we can assume $\varphi>0$ on all of X . Since we are hypothesizing $\int_{X_0} \varphi \, d\mu \leq \liminf \int_{X_0} \varphi_n \, d\mu$, then (12) will follow. That is, without loss of

$$X_n = \{x \in X \mid f_k(x) > (1 - \varepsilon)\varphi(x) \text{ for all } k \ge n\}.$$

descending sequence of measurable sets whose intersection is \varnothing . to Case 1) whose union equals X (since $\varphi \leq f$). So $\{X \setminus X_n\}$ is a Then $\{X_n\}$ is an ascending sequence of measurable subsets of X (similar

> values taken on by simple φ on X. Then $\int_X f_n d\mu \geq \int_{X_n} f_n d\mu$ by Monotonicity ((8) of "Lemma") $\geq (1-\varepsilon)\int_X \varphi \, d\mu - \int_{X\setminus X_n} \varphi \, d\mu$ $\geq \ (1-arepsilon) \int_{X_n} arphi \, d\mu$ by definition of X_n $(1-arepsilon)\int_{\mathcal{X}}arphi\,d\mu-(1-arepsilon)\int_{X\setminus X_n}arphi\,d\mu$ by Additivity for and the finiteness of the integrals of φ nonnegative simple functions ((3) of Proposition 18.8)

The Monotone Convergence Theorem

Proof (continued).

Fatou's Lemma (continued 4)

 $\int_X f_n \, d\mu \ \ge \ (1-\varepsilon) \int_X \varphi \, d\mu - \varepsilon M$ by (5) of Proposition 18.8 $\int_{X} \varphi \, d\mu - \varepsilon \left(\int_{X} \varphi \, d\mu + M \right).$

So

$$\liminf \int_X f_n \, d\mu \ge \int_X \varphi \, d\mu - \varepsilon \left(\int_X \varphi \, d\mu + M \right)$$

and since arepsilon>0 is arbitrary and $\int_X arphi\, d\mu+M$ is finite, then (12)

The Monotone Convergence Theorem.

 $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in X$. Then pointwise increasing) of nonnegative measurable functions on X. Define Let (X,\mathcal{M},μ) be a measure space and $\{f_n\}$ an increasing sequence (i.e.,

$$\lim_{n\to\infty} \left(\int_X f_n \, d\mu \right) = \int_X \left(\lim_{n\to\infty} f_n \right) \, d\mu = \int_X f \, d\mu.$$

 $\int_X f \le \liminf \int_X f_n \, d\mu$. Since $f_n \le f$ on X, by (18) of "Lemma" we have $\int_X f_n \, d\mu \le \int_X f \, d\mu$ for all $n \in \mathbb{N}$. So **Proof.** By Theorem 18.6, f is measurable. By Fatou's Lemma,

lim sup
$$\int_X f_n \, d\mu \leq \int_X f \, d\mu,$$

and the result follows.

December 18, 2016 13 / 17

Proposition 18.10

Beppo Levi's Lemma

Beppo Levi's Lemma.

measurable function f that is finite a.e. on X and nonnegative measurable functions on X. If the sequence of integrals $\{\int_X f_n \, d\mu \}$ is bounded, then $\{f_n\}$ converges pointwise on X to a Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence of

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty} f_n\right)\,d\mu=\int_X f\,d\mu<\infty.$$

increasing, the pointwise limits exist as extended real numbers). Since $\{f_n\}$ $\lim_{n\to\infty}\int_X f_n\,d\mu=\int_X f\,d\mu$. Since the sequence $\{\int_X f_n\,d\mu\}$ is bounded, then $\lim_{n\to\infty}\int_X f_n\,d\mu$ is bounded; that is, $\int_X f\,d\mu<\infty$. by proposition is increasing, by the Monotone Convergence Theorem **Proof.** Define $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in X$ (since $\{f_n\}$ is 18.9, f is finite a.e. on X.

> sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to nonnegative measurable function on X. Then there is an increasing **Proposition 18.10.** Let (X, \mathcal{M}, μ) be a measure space and f a

$$\lim_{n\to\infty} \left(\int_X \psi_n \, d\mu \right) = \int_X f \, d\mu.$$

increasing sequence $\{\varphi_n\}$ of simple functions which converges pointwise to f on X. By the Monotone Convergence Theorem, **Proof.** By the Simple Approximation Theorem part (ii), there is an

$$\lim_{n\to\infty}\int_X \varphi_n\,d\mu = \int_X \lim_{n\to\infty} \varphi_n\,d\mu = \int_X f\,d\mu.$$

Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable

Let (X,\mathcal{M},μ) be a measure space and f and g nonnegative measurable functions on X. If α and β are positive real numbers, then

$$\int_{X} (\alpha f + \beta g) d\mu = \alpha \int_{X} f d\mu + \beta \int_{X} g d\mu.$$

Proof. By (7) of "Lemma" we have that $\int_X \alpha f \, d\mu = \alpha \int_X f \, d\mu$, so we need only establish the result for $\alpha = \beta = 1$ (i.e., for the "addition of $\{\psi_n\}$ an $\mathsf{d}\varphi_n\}$ of nonnegative simple functions that converge pointwise to functions" part). By Proposition 18.10, there are increasing sequences and f respectively for which

$$\lim_{n\to\infty}\int_X \psi_n\,d\mu = \int_X g\,d\mu \text{ and } \lim_{n\to\infty}\int_X \varphi_n\,d\mu = \int_X f\,d\mu.$$

Proposition 18.11 (continued)

functions that converges pointwise to f+g. Then **Proof (continued).** Then $\{\varphi_n + \psi_n\}$ is an increasing sequence of simple

$$\int_{X} (f+g) = \lim_{n \to \infty} \int_{X} (\varphi_{n} + \psi_{n}) d\mu \text{ by the Monotone}$$

$$= \lim_{n \to \infty} \left(\int_{X} \varphi_{n} d\mu + \int_{X} \varphi_{n} d\mu \right) \text{ by proposition 18.8 (2)}$$

$$= \lim_{n \to \infty} \int_{X} \varphi_{n} d\mu + \lim_{n \to \infty} \int_{X} \psi_{n} d\mu$$

$$= \int_{X} f d\mu + \int_{X} g d\mu.$$