Real Analysis

Chapter 18. Integration Over General Measure Spaces
18.2. Integration of Nonnegative Measurable Functions—Proofs of
Theorems
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Proposition 18.8

Proposition 18.8 (continued 1)

Proof. If either 1) or ¢ is positive on a set of infinite measure, then the
linear combination ) 4+ By is also positive on a set of infinite measure
(and simple), and so both sides of (2) are oo and (2) holds. Next, suppose
both 7 and ¢ vanish outside a set of finite measure, and hence so does
at) + Be. The proof of linearity, (2), now follows exactly as it did in
Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have ¥ xaus = ¥ xa + ¥ xp on X, and additivity
over domains, (3), then follows from (2).

Next, (4) follows from (3) since the integral of a since the integral of a
simple function over a set of measure zero is zero by definition.
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Proposition 18.8

Proposition 18.8

Proposition 18.8. Let (X, M, 1) be a measure space and let ¢ and 1) be
nonnegative simple functions on X. If a and 3 are positive real numbers,
then

\Ee+m§§ng\§€+u\s§. (2)
X X X
If A and B are disjoint measurable subsets of X, then

wdp—= [ vau+ [ van 3)
AUB A B
In particular, if Xo C X is measurable and p(X \ Xp) = 0, then

| wdn=[ wdn (4)
X Xo
Furthermore, if ¢ < ¢ a.e. on X, then

\xg%m\xs%. (5)
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Proposition 18.8

Proposition 18.8 (continued 2)

Proof. For monotonicity of the integral, (5), we may assume from (4)
that ¢ < ¢ on all of X. Since ¢ and ¢ are simple and so only take on a
finite number of values, then we can write X = W}_; X where the X are
disjoint and measurable and ¢ = Y} _; akxx, an do = >} bixx,
where 0 < ay < by for 1 < k < n. Then by linearity, (2), and the
definition of integral,

\xg dy = W akp)(Xi) < »Mum brp(Xk) = \xs du,

and so (5) follows. O
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Chebyshev's Inequality

Chebyshev's Inequality

Chebyshev’s Inequality.
Let (X, M, 1) be a measure space, f a nonnegative measurable function
on X, and A > 0 a real number. Then

1
tﬁxmx_lvav@MI\mQt.
A Jx

Proof. Define X\ = {x € X | f(x) = A} and ¢ = Axx,, - Then ¢ is
simple and 0 < ¢ < f on X. So by definition (and by Lemma)

M(Xx) = [y odu < [y fdu. The result now follows. O
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Fatou’'s Lemma.
Let (X, M, 1) be a measure space and {f,} be a sequence of nonnegative
measurable functions on X where {f,} — f a.e. on X. Assume f is

measurable. Then
\ fdu< _::::n\ fndu.
X X

Proof. Let Xy be a measurable subset of X for which (X \ Xo) = 0 and
{fn} — f pointwise on Xp. By (9) of “Lemma,” each side of the claim of
Fatou's Lemma remains unchanged if X is replaced by Xp. So, without
loss of generality, {f,} — f pointwise on X. Since [, f dy is defined in
terms of simple functions ¢ for which 0 < ¢ < f, if we establish that

\GQEM _:jm:_n\ fndu (12)
X X

for all such ¢, then Fatou's lemma will follow by taking a supremum over
such ¢. So let ¢ be simple with 0 < ¢ < f on X.
0 ]
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Proposition 18.9

Proposition 18.9

Proposition 18.9. Let (X, M) be a measure space and f nonnegative
measurable function on X for which [, f du < oo. Then f is finite a.e. on
X and {x € X | f(x) > 0} is o-finite.

Proof. Define Xoc = {x € X | f(x) = o0} and X, = {x € X | f(x) > n}.
Then X C X, for all n € N and by monotonicity of measure (Proposition
17.1) u(Xeo) < p(Xy) for all n € N. By Chebyshev's Inequality with A = n,
w(Xn) <% [, fdu<ooforneN, and so u(Xoo) < pu(Xn) < 2 [y fFdp
for all n € N. Since [, f dy is finite, ;4(Xs) = 0. (This is the same as the
proof of Chebyshev's Inequality from Chapter 4; see page 84.)

Now define X, = {x € X | f(x) > 1/n}. Then by Chebyshev's Inequality
with A =1/n, u(Xs) < n [, fdp < oo, and each pu(Xy) is of finite
measure. So {x € X | f(x) >0} =U E,, and {x € X | f(x) >0} isa
countable union of finite measurable sets. That is, it is o-finite. [
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Fatou's Lemma (continued 1)

Proof (continued). If [, ¢ dpu = 0 then the desired inequality holds, so
assume [, ¢ dp > 0.

Case 1. Suppose [, ¢ dp = co. Then there is a measurable X, C X and
a > 0 for which p(Xx) = 0o and ¢ = a on Xw.

For each n € N, define A, = {x € X | fx(x) > a/2 for all k > n}. Then
{An} is an ascending sequence of measurable sets (A, C A,41; larger n
implies fewer fx and so more x values). Since X, C U, A, then by
Continuity of Measure (Proposition 17.2) and Monotonicity of Measure
(Proposition 17.1),

lim (An) = A lim }v = (U AR > (X)) = o0

n—oo n—oo

But by Chebyshev's Inequality, for each n € N,

2 2
wA) <2 [ fodu<? \ f dp.
a.Jx

m\’:

Real Analysis December 18, 2016 9 /17



Fatou's Lemma

Fatou's Lemma (continued 2)

Proof (continued). So as n — oo, the left hand side approaches oo and
so the right hand side approaches oo and

lim \mzm_t”oo”\ﬁ&.:.
n—o0 X X

Case 2. Suppose 0 < %x pdp < oo. Now ¢ = 0 on some subset of X,
say Xo. Then [, pdu = %xo pdu. Also,

lim inf \xo fodp < liminf [, f, dp. So if we can verify that

Jx, p dp < liminf g,xo ©n dpu, then (12) will follow. That is, without loss of
generality we can assume ¢ > 0 on all of X. Since we are hypothesizing
that [y ¢ dp < oo, this implies that (X) < co. Let € > 0 and define

Xn={x € X | fix(x) > (1 — )p(x) for all k > n}.
Then {X,} is an ascending sequence of measurable subsets of X (similar
to Case 1) whose union equals X (since ¢ < f). So {X \ X,} is a

descending sequence of measurable sets whose intersection is &.

0
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Fatou’'s Lemma

Fatou's Lemma (continued 4)

Proof (continued).

\W:Qt >
X
= \ﬁQtlmA\ﬁQt._.iv.
X X

=3::n\ w:QtN\ﬁQtlmA\ﬁQt._.iv
X X X

and since ¢ > 0 is arbitrary and [, ¢ dp + M is finite, then (12)
follows. m

(1- mv\ wdu —eM by (5) of Proposition 18.8
X

Real Analysis

December 18, 2016 10 / 17

December 18, 2016 12 /17

- 0

Fatou's Lemma

Fatou's Lemma (continued 3)

Proof (continued). Since u(X) < oo, by the Continuity of Measure
(Proposition 17.2) lim,_o (X \ Xp) = 0. So choose N € N such that
u(X \ X,) < e for all n > N. Define M > 0 to be the maximum of the
values taken on by simple ¢ on X. Then

\ fodu > fn dp by Monotonicity ((8) of “Lemma’)
X Xn

> (1- mv\ © du by definition of X,
= (1- mv\ edu—(1-— mv\ ¢ dp by Additivity for
X X\ Xn
nonnegative simple functions ((3) of Proposition 18.8)
and the finiteness of the integrals of ¢
> (@-) [ pdu- [ pdn
X X\Xn
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The Monotone Convergence Theorem

The Monotone Convergence Theorem

The Monotone Convergence Theorem.
Let (X, M, 1) be a measure space and {f,} an increasing sequence (i.e.,
pointwise increasing) of nonnegative measurable functions on X. Define
f(x) = limp_oo fp(x) for each x € X. Then

lim A\ izv n\ A__a 3 %n\ fdu.
n—oo X X n—oo X

Proof. By Theorem 18.6, f is measurable. By Fatou's Lemma,
Jx £ <liminf [, f,du. Since f, < f on X, by (18) of “Lemma” we have
Jx fadp < [y fdp forall neN. So

_:jm:_u\ w:QtM\ fdu,
X X

and the result follows. O]
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Beppo Levi's Lemma

Beppo Levi's Lemma

Beppo Levi’'s Lemma.

Let (X, M, 1) be a measure space and {f,} an increasing sequence of
nonnegative measurable functions on X. If the sequence of integrals
{Jx fadu} is bounded, then {f,} converges pointwise on X to a
measurable function f that is finite a.e. on X and

\;% H\A__a 3 %H\E:Aoo.
X X oo X

Proof. Define f(x) = lim,_ fn(x) for each x € X (since {f,} is
increasing, the pointwise limits exist as extended real numbers). Since {f,}
is increasing, by the Monotone Convergence Theorem

limp—oo [ fndp = [y f dp. Since the sequence { [, f, du} is bounded,
then limy_o [y f, dpu is bounded; that is, %x f du < oo. by proposition
18.9, f is finite a.e. on X. ]

[im
n—oo
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Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable

Functions.
Let (X, M, 1) be a measure space and f and g nonnegative measurable
functions on X. If « and 3 are positive real numbers, then

\XAQmLﬂvaQEHQ\XmQtLjQ\me?

Proof. By (7) of “Lemma” we have that [, af du =« [, f du, so we
need only establish the result for « = 3 =1 (i.e., for the “addition of
functions” part). By Proposition 18.10, there are increasing sequences
{¥n} an dy,} of nonnegative simple functions that converge pointwise to

g and f respectively for which
lim \@:Qtﬂ\moﬁm:a lim \ﬁ:&t”\m&t.
n—oo X X n—oo X X
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Proposition 18.10

Proposition 18.10

Proposition 18.10. Let (X, M, ;1) be a measure space and f a
nonnegative measurable function on X. Then there is an increasing
sequence {1} of simple functions on X that converges pointwise on X to

f and
\?% n\ .
X X

Proof. By the Simple Approximation Theorem part (ii), there is an
increasing sequence {¢,} of simple functions which converges pointwise to
f on X. By the Monotone Convergence Theorem,

lim \S:QEH\ lim ﬁ:QtH\mof.
n—oo X XBlOO X

[im
n—oo
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Proposition 18.11

Proposition 18.11 (continued)

Proof (continued). Then {¢, + 1,} is an increasing sequence of simple
functions that converges pointwise to f + g. Then

\xeﬁwv =

= l|im
n—oo

lim
n—oo

\ (¢n + 1n) dp by the Monotone
X

Convergence Theorem

\ ondu +\ wndu | by proposition 18.8 (2)
X X

= l|im

\E:Q.Eu_u lim \@:Qt
n—oo X n—oo X

= \m&t+\wﬁ:.
X X

[l
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