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Proposition 18.8

Proposition 18.8

Proposition 18.8. Let (X ,M, µ) be a measure space and let ϕ and ψ be
nonnegative simple functions on X . If α and β are positive real numbers,
then ∫

X
(αψ + βϕ) dµ = α

∫
X
ψ dµ+ β

∫
X
ϕ dµ. (2)

If A and B are disjoint measurable subsets of X , then∫
A∪·B

ψ dµ =

∫
A
ψ dµ+

∫
B
ψ dµ. (3)

In particular, if X0 ⊂ X is measurable and µ(X \ X0) = 0, then∫
X
ψ dµ =

∫
X0

ψ dµ. (4)

Furthermore, if ψ ≤ ϕ a.e. on X , then∫
X
ψ dµ ≤

∫
X
ϕ dµ. (5)
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Proposition 18.8

Proposition 18.8 (continued 1)

Proof. If either ψ or ϕ is positive on a set of infinite measure, then the
linear combination αψ + βϕ is also positive on a set of infinite measure
(and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose
both ψ and ϕ vanish outside a set of finite measure, and hence so does
αψ + βϕ. The proof of linearity, (2), now follows exactly as it did in
Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have ψχA∪·B = ψχA + ψχB on X , and additivity
over domains, (3), then follows from (2).

Next, (4) follows from (3) since the integral of a since the integral of a
simple function over a set of measure zero is zero by definition.
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Proposition 18.8

Proposition 18.8 (continued 2)

Proof. For monotonicity of the integral, (5), we may assume from (4)
that ψ ≤ ϕ on all of X . Since ϕ and ψ are simple and so only take on a
finite number of values, then we can write X = ∪· nk=1Xk where the Xk are
disjoint and measurable and ψ =

∑n
k=1 akχXk

an dϕ =
∑n

k=1 bkχXk

where 0 ≤ ak ≤ bk for 1 ≤ k ≤ n. Then by linearity, (2), and the
definition of integral,∫

X
ψ dµ =

n∑
k=1

akµ)(Xk) ≤
n∑

k=1

bkµ(Xk) =

∫
X
ϕ dµ,

and so (5) follows.
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Chebyshev’s Inequality

Chebyshev’s Inequality

Chebyshev’s Inequality.
Let (X ,M, µ) be a measure space, f a nonnegative measurable function
on X , and λ > 0 a real number. Then

µ{x ∈ X | f (x) > λ} ≤ 1

λ

∫
X

f dµ.

Proof. Define Xλ = {x ∈ X | f (x) ≥ λ} and ϕ = λχXXλ
. Then ϕ is

simple and 0 ≤ ϕ ≤ f on X .

So by definition (and by Lemma)
λµ(Xλ) =

∫
X ϕ dµ ≤

∫
X f dµ. The result now follows.
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Proposition 18.9

Proposition 18.9

Proposition 18.9. Let (X ,M) be a measure space and f nonnegative
measurable function on X for which

∫
X f dµ <∞. Then f is finite a.e. on

X and {x ∈ X | f (x) > 0} is σ-finite.

Proof. Define X∞ = {x ∈ X | f (x) = ∞} and Xn = {x ∈ X | f (x) ≥ n}.
Then X∞ ⊂ Xn for all n ∈ N and by monotonicity of measure (Proposition
17.1) µ(X∞) ≤ µ(Xn) for all n ∈ N.

By Chebyshev’s Inequality with λ = n,
µ(Xn) ≤ 1

n

∫
X f dµ <∞ for n ∈ N, and so µ(X∞) ≤ µ(Xn) ≤ 1

n

∫
X f dµ

for all n ∈ N. Since
∫
X f dµ is finite, µ(X∞) = 0. (This is the same as the

proof of Chebyshev’s Inequality from Chapter 4; see page 84.)

Now define Xn = {x ∈ X | f (x) ≥ 1/n}. Then by Chebyshev’s Inequality
with λ = 1/n, µ(Xn) ≤ n

∫
X f dµ <∞, and each µ(Xn) is of finite

measure. So {x ∈ X | f (x) > 0} = ∪∞n=1En, and {x ∈ X | f (x) > 0} is a
countable union of finite measurable sets. That is, it is σ-finite.
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Fatou’s Lemma

Fatou’s Lemma

Fatou’s Lemma.
Let (X ,M, µ) be a measure space and {fn} be a sequence of nonnegative
measurable functions on X where {fn} → f a.e. on X . Assume f is
measurable. Then ∫

X
f dµ ≤ lim inf

∫
X

fn dµ.

Proof. Let X0 be a measurable subset of X for which µ(X \ X0) = 0 and
{fn} → f pointwise on X0. By (9) of “Lemma,” each side of the claim of
Fatou’s Lemma remains unchanged if X is replaced by X0. So, without
loss of generality, {fn} → f pointwise on X .

Since
∫
X f dµ is defined in

terms of simple functions ϕ for which 0 ≤ ϕ ≤ f , if we establish that∫
X
ϕ dµ ≤ lim inf

∫
X

fn dµ (12)

for all such ϕ, then Fatou’s lemma will follow by taking a supremum over
such ϕ. So let ϕ be simple with 0 ≤ ϕ ≤ f on X .
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Fatou’s Lemma

Fatou’s Lemma (continued 1)

Proof (continued). If
∫
X ϕ dµ = 0 then the desired inequality holds, so

assume
∫
X ϕ dµ > 0.

Case 1. Suppose
∫
X ϕ dµ = ∞. Then there is a measurable X∞ ⊂ X and

a > 0 for which µ(X∞) = ∞ and ϕ = a on X∞.

For each n ∈ N, define An = {x ∈ X | fk(x) ≥ a/2 for all k ≥ n}. Then
{An} is an ascending sequence of measurable sets (An ⊂ An+1; larger n
implies fewer fk and so more x values). Since X∞ ⊂ ∪∞n=1An then by
Continuity of Measure (Proposition 17.2) and Monotonicity of Measure
(Proposition 17.1),

lim
n→∞

µ(An) = µ
(

lim
n→∞

An

)
= µ (∪∞n=1An) ≥ µ(X∞) = ∞.

But by Chebyshev’s Inequality, for each n ∈ N,

µ(An) ≤
2

a

∫
An

fn dµ ≤ 2

a

∫
X

fn dµ.
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Fatou’s Lemma

Fatou’s Lemma (continued 2)

Proof (continued). So as n →∞, the left hand side approaches ∞ and
so the right hand side approaches ∞ and

lim
n→∞

∫
X

fn dµ = ∞ =

∫
X
ϕ dµ.

Case 2. Suppose 0 <
∫
X ϕ dµ <∞. Now ϕ = 0 on some subset of X ,

say X0. Then
∫
X ϕ dµ =

∫
X0
ϕ dµ. Also,

lim inf
∫
X0

fn dµ ≤ lim inf
∫
X fn dµ. So if we can verify that∫

X0
ϕ dµ ≤ lim inf

∫
X0
ϕn dµ, then (12) will follow. That is, without loss of

generality we can assume ϕ > 0 on all of X .

Since we are hypothesizing
that

∫
X ϕ dµ <∞, this implies that µ(X ) <∞. Let ε > 0 and define

Xn = {x ∈ X | fk(x) > (1− ε)ϕ(x) for all k ≥ n}.

Then {Xn} is an ascending sequence of measurable subsets of X (similar
to Case 1) whose union equals X (since ϕ ≤ f ). So {X \ Xn} is a
descending sequence of measurable sets whose intersection is ∅.
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Fatou’s Lemma

Fatou’s Lemma (continued 3)

Proof (continued). Since µ(X ) <∞, by the Continuity of Measure
(Proposition 17.2) limn→∞ µ(X \ Xn) = 0. So choose N ∈ N such that
µ(X \ Xn) < ε for all n ≥ N. Define M > 0 to be the maximum of the
values taken on by simple ϕ on X . Then∫

X
fn dµ ≥

∫
Xn

fn dµ by Monotonicity ((8) of “Lemma”)

≥ (1− ε)

∫
Xn

ϕ dµ by definition of Xn

= (1− ε)

∫
X
ϕ dµ− (1− ε)

∫
X\Xn

ϕ dµ by Additivity for

nonnegative simple functions ((3) of Proposition 18.8)

and the finiteness of the integrals of ϕ

≥ (1− ε)

∫
X
ϕ dµ−

∫
X\Xn

ϕ dµ
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ϕ dµ by definition of Xn

= (1− ε)

∫
X
ϕ dµ− (1− ε)

∫
X\Xn

ϕ dµ by Additivity for

nonnegative simple functions ((3) of Proposition 18.8)

and the finiteness of the integrals of ϕ

≥ (1− ε)

∫
X
ϕ dµ−

∫
X\Xn

ϕ dµ
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Fatou’s Lemma

Fatou’s Lemma (continued 4)

Proof (continued).∫
X

fn dµ ≥ (1− ε)

∫
X
ϕ dµ− εM by (5) of Proposition 18.8

=

∫
X
ϕ dµ− ε

(∫
X
ϕ dµ+ M

)
.

So

lim inf

∫
X

fn dµ ≥
∫

X
ϕ dµ− ε

(∫
X
ϕ dµ+ M

)
and since ε > 0 is arbitrary and

∫
X ϕ dµ+ M is finite, then (12)

follows.
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The Monotone Convergence Theorem

The Monotone Convergence Theorem

The Monotone Convergence Theorem.
Let (X ,M, µ) be a measure space and {fn} an increasing sequence (i.e.,
pointwise increasing) of nonnegative measurable functions on X . Define
f (x) = limn→∞ fn(x) for each x ∈ X . Then

lim
n→∞

(∫
X

fn dµ

)
=

∫
X

(
lim

n→∞
fn

)
dµ =

∫
X

f dµ.

Proof. By Theorem 18.6, f is measurable. By Fatou’s Lemma,∫
X f ≤ lim inf

∫
X fn dµ. Since fn ≤ f on X , by (18) of “Lemma” we have∫

X fn dµ ≤
∫
X f dµ for all n ∈ N. So

lim sup

∫
X

fn dµ ≤
∫

X
f dµ,

and the result follows.
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Beppo Levi’s Lemma

Beppo Levi’s Lemma

Beppo Levi’s Lemma.
Let (X ,M, µ) be a measure space and {fn} an increasing sequence of
nonnegative measurable functions on X . If the sequence of integrals
{
∫
X fn dµ} is bounded, then {fn} converges pointwise on X to a

measurable function f that is finite a.e. on X and

lim
n→∞

(∫
X

fn dµ

)
=

∫
X

(
lim

n→∞
fn

)
dµ =

∫
X

f dµ <∞.

Proof. Define f (x) = limn→∞ fn(x) for each x ∈ X (since {fn} is
increasing, the pointwise limits exist as extended real numbers). Since {fn}
is increasing, by the Monotone Convergence Theorem
limn→∞

∫
X fn dµ =

∫
X f dµ.

Since the sequence {
∫
X fn dµ} is bounded,

then limn→∞
∫
X fn dµ is bounded; that is,

∫
X f dµ <∞. by proposition

18.9, f is finite a.e. on X .
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Proposition 18.10

Proposition 18.10

Proposition 18.10. Let (X ,M, µ) be a measure space and f a
nonnegative measurable function on X . Then there is an increasing
sequence {ψn} of simple functions on X that converges pointwise on X to
f and

lim
n→∞

(∫
X
ψn dµ

)
=

∫
X

f dµ.

Proof. By the Simple Approximation Theorem part (ii), there is an
increasing sequence {ϕn} of simple functions which converges pointwise to
f on X . By the Monotone Convergence Theorem,

lim
n→∞

∫
X
ϕn dµ =

∫
X

lim
n→∞

ϕn dµ =

∫
X

f dµ.
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Proposition 18.11

Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable
Functions.
Let (X ,M, µ) be a measure space and f and g nonnegative measurable
functions on X . If α and β are positive real numbers, then∫

X
(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

Proof. By (7) of “Lemma” we have that
∫
X αf dµ = α

∫
X f dµ, so we

need only establish the result for α = β = 1 (i.e., for the “addition of
functions” part).

By Proposition 18.10, there are increasing sequences
{ψn} an dϕn} of nonnegative simple functions that converge pointwise to
g and f respectively for which

lim
n→∞

∫
X
ψn dµ =

∫
X

g dµ and lim
n→∞

∫
X
ϕn dµ =

∫
X

f dµ.
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Proposition 18.11

Proposition 18.11 (continued)

Proof (continued). Then {ϕn + ψn} is an increasing sequence of simple
functions that converges pointwise to f + g . Then∫

X
(f + g) = lim

n→∞

∫
X
(ϕn + ψn) dµ by the Monotone

Convergence Theorem

= lim
n→∞

(∫
X
ϕn dµ+

∫
X
ϕn dµ

)
by proposition 18.8 (2)

= lim
n→∞

∫
X
ϕn dµ+ lim

n→∞

∫
X
ψn dµ

=

∫
X

f dµ+

∫
X

g dµ.
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Proposition 18.11 (continued)
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