Real Analysis

Chapter 18. Integration Over General Measure Spaces 18.2. Integration of Nonnegative Measurable Functions—Proofs of Theorems

Table of contents

- Proposition 18.8
- 2 Chebyshev's Inequality
- 3 Proposition 18.9
 - 4 Fatou's Lemma
- 5 The Monotone Convergence Theorem
- 6 Beppo Levi's Lemma
- Proposition 18.10
- 8 Proposition 18.11

Proposition 18.8. Let (X, \mathcal{M}, μ) be a measure space and let φ and ψ be nonnegative simple functions on X. If α and β are positive real numbers, then

$$\int_{X} (\alpha \psi + \beta \varphi) \, d\mu = \alpha \int_{X} \psi \, d\mu + \beta \int_{X} \varphi \, d\mu.$$
 (2)

If A and B are disjoint measurable subsets of X, then

$$\int_{A\cup B} \psi \, d\mu = \int_{A} \psi \, d\mu + \int_{B} \psi \, d\mu. \tag{3}$$

In particular, if $X_0 \subset X$ is measurable and $\mu(X \setminus X_0) = 0$, then

$$\int_{X} \psi \, d\mu = \int_{X_0} \psi \, d\mu. \tag{4}$$

Furthermore, if $\psi \leq \varphi$ a.e. on X, then

$$\int_{X} \psi \, d\mu \le \int_{X} \varphi \, d\mu. \tag{5}$$

Proof. If either ψ or φ is positive on a set of infinite measure, then the linear combination $\alpha\psi + \beta\varphi$ is also positive on a set of infinite measure (and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose both ψ and φ vanish outside a set of finite measure, and hence so does $\alpha\psi + \beta\varphi$. The proof of linearity, (2), now follows exactly as it did in Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

Proof. If either ψ or φ is positive on a set of infinite measure, then the linear combination $\alpha\psi + \beta\varphi$ is also positive on a set of infinite measure (and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose both ψ and φ vanish outside a set of finite measure, and hence so does $\alpha\psi + \beta\varphi$. The proof of linearity, (2), now follows exactly as it did in Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have $\psi \chi_{A \cup B} = \psi \chi_A + \psi \chi_B$ on X, and additivity over domains, (3), then follows from (2).

Proof. If either ψ or φ is positive on a set of infinite measure, then the linear combination $\alpha\psi + \beta\varphi$ is also positive on a set of infinite measure (and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose both ψ and φ vanish outside a set of finite measure, and hence so does $\alpha\psi + \beta\varphi$. The proof of linearity, (2), now follows exactly as it did in Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have $\psi \chi_{A \cup B} = \psi \chi_A + \psi \chi_B$ on X, and additivity over domains, (3), then follows from (2).

Next, (4) follows from (3) since the integral of a since the integral of a simple function over a set of measure zero is zero by definition.

Proof. If either ψ or φ is positive on a set of infinite measure, then the linear combination $\alpha\psi + \beta\varphi$ is also positive on a set of infinite measure (and simple), and so both sides of (2) are ∞ and (2) holds. Next, suppose both ψ and φ vanish outside a set of finite measure, and hence so does $\alpha\psi + \beta\varphi$. The proof of linearity, (2), now follows exactly as it did in Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have $\psi \chi_{A \cup B} = \psi \chi_A + \psi \chi_B$ on X, and additivity over domains, (3), then follows from (2).

Next, (4) follows from (3) since the integral of a since the integral of a simple function over a set of measure zero is zero by definition.

Proof. For monotonicity of the integral, (5), we may assume from (4) that $\psi \leq \varphi$ on all of X. Since φ and ψ are simple and so only take on a finite number of values, then we can write $X = \bigcup_{k=1}^{n} X_k$ where the X_k are disjoint and measurable and $\psi = \sum_{k=1}^{n} a_k \chi_{X_k}$ and $\varphi = \sum_{k=1}^{n} b_k \chi_{X_k}$ where $0 \leq a_k \leq b_k$ for $1 \leq k \leq n$. Then by linearity, (2), and the definition of integral,

$$\int_X \psi \, d\mu = \sum_{k=1}^n a_k \mu (X_k) \leq \sum_{k=1}^n b_k \mu (X_k) = \int_X \varphi \, d\mu,$$

and so (5) follows.

Proof. For monotonicity of the integral, (5), we may assume from (4) that $\psi \leq \varphi$ on all of X. Since φ and ψ are simple and so only take on a finite number of values, then we can write $X = \bigcup_{k=1}^{n} X_k$ where the X_k are disjoint and measurable and $\psi = \sum_{k=1}^{n} a_k \chi_{X_k}$ and $\varphi = \sum_{k=1}^{n} b_k \chi_{X_k}$ where $0 \leq a_k \leq b_k$ for $1 \leq k \leq n$. Then by linearity, (2), and the definition of integral,

$$\int_X \psi \, d\mu = \sum_{k=1}^n a_k \mu (X_k) \leq \sum_{k=1}^n b_k \mu(X_k) = \int_X \varphi \, d\mu,$$

and so (5) follows.

Chebyshev's Inequality

Chebyshev's Inequality.

Let (X, \mathcal{M}, μ) be a measure space, f a nonnegative measurable function on X, and $\lambda > 0$ a real number. Then

$$\mu\{x \in X \mid f(x) > \lambda\} \leq \frac{1}{\lambda} \int_X f d\mu.$$

Proof. Define $X_{\lambda} = \{x \in X \mid f(x) \ge \lambda\}$ and $\varphi = \lambda \chi_{X_{X_{\lambda}}}$. Then φ is simple and $0 \le \varphi \le f$ on X.

Chebyshev's Inequality

Chebyshev's Inequality.

Let (X, \mathcal{M}, μ) be a measure space, f a nonnegative measurable function on X, and $\lambda > 0$ a real number. Then

$$\mu\{x \in X \mid f(x) > \lambda\} \leq \frac{1}{\lambda} \int_X f \, d\mu.$$

Proof. Define $X_{\lambda} = \{x \in X \mid f(x) \ge \lambda\}$ and $\varphi = \lambda \chi_{X_{X_{\lambda}}}$. Then φ is simple and $0 \le \varphi \le f$ on X. So by definition (and by Lemma) $\lambda \mu(X_{\lambda}) = \int_{X} \varphi \, d\mu \le \int_{X} f \, d\mu$. The result now follows.

Chebyshev's Inequality

Chebyshev's Inequality.

Let (X, \mathcal{M}, μ) be a measure space, f a nonnegative measurable function on X, and $\lambda > 0$ a real number. Then

$$\mu\{x \in X \mid f(x) > \lambda\} \leq \frac{1}{\lambda} \int_X f \, d\mu.$$

Proof. Define $X_{\lambda} = \{x \in X \mid f(x) \ge \lambda\}$ and $\varphi = \lambda \chi_{X_{X_{\lambda}}}$. Then φ is simple and $0 \le \varphi \le f$ on X. So by definition (and by Lemma) $\lambda \mu(X_{\lambda}) = \int_{X} \varphi \, d\mu \le \int_{X} f \, d\mu$. The result now follows.

Proposition 18.9. Let (X, \mathcal{M}) be a measure space and f nonnegative measurable function on X for which $\int_X f d\mu < \infty$. Then f is finite a.e. on X and $\{x \in X \mid f(x) > 0\}$ is σ -finite.

Proof. Define $X_{\infty} = \{x \in X \mid f(x) = \infty\}$ and $X_n = \{x \in X \mid f(x) \ge n\}$. Then $X_{\infty} \subset X_n$ for all $n \in \mathbb{N}$ and by monotonicity of measure (Proposition 17.1) $\mu(X_{\infty}) \le \mu(X_n)$ for all $n \in \mathbb{N}$.

Proposition 18.9. Let (X, \mathcal{M}) be a measure space and f nonnegative measurable function on X for which $\int_X f d\mu < \infty$. Then f is finite a.e. on X and $\{x \in X \mid f(x) > 0\}$ is σ -finite.

Proof. Define $X_{\infty} = \{x \in X \mid f(x) = \infty\}$ and $X_n = \{x \in X \mid f(x) \ge n\}$. Then $X_{\infty} \subset X_n$ for all $n \in \mathbb{N}$ and by monotonicity of measure (Proposition 17.1) $\mu(X_{\infty}) \le \mu(X_n)$ for all $n \in \mathbb{N}$. By Chebyshev's Inequality with $\lambda = n$, $\mu(X_n) \le \frac{1}{n} \int_X f \ d\mu < \infty$ for $n \in \mathbb{N}$, and so $\mu(X_{\infty}) \le \mu(X_n) \le \frac{1}{n} \int_X f \ d\mu$ for all $n \in \mathbb{N}$. Since $\int_X f \ d\mu$ is finite, $\mu(X_{\infty}) = 0$. (This is the same as the proof of Chebyshev's Inequality from Chapter 4; see page 84.)

Proposition 18.9. Let (X, \mathcal{M}) be a measure space and f nonnegative measurable function on X for which $\int_X f d\mu < \infty$. Then f is finite a.e. on X and $\{x \in X \mid f(x) > 0\}$ is σ -finite.

Proof. Define $X_{\infty} = \{x \in X \mid f(x) = \infty\}$ and $X_n = \{x \in X \mid f(x) \ge n\}$. Then $X_{\infty} \subset X_n$ for all $n \in \mathbb{N}$ and by monotonicity of measure (Proposition 17.1) $\mu(X_{\infty}) \le \mu(X_n)$ for all $n \in \mathbb{N}$. By Chebyshev's Inequality with $\lambda = n$, $\mu(X_n) \le \frac{1}{n} \int_X f \ d\mu < \infty$ for $n \in \mathbb{N}$, and so $\mu(X_{\infty}) \le \mu(X_n) \le \frac{1}{n} \int_X f \ d\mu$ for all $n \in \mathbb{N}$. Since $\int_X f \ d\mu$ is finite, $\mu(X_{\infty}) = 0$. (This is the same as the proof of Chebyshev's Inequality from Chapter 4; see page 84.)

Now define $X_n = \{x \in X \mid f(x) \ge 1/n\}$. Then by Chebyshev's Inequality with $\lambda = 1/n$, $\mu(X_n) \le n \int_X f \, d\mu < \infty$, and each $\mu(X_n)$ is of finite measure. So $\{x \in X \mid f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$, and $\{x \in X \mid f(x) > 0\}$ is a countable union of finite measurable sets. That is, it is σ -finite.

Proposition 18.9. Let (X, \mathcal{M}) be a measure space and f nonnegative measurable function on X for which $\int_X f d\mu < \infty$. Then f is finite a.e. on X and $\{x \in X \mid f(x) > 0\}$ is σ -finite.

Proof. Define $X_{\infty} = \{x \in X \mid f(x) = \infty\}$ and $X_n = \{x \in X \mid f(x) \ge n\}$. Then $X_{\infty} \subset X_n$ for all $n \in \mathbb{N}$ and by monotonicity of measure (Proposition 17.1) $\mu(X_{\infty}) \le \mu(X_n)$ for all $n \in \mathbb{N}$. By Chebyshev's Inequality with $\lambda = n$, $\mu(X_n) \le \frac{1}{n} \int_X f \ d\mu < \infty$ for $n \in \mathbb{N}$, and so $\mu(X_{\infty}) \le \mu(X_n) \le \frac{1}{n} \int_X f \ d\mu$ for all $n \in \mathbb{N}$. Since $\int_X f \ d\mu$ is finite, $\mu(X_{\infty}) = 0$. (This is the same as the proof of Chebyshev's Inequality from Chapter 4; see page 84.)

Now define $X_n = \{x \in X \mid f(x) \ge 1/n\}$. Then by Chebyshev's Inequality with $\lambda = 1/n$, $\mu(X_n) \le n \int_X f \, d\mu < \infty$, and each $\mu(X_n)$ is of finite measure. So $\{x \in X \mid f(x) > 0\} = \bigcup_{n=1}^{\infty} E_n$, and $\{x \in X \mid f(x) > 0\}$ is a countable union of finite measurable sets. That is, it is σ -finite.

Fatou's Lemma

Fatou's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ be a sequence of nonnegative measurable functions on X where $\{f_n\} \to f$ a.e. on X. Assume f is measurable. Then

$$\int_X f \, d\mu \leq \liminf \int_X f_n \, d\mu.$$

Proof. Let X_0 be a measurable subset of X for which $\mu(X \setminus X_0) = 0$ and $\{f_n\} \to f$ pointwise on X_0 . By (9) of "Lemma," each side of the claim of Fatou's Lemma remains unchanged if X is replaced by X_0 . So, without loss of generality, $\{f_n\} \to f$ pointwise on X.

Fatou's Lemma

Fatou's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ be a sequence of nonnegative measurable functions on X where $\{f_n\} \to f$ a.e. on X. Assume f is measurable. Then

$$\int_X f \, d\mu \leq \liminf \int_X f_n \, d\mu.$$

Proof. Let X_0 be a measurable subset of X for which $\mu(X \setminus X_0) = 0$ and $\{f_n\} \to f$ pointwise on X_0 . By (9) of "Lemma," each side of the claim of Fatou's Lemma remains unchanged if X is replaced by X_0 . So, without loss of generality, $\{f_n\} \to f$ pointwise on X. Since $\int_X f d\mu$ is defined in terms of simple functions φ for which $0 \le \varphi \le f$, if we establish that

$$\int_{X} \varphi \, d\mu \le \liminf \int_{X} f_n \, d\mu \tag{12}$$

for all such φ , then Fatou's lemma will follow by taking a supremum over such φ . So let φ be simple with $0 \le \varphi \le f$ on X.

Fatou's Lemma

Fatou's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ be a sequence of nonnegative measurable functions on X where $\{f_n\} \to f$ a.e. on X. Assume f is measurable. Then

$$\int_X f \, d\mu \leq \liminf \int_X f_n \, d\mu.$$

Proof. Let X_0 be a measurable subset of X for which $\mu(X \setminus X_0) = 0$ and $\{f_n\} \to f$ pointwise on X_0 . By (9) of "Lemma," each side of the claim of Fatou's Lemma remains unchanged if X is replaced by X_0 . So, without loss of generality, $\{f_n\} \to f$ pointwise on X. Since $\int_X f d\mu$ is defined in terms of simple functions φ for which $0 \le \varphi \le f$, if we establish that

$$\int_{X} \varphi \, d\mu \le \liminf \int_{X} f_n \, d\mu \tag{12}$$

for all such φ , then Fatou's lemma will follow by taking a supremum over such φ . So let φ be simple with $0 \le \varphi \le f$ on X.

Proof (continued). If $\int_X \varphi \, d\mu = 0$ then the desired inequality holds, so assume $\int_X \varphi \, d\mu > 0$.

Case 1. Suppose $\int_X \varphi \, d\mu = \infty$. Then there is a measurable $X_\infty \subset X$ and a > 0 for which $\mu(X_\infty) = \infty$ and $\varphi = a$ on X_∞ .

Proof (continued). If $\int_X \varphi \, d\mu = 0$ then the desired inequality holds, so assume $\int_X \varphi \, d\mu > 0$.

Case 1. Suppose $\int_X \varphi \, d\mu = \infty$. Then there is a measurable $X_\infty \subset X$ and a > 0 for which $\mu(X_\infty) = \infty$ and $\varphi = a$ on X_∞ .

For each $n \in \mathbb{N}$, define $A_n = \{x \in X \mid f_k(x) \ge a/2 \text{ for all } k \ge n\}$. Then $\{A_n\}$ is an ascending sequence of measurable sets $(A_n \subset A_{n+1}; \text{ larger } n \text{ implies fewer } f_k \text{ and so more } x \text{ values}).$

Proof (continued). If $\int_X \varphi \, d\mu = 0$ then the desired inequality holds, so assume $\int_X \varphi \, d\mu > 0$.

Case 1. Suppose $\int_X \varphi \, d\mu = \infty$. Then there is a measurable $X_\infty \subset X$ and a > 0 for which $\mu(X_\infty) = \infty$ and $\varphi = a$ on X_∞ .

For each $n \in \mathbb{N}$, define $A_n = \{x \in X \mid f_k(x) \ge a/2 \text{ for all } k \ge n\}$. Then $\{A_n\}$ is an ascending sequence of measurable sets $(A_n \subset A_{n+1}; \text{ larger } n \text{ implies fewer } f_k \text{ and so more } x \text{ values})$. Since $X_{\infty} \subset \bigcup_{n=1}^{\infty} A_n$ then by Continuity of Measure (Proposition 17.2) and Monotonicity of Measure (Proposition 17.1),

$$\lim_{n\to\infty}\mu(A_n)=\mu\left(\lim_{n\to\infty}A_n\right)=\mu\left(\cup_{n=1}^{\infty}A_n\right)\geq\mu(X_{\infty})=\infty.$$

But by Chebyshev's Inequality, for each $n \in \mathbb{N}$,

$$\mu(A_n) \leq \frac{2}{a} \int_{A_n} f_n \, d\mu \leq \frac{2}{a} \int_X f_n \, d\mu.$$

Proof (continued). If $\int_X \varphi \, d\mu = 0$ then the desired inequality holds, so assume $\int_X \varphi \, d\mu > 0$.

Case 1. Suppose $\int_X \varphi \, d\mu = \infty$. Then there is a measurable $X_\infty \subset X$ and a > 0 for which $\mu(X_\infty) = \infty$ and $\varphi = a$ on X_∞ .

For each $n \in \mathbb{N}$, define $A_n = \{x \in X \mid f_k(x) \ge a/2 \text{ for all } k \ge n\}$. Then $\{A_n\}$ is an ascending sequence of measurable sets $(A_n \subset A_{n+1}; \text{ larger } n \text{ implies fewer } f_k \text{ and so more } x \text{ values})$. Since $X_{\infty} \subset \bigcup_{n=1}^{\infty} A_n$ then by Continuity of Measure (Proposition 17.2) and Monotonicity of Measure (Proposition 17.1),

$$\lim_{n\to\infty}\mu(A_n)=\mu\left(\lim_{n\to\infty}A_n\right)=\mu\left(\cup_{n=1}^{\infty}A_n\right)\geq\mu(X_{\infty})=\infty.$$

But by Chebyshev's Inequality, for each $n \in \mathbb{N}$,

$$\mu(A_n) \leq \frac{2}{a} \int_{A_n} f_n \, d\mu \leq \frac{2}{a} \int_X f_n \, d\mu.$$

Proof (continued). So as $n \to \infty$, the left hand side approaches ∞ and so the right hand side approaches ∞ and

$$\lim_{n\to\infty}\int_X f_n\,d\mu=\infty=\int_X\varphi\,d\mu.$$

Case 2. Suppose $0 < \int_X \varphi \, d\mu < \infty$. Now $\varphi = 0$ on some subset of X, say X_0 . Then $\int_X \varphi \, d\mu = \int_{X_0} \varphi \, d\mu$. Also, lim inf $\int_{X_0} f_n \, d\mu \leq \liminf \int_X f_n \, d\mu$. So if we can verify that $\int_{X_0} \varphi \, d\mu \leq \liminf \int_{X_0} \varphi_n \, d\mu$, then (12) will follow. That is, without loss of generality we can assume $\varphi > 0$ on all of X.

Proof (continued). So as $n \to \infty$, the left hand side approaches ∞ and so the right hand side approaches ∞ and

$$\lim_{n\to\infty}\int_X f_n\,d\mu=\infty=\int_X\varphi\,d\mu$$

Case 2. Suppose $0 < \int_X \varphi \, d\mu < \infty$. Now $\varphi = 0$ on some subset of X, say X_0 . Then $\int_X \varphi \, d\mu = \int_{X_0} \varphi \, d\mu$. Also, lim inf $\int_{X_0} f_n \, d\mu \le \liminf \int_X f_n \, d\mu$. So if we can verify that $\int_{X_0} \varphi \, d\mu \le \liminf \int_{X_0} \varphi_n \, d\mu$, then (12) will follow. That is, without loss of generality we can assume $\varphi > 0$ on all of X. Since we are hypothesizing that $\int_X \varphi \, d\mu < \infty$, this implies that $\mu(X) < \infty$. Let $\varepsilon > 0$ and define $X_n = \{x \in X \mid f_k(x) > (1 - \varepsilon)\varphi(x) \text{ for all } k \ge n\}.$

Then $\{X_n\}$ is an ascending sequence of measurable subsets of X (similar to Case 1) whose union equals X (since $\varphi \leq f$). So $\{X \setminus X_n\}$ is a descending sequence of measurable sets whose intersection is \emptyset .

Proof (continued). So as $n \to \infty$, the left hand side approaches ∞ and so the right hand side approaches ∞ and

$$\lim_{n\to\infty}\int_X f_n\,d\mu=\infty=\int_X\varphi\,d\mu$$

Case 2. Suppose $0 < \int_X \varphi \, d\mu < \infty$. Now $\varphi = 0$ on some subset of X, say X_0 . Then $\int_X \varphi \, d\mu = \int_{X_0} \varphi \, d\mu$. Also, lim inf $\int_{X_0} f_n \, d\mu \le \liminf \int_X f_n \, d\mu$. So if we can verify that $\int_{X_0} \varphi \, d\mu \le \liminf \int_{X_0} \varphi_n \, d\mu$, then (12) will follow. That is, without loss of generality we can assume $\varphi > 0$ on all of X. Since we are hypothesizing that $\int_X \varphi \, d\mu < \infty$, this implies that $\mu(X) < \infty$. Let $\varepsilon > 0$ and define

$$X_n = \{x \in X \mid f_k(x) > (1 - \varepsilon)\varphi(x) \text{ for all } k \ge n\}.$$

Then $\{X_n\}$ is an ascending sequence of measurable subsets of X (similar to Case 1) whose union equals X (since $\varphi \leq f$). So $\{X \setminus X_n\}$ is a descending sequence of measurable sets whose intersection is \emptyset .

Proof (continued). Since $\mu(X) < \infty$, by the Continuity of Measure (Proposition 17.2) $\lim_{n\to\infty} \mu(X \setminus X_n) = 0$. So choose $N \in \mathbb{N}$ such that $\mu(X \setminus X_n) < \varepsilon$ for all $n \ge N$. Define M > 0 to be the maximum of the values taken on by simple φ on X. Then

$$\int_{X} f_{n} d\mu \geq \int_{X_{n}} f_{n} d\mu \text{ by Monotonicity ((8) of "Lemma")}$$

$$\geq (1 - \varepsilon) \int_{X_{n}} \varphi d\mu \text{ by definition of } X_{n}$$

$$= (1 - \varepsilon) \int_{X} \varphi d\mu - (1 - \varepsilon) \int_{X \setminus X_{n}} \varphi d\mu \text{ by Additivity for}$$
nonnegative simple functions ((3) of Proposition 18.8)
and the finiteness of the integrals of φ

$$\geq (1 - \varepsilon) \int_{X} \varphi d\mu - \int_{X \setminus X_{n}} \varphi d\mu$$

Proof (continued). Since $\mu(X) < \infty$, by the Continuity of Measure (Proposition 17.2) $\lim_{n\to\infty} \mu(X \setminus X_n) = 0$. So choose $N \in \mathbb{N}$ such that $\mu(X \setminus X_n) < \varepsilon$ for all $n \ge N$. Define M > 0 to be the maximum of the values taken on by simple φ on X. Then

$$\begin{aligned} \int_X f_n \, d\mu &\geq \int_{X_n} f_n \, d\mu \text{ by Monotonicity ((8) of "Lemma")} \\ &\geq (1-\varepsilon) \int_{X_n} \varphi \, d\mu \text{ by definition of } X_n \\ &= (1-\varepsilon) \int_X \varphi \, d\mu - (1-\varepsilon) \int_{X \setminus X_n} \varphi \, d\mu \text{ by Additivity for} \\ &\quad \text{nonnegative simple functions ((3) of Proposition 18.8)} \\ &\quad \text{and the finiteness of the integrals of } \varphi \\ &\geq (1-\varepsilon) \int_X \varphi \, d\mu - \int_{X \setminus X_n} \varphi \, d\mu \end{aligned}$$

Proof (continued).

$$\int_{X} f_{n} d\mu \geq (1 - \varepsilon) \int_{X} \varphi d\mu - \varepsilon M \text{ by (5) of Proposition 18.8}$$
$$= \int_{X} \varphi d\mu - \varepsilon \left(\int_{X} \varphi d\mu + M \right).$$

So

$$\liminf \int_X f_n \, d\mu \ge \int_X \varphi \, d\mu - \varepsilon \left(\int_X \varphi \, d\mu + M \right)$$

and since $\varepsilon > 0$ is arbitrary and $\int_X \varphi \, d\mu + M$ is finite, then (12) follows.

The Monotone Convergence Theorem

The Monotone Convergence Theorem.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence (i.e., pointwise increasing) of nonnegative measurable functions on X. Define $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in X$. Then

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty}f_n\right)\,d\mu=\int_X f\,d\mu.$$

Proof. By Theorem 18.6, f is measurable. By Fatou's Lemma, $\int_X f \leq \liminf \int_X f_n d\mu$. Since $f_n \leq f$ on X, by (18) of "Lemma" we have $\int_X f_n d\mu \leq \int_X f d\mu$ for all $n \in \mathbb{N}$. So

$$\limsup \int_X f_n \, d\mu \leq \int_X f \, d\mu,$$

and the result follows.

The Monotone Convergence Theorem

The Monotone Convergence Theorem.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence (i.e., pointwise increasing) of nonnegative measurable functions on X. Define $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in X$. Then

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty}f_n\right)\,d\mu=\int_X f\,d\mu.$$

Proof. By Theorem 18.6, f is measurable. By Fatou's Lemma, $\int_X f \leq \liminf \int_X f_n d\mu$. Since $f_n \leq f$ on X, by (18) of "Lemma" we have $\int_X f_n d\mu \leq \int_X f d\mu$ for all $n \in \mathbb{N}$. So

$$\limsup \int_X f_n \, d\mu \leq \int_X f \, d\mu,$$

and the result follows.

Beppo Levi's Lemma

Beppo Levi's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence of nonnegative measurable functions on X. If the sequence of integrals $\{\int_X f_n d\mu\}$ is bounded, then $\{f_n\}$ converges pointwise on X to a measurable function f that is finite a.e. on X and

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty}f_n\right)\,d\mu=\int_X f\,d\mu<\infty.$$

Proof. Define $f(x) = \lim_{n\to\infty} f_n(x)$ for each $x \in X$ (since $\{f_n\}$ is increasing, the pointwise limits exist as extended real numbers). Since $\{f_n\}$ is increasing, by the Monotone Convergence Theorem $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$.

Beppo Levi's Lemma

Beppo Levi's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence of nonnegative measurable functions on X. If the sequence of integrals $\{\int_X f_n d\mu\}$ is bounded, then $\{f_n\}$ converges pointwise on X to a measurable function f that is finite a.e. on X and

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty}f_n\right)\,d\mu=\int_X f\,d\mu<\infty.$$

Proof. Define $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in X$ (since $\{f_n\}$ is increasing, the pointwise limits exist as extended real numbers). Since $\{f_n\}$ is increasing, by the Monotone Convergence Theorem $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. Since the sequence $\{\int_X f_n d\mu\}$ is bounded, then $\lim_{n\to\infty} \int_X f_n d\mu$ is bounded; that is, $\int_X f d\mu < \infty$. by proposition 18.9, f is finite a.e. on X.

Beppo Levi's Lemma

Beppo Levi's Lemma.

Let (X, \mathcal{M}, μ) be a measure space and $\{f_n\}$ an increasing sequence of nonnegative measurable functions on X. If the sequence of integrals $\{\int_X f_n d\mu\}$ is bounded, then $\{f_n\}$ converges pointwise on X to a measurable function f that is finite a.e. on X and

$$\lim_{n\to\infty}\left(\int_X f_n\,d\mu\right)=\int_X\left(\lim_{n\to\infty}f_n\right)\,d\mu=\int_X f\,d\mu<\infty.$$

Proof. Define $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in X$ (since $\{f_n\}$ is increasing, the pointwise limits exist as extended real numbers). Since $\{f_n\}$ is increasing, by the Monotone Convergence Theorem $\lim_{n\to\infty} \int_X f_n d\mu = \int_X f d\mu$. Since the sequence $\{\int_X f_n d\mu\}$ is bounded, then $\lim_{n\to\infty} \int_X f_n d\mu$ is bounded; that is, $\int_X f d\mu < \infty$. by proposition 18.9, f is finite a.e. on X.

Proposition 18.10. Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function on X. Then there is an increasing sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and

$$\lim_{n\to\infty}\left(\int_X\psi_n\,d\mu\right)=\int_Xf\,d\mu.$$

Proof. By the Simple Approximation Theorem part (ii), there is an increasing sequence $\{\varphi_n\}$ of simple functions which converges pointwise to f on X. By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_X \varphi_n\,d\mu = \int_X \lim_{n\to\infty} \varphi_n\,d\mu = \int_X f\,d\mu.$$

Proposition 18.10. Let (X, \mathcal{M}, μ) be a measure space and f a nonnegative measurable function on X. Then there is an increasing sequence $\{\psi_n\}$ of simple functions on X that converges pointwise on X to f and

$$\lim_{n\to\infty}\left(\int_X\psi_n\,d\mu\right)=\int_Xf\,d\mu.$$

Proof. By the Simple Approximation Theorem part (ii), there is an increasing sequence $\{\varphi_n\}$ of simple functions which converges pointwise to f on X. By the Monotone Convergence Theorem,

$$\lim_{n\to\infty}\int_X \varphi_n\,d\mu = \int_X \lim_{n\to\infty} \varphi_n\,d\mu = \int_X f\,d\mu.$$

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable Functions.

Let (X, \mathcal{M}, μ) be a measure space and f and g nonnegative measurable functions on X. If α and β are positive real numbers, then

$$\int_X (\alpha f + \beta g) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu.$$

Proof. By (7) of "Lemma" we have that $\int_X \alpha f \, d\mu = \alpha \int_X f \, d\mu$, so we need only establish the result for $\alpha = \beta = 1$ (i.e., for the "addition of functions" part).

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable Functions.

Let (X, \mathcal{M}, μ) be a measure space and f and g nonnegative measurable functions on X. If α and β are positive real numbers, then

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu.$$

Proof. By (7) of "Lemma" we have that $\int_X \alpha f \, d\mu = \alpha \int_X f \, d\mu$, so we need only establish the result for $\alpha = \beta = 1$ (i.e., for the "addition of functions" part). By Proposition 18.10, there are increasing sequences $\{\psi_n\}$ an $d\varphi_n\}$ of nonnegative simple functions that converge pointwise to g and f respectively for which

$$\lim_{n\to\infty}\int_X\psi_n\,d\mu=\int_Xg\,d\mu\text{ and }\lim_{n\to\infty}\int_X\varphi_n\,d\mu=\int_Xf\,d\mu.$$

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable Functions.

Let (X, \mathcal{M}, μ) be a measure space and f and g nonnegative measurable functions on X. If α and β are positive real numbers, then

$$\int_X (\alpha f + \beta g) \, d\mu = \alpha \int_X f \, d\mu + \beta \int_X g \, d\mu$$

Proof. By (7) of "Lemma" we have that $\int_X \alpha f \, d\mu = \alpha \int_X f \, d\mu$, so we need only establish the result for $\alpha = \beta = 1$ (i.e., for the "addition of functions" part). By Proposition 18.10, there are increasing sequences $\{\psi_n\}$ an $d\varphi_n\}$ of nonnegative simple functions that converge pointwise to g and f respectively for which

$$\lim_{n\to\infty}\int_X\psi_n\,d\mu=\int_Xg\,d\mu\,\,\text{and}\,\,\lim_{n\to\infty}\int_X\varphi_n\,d\mu=\int_Xf\,d\mu.$$

Proof (continued). Then $\{\varphi_n + \psi_n\}$ is an increasing sequence of simple functions that converges pointwise to f + g. Then

$$\int_{X} (f+g) = \lim_{n \to \infty} \int_{X} (\varphi_n + \psi_n) \, d\mu \text{ by the Monotone}$$
Convergence Theorem
$$= \lim_{n \to \infty} \left(\int_{X} \varphi_n \, d\mu + \int_{X} \varphi_n \, d\mu \right) \text{ by proposition 18.8 (2)}$$

$$= \lim_{n \to \infty} \int_{X} \varphi_n \, d\mu + \lim_{n \to \infty} \int_{X} \psi_n \, d\mu$$

$$= \int_{X} f \, d\mu + \int_{X} g \, d\mu.$$

Proof (continued). Then $\{\varphi_n + \psi_n\}$ is an increasing sequence of simple functions that converges pointwise to f + g. Then

$$\int_{X} (f+g) = \lim_{n \to \infty} \int_{X} (\varphi_n + \psi_n) \, d\mu \text{ by the Monotone}$$
Convergence Theorem
$$= \lim_{n \to \infty} \left(\int_{X} \varphi_n \, d\mu + \int_{X} \varphi_n \, d\mu \right) \text{ by proposition 18.8 (2)}$$

$$= \lim_{n \to \infty} \int_{X} \varphi_n \, d\mu + \lim_{n \to \infty} \int_{X} \psi_n \, d\mu$$

$$= \int_{X} f \, d\mu + \int_{X} g \, d\mu.$$