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Proposition 18.8

Proposition 18.8

Proposition 18.8. Let (X, M, 1) be a measure space and let ¢ and v be

nonnegative simple functions on X. If & and 3 are positive real numbers,
then

J vt sydn=a [ wduss [ ean @

If A and B are disjoint measurable subsets of X, then

vdn= [vdu+ [ wan 3)
AuB A B
In particular, if Xo C X is measurable and p(X \ Xo) = 0, then
| vdn=[ wdn. (4)
X Xo
Furthermore, if ¢ < ¢ a.e. on X, then
Jvdns [ an (5)
X X
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Proposition 18.8

Proposition 18.8 (continued 1)

Proof. If either i) or ¢ is positive on a set of infinite measure, then the
linear combination a4+ By is also positive on a set of infinite measure
(and simple), and so both sides of (2) are co and (2) holds.
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Proposition 18.8 (continued 1)

Proof. If either i) or ¢ is positive on a set of infinite measure, then the
linear combination a4+ By is also positive on a set of infinite measure
(and simple), and so both sides of (2) are co and (2) holds. Next, suppose
both 1 and ¢ vanish outside a set of finite measure, and hence so does
ath + Bp. The proof of linearity, (2), now follows exactly as it did in
Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).
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Proposition 18.8 (continued 1)

Proof. If either i) or ¢ is positive on a set of infinite measure, then the
linear combination a4+ By is also positive on a set of infinite measure
(and simple), and so both sides of (2) are co and (2) holds. Next, suppose
both 1 and ¢ vanish outside a set of finite measure, and hence so does
ath + Bp. The proof of linearity, (2), now follows exactly as it did in
Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have 9)xaup = ¥xa + 1xg on X, and additivity
over domains, (3), then follows from (2).
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Proposition 18.8 (continued 1)

Proof. If either i) or ¢ is positive on a set of infinite measure, then the
linear combination a4+ By is also positive on a set of infinite measure
(and simple), and so both sides of (2) are co and (2) holds. Next, suppose
both 1 and ¢ vanish outside a set of finite measure, and hence so does
ath + Bp. The proof of linearity, (2), now follows exactly as it did in
Chapter 4 (in the proofs of Lemma 4.1 and Proposition 4.2, see page 72).

For disjoint A and B, we have 9)xaup = ¥xa + 1xg on X, and additivity
over domains, (3), then follows from (2).

Next, (4) follows from (3) since the integral of a since the integral of a
simple function over a set of measure zero is zero by definition.
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Proposition 18.8 (continued 2)

Proof. For monotonicity of the integral, (5), we may assume from (4)
that ¢ < ¢ on all of X. Since ¢ and v are simple and so only take on a
finite number of values, then we can write X = Jj_; X where the X are
disjoint and measurable and ¢ = >~} _; akxx, an do = > ;4 bkxx,
where 0 < ay < by for 1 < k < n.
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Proposition 18.8 (continued 2)

Proof. For monotonicity of the integral, (5), we may assume from (4)
that ¢ < ¢ on all of X. Since ¢ and v are simple and so only take on a
finite number of values, then we can write X = Jj_; X where the X are
disjoint and measurable and ¢ = >~} _; akxx, an do = > ;4 bkxx,
where 0 < ay < by for 1 < k < n. Then by linearity, (2), and the
definition of integral,

/wdu Zaku )(Xe) <Zbku () = [ wdn.
X

and so (5) follows.
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Chebyshev’s Inequality

Chebyshev's Inequality

Chebyshev’s Inequality.

Let (X, M, 1) be a measure space, f a nonnegative measurable function
on X, and A > 0 a real number. Then

1
M{X€X|f(x)>)\}§/fd,u.
A Jx
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Chebyshev’s Inequality

Chebyshev's Inequality

Chebyshev’s Inequality.

Let (X, M, 1) be a measure space, f a nonnegative measurable function
on X, and A > 0 a real number. Then

1
M{XEX|f(X)>)\}§/ fdu.
A Jx
Proof. Define Xy = {x € X | f(x) 2 A} and ¢ = Axx,, . Then ¢ is

simple and 0 < ¢ < f on X.
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Chebyshev’s Inequality

Chebyshev's Inequality

Chebyshev’s Inequality.

Let (X, M, 1) be a measure space, f a nonnegative measurable function
on X, and A > 0 a real number. Then

1
M{XEX\f(X)>)\}§/fd,u.
A Jx

Proof. Define Xy = {x € X | f(x) 2 A} and ¢ = Axx,, . Then ¢ is
simple and 0 < ¢ < f on X. So by definition (and by Lemma)
Mu(Xy) = [xedu < [ fdu. The result now follows. O
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Proposition 18.9

Proposition 18.9

Proposition 18.9. Let (X, M) be a measure space and f nonnegative

measurable function on X for which fx fdu < oo. Then f is finite a.e. on
X and {x € X | f(x) > 0} is o-finite.
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Proposition 18.9

Proposition 18.9. Let (X, M) be a measure space and f nonnegative
measurable function on X for which fx fdu < oo. Then f is finite a.e. on
X and {x € X | f(x) > 0} is o-finite.

Proof. Define Xoc = {x € X | f(x) =00} and X, = {x € X | f(x) > n}.
Then Xs C X, for all n € N and by monotonicity of measure (Proposition
17.1) p(Xoo) < p(Xp) for all n € N.

Real Analysis December 18, 2016 7 / 17



Proposition 18.9

Proposition 18.9. Let (X, M) be a measure space and f nonnegative
measurable function on X for which fx fdu < oo. Then f is finite a.e. on
X and {x € X | f(x) > 0} is o-finite.

Proof. Define Xoc = {x € X | f(x) =00} and X, = {x € X | f(x) > n}.
Then Xs C X, for all n € N and by monotonicity of measure (Proposition
17.1) p(Xso) < p(Xp) for all n € N. By Chebyshev's Inequality with A = n,
u(Xn) <L [ fdu <ooforneN, and so u(Xs) < u(Xn) < L [y Fdp
for all n € N. Since [y f dp is finite, (Xsc) = 0. (This is the same as the
proof of Chebyshev's Inequality from Chapter 4; see page 84.)
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Proposition 18.9

Proposition 18.9. Let (X, M) be a measure space and f nonnegative
measurable function on X for which fx fdu < oo. Then f is finite a.e. on
X and {x € X | f(x) > 0} is o-finite.

Proof. Define Xoc = {x € X | f(x) =00} and X, = {x € X | f(x) > n}.
Then Xs C X, for all n € N and by monotonicity of measure (Proposition
17.1) p(Xso) < p(Xp) for all n € N. By Chebyshev's Inequality with A = n,
u(Xn) <L [ fdu <ooforneN, and so u(Xs) < u(Xn) < L [y Fdp
for all n € N. Since [y f dp is finite, (Xsc) = 0. (This is the same as the
proof of Chebyshev's Inequality from Chapter 4; see page 84.)

Now define X, = {x € X | f(x) > 1/n}. Then by Chebyshev's Inequality
with X =1/n, u(X,) < n [, fdp < oo, and each (X,) is of finite
measure. So {x € X | f(x) >0} =UXE,, and {x € X | f(x) >0} is a
countable union of finite measurable sets. That is, it is o-finite. OJ
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Fatou's Lemma

Fatou's Lemma

Fatou’s Lemma.

Let (X, M, 1) be a measure space and {f,} be a sequence of nonnegative

measurable functions on X where {f,} — f a.e. on X. Assume f is
measurable. Then

/fdugliminf/ f, du.
X X
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Fatou's Lemma

Fatou’s Lemma.

Let (X, M, 1) be a measure space and {f,} be a sequence of nonnegative
measurable functions on X where {f,} — f a.e. on X. Assume f is
measurable. Then

/fdugliminf/ f, du.
X X

Proof. Let Xy be a measurable subset of X for which p(X \ Xo) =0 and
{fa} — f pointwise on Xp. By (9) of “Lemma,” each side of the claim of
Fatou's Lemma remains unchanged if X is replaced by Xp. So, without
loss of generality, {f,} — f pointwise on X.
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Fatou's Lemma

Fatou’s Lemma.

Let (X, M, 1) be a measure space and {f,} be a sequence of nonnegative
measurable functions on X where {f,} — f a.e. on X. Assume f is
measurable. Then

/fdugliminf/ f, du.
X X

Proof. Let Xy be a measurable subset of X for which p(X \ Xo) =0 and
{fa} — f pointwise on Xp. By (9) of “Lemma,” each side of the claim of
Fatou's Lemma remains unchanged if X is replaced by Xp. So, without
loss of generality, {f,} — f pointwise on X. Since [, f dy is defined in
terms of simple functions ¢ for which 0 < ¢ < f, if we establish that

/gpdugliminf/ fndu (12)
X X

for all such ¢, then Fatou's lemma will follow by taking a supremum over
such . So let ¢ be simple with 0 < ¢ < f on X.
Real Analysis December 18, 2016 8 /17



Fatou's Lemma (continued 1)

Proof (continued). If [, ¢ dp = 0 then the desired inequality holds, so
assume [, @ dp > 0.
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Fatou's Lemma

Fatou's Lemma (continued 1)

Proof (continued). If [, ¢ dp = 0 then the desired inequality holds, so
assume [, @ dp > 0.

Case 1. Suppose fx @dp = oco. Then there is a measurable X, C X and
a > 0 for which pu(Xy) = o0 and ¢ = a on X.
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Fatou's Lemma (continued 1)
Proof (continued). If [, ¢ dp = 0 then the desired inequality holds, so
assume [, @ dp > 0.

Case 1. Suppose fx @dp = oco. Then there is a measurable X, C X and
a > 0 for which pu(Xy) = o0 and ¢ = a on X.

For each n € N, define A, = {x € X | fx(x) > a/2 for all k > n}. Then
{An} is an ascending sequence of measurable sets (A, C An11; larger n
implies fewer f; and so more x values).
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Fatou's Lemma (continued 1)

Proof (continued). If [, ¢ dp = 0 then the desired inequality holds, so
assume [, @ dp > 0.

Case 1. Suppose fx @dp = oco. Then there is a measurable X, C X and
a > 0 for which pu(Xy) = o0 and ¢ = a on X.

For each n € N, define A, = {x € X | fx(x) > a/2 for all k > n}. Then
{An} is an ascending sequence of measurable sets (A, C An11; larger n
implies fewer f; and so more x values). Since Xoo C U, A, then by
Continuity of Measure (Proposition 17.2) and Monotonicity of Measure
(Proposition 17.1),

lim 1(An) = ( lim A,,) = (U221 A0) > 1i(Xoo) = 00
n—oo n—oo
But by Chebyshev's Inequality, for each n € N,
2 2
H(As) < / fodpu < / fo dp.
a n a . Jx
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Fatou's Lemma (continued 2)

Proof (continued). So as n — oo, the left hand side approaches co and
so the right hand side approaches oo and

lim /f,,d,u:oo:/god,u.
n—oo X X
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Fatou's Lemma

Fatou's Lemma (continued 2)

Proof (continued). So as n — oo, the left hand side approaches co and
so the right hand side approaches oo and

lim /f,,d,u:oo:/god,u.
n—oo X X

Case 2. Suppose 0 < [, ¢ du < o0o. Now ¢ = 0 on some subset of X,
say Xo. Then [, o du = on o dpu. Also,
lim inf on fodp < liminf [, f, dp. So if we can verify that

Jx, pdu <liminf [y ©ndp, then (12) will follow. That is, without loss of
generality we can assume ¢ > 0 on all of X.

Real Analysis December 18, 2016 10 / 17



Fatou's Lemma (continued 2)

Proof (continued). So as n — oo, the left hand side approaches co and
so the right hand side approaches oo and

lim /f,,d,u:oo:/god,u.
n—ee Jx X

Case 2. Suppose 0 < [, ¢ du < o0o. Now ¢ = 0 on some subset of X,
say Xo. Then [, o du = on o dpu. Also,

lim inf on fodp < liminf [, f, dp. So if we can verify that

Jx, pdu <liminf [, ©ndp, then (12) will follow. That is, without loss of
generality we can assume ¢ > 0 on all of X. Since we are hypothesizing
that [, ¢ dp < oo, this implies that (X) < co. Let € > 0 and define

Xn={x € X | fx(x) > (1 —€)p(x) for all k > n}.

Then {X,} is an ascending sequence of measurable subsets of X (similar
to Case 1) whose union equals X (since ¢ < f). So {X \ X,} is a
descending sequence of measurable sets whose intersection is &.
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Fatou's Lemma

Fatou's Lemma (continued 3)

Proof (continued). Since p(X) < oo, by the Continuity of Measure

(Proposition 17.2) limp—0 (X \ Xp) = 0. So choose N € N such that
u(X\ Xn) < e forall n > N. Define M > 0 to be the maximum of the
values taken on by simple ¢ on X.
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Fatou's Lemma (continued 3)

Proof (continued). Since p(X) < oo, by the Continuity of Measure
(Proposition 17.2) limp—0 (X \ Xp) = 0. So choose N € N such that
u(X\ Xn) < e forall n > N. Define M > 0 to be the maximum of the
values taken on by simple ¢ on X. Then

/ fadp > / fn dp by Monotonicity ((8) of “Lemma™)
X

n

v

(1- 5)/ ¢ du by definition of X,
Xn

= (1—5)/ gpd,u—(l—s)/ ¢ dp by Additivity for
X X\ Xn

nonnegative simple functions ((3) of Proposition 18.8)

and the finiteness of the integrals of ¢

> (1—8)/<pdu—/ pdu
X X\ X,
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Fatou's Lemma (continued 4)

Proof (continued).

/ fodp > (1— 6)/ @ du —eM by (5) of Proposition 18.8
X X

= /god,u—s(/god,LH—/\/I).
X X
Iiminf/ f,,duZ/godu—s(/cpdu—i—M)
X X X

and since € > 0 is arbitrary and [, ¢ dp + M is finite, then (12)
follows.

O
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The Monotone Convergence Theorem

The Monotone Convergence Theorem

The Monotone Convergence Theorem.

Let (X, M, 1) be a measure space and {f,} an increasing sequence (i.e

pointwise increasing) of nonnegative measurable functions on X. Define
f(x) = limp_ 0 fa(x) for each x € X. Then

lim (/fndu>:/(l|mf du = /fdu
n—oo X n—oo
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The Monotone Convergence Theorem

The Monotone Convergence Theorem

The Monotone Convergence Theorem.
Let (X, M, 1) be a measure space and {f,} an increasing sequence (i.e.,
pointwise increasing) of nonnegative measurable functions on X. Define
f(x) = limp_ 0 fa(x) for each x € X. Then

nIer;O(/)<fndN>:/ (nnm f dy = /fdu

Proof. By Theorem 18.6, f is measurable. By Fatou's Lemma,
Jx £ <liminf [, f,dp. Since f, < f on X, by (18) of “Lemma” we have
Jx fadp < [y fdpforall neN. So

Iimsup/ fndug/ fdu,
X X

and the result follows. ]
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Beppo Levi's Lemma

Beppo Levi's Lemma

Beppo Levi’s Lemma.
Let (X, M, 1) be a measure space and {f,} an increasing sequence of
nonnegative measurable functions on X. If the sequence of integrals

{Jx fadp} is bounded, then {f,} converges pointwise on X to a
measurable function f that is finite a.e. on X and

lim </ Mu):/ (nm f,,) du:/fdu<oo.
n—oo X X n—o0 X
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Beppo Levi's Lemma

Beppo Levi’s Lemma.

Let (X, M, 1) be a measure space and {f,} an increasing sequence of
nonnegative measurable functions on X. If the sequence of integrals
{Jx fadp} is bounded, then {f,} converges pointwise on X to a
measurable function f that is finite a.e. on X and

lim </ Mu):/ (nm f,,) du:/fdu<oo.
n—oo X X n—o0 X

Proof. Define f(x) = lim,_ fn(x) for each x € X (since {f,} is
increasing, the pointwise limits exist as extended real numbers). Since {f,}
is increasing, by the Monotone Convergence Theorem

lim,_ fX fodu = fX fdpu.
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Beppo Levi's Lemma

Beppo Levi’s Lemma.

Let (X, M, 1) be a measure space and {f,} an increasing sequence of
nonnegative measurable functions on X. If the sequence of integrals
{Jx fadp} is bounded, then {f,} converges pointwise on X to a
measurable function f that is finite a.e. on X and

lim </ Mu):/ (nm f,,) du:/fdu<oo.
n—oo X X n—o0 X

Proof. Define f(x) = lim,_ fn(x) for each x € X (since {f,} is
increasing, the pointwise limits exist as extended real numbers). Since {f,}
is increasing, by the Monotone Convergence Theorem

limp—oo [y fodp = [y f dp. Since the sequence { [, f, duu} is bounded,
then lim,_ [y fo dp is bounded; that is, [, f du < oo. by proposition
18.9, f is finite a.e. on X. OJ
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Proposition 18.10

Proposition 18.10. Let (X, M, 1) be a measure space and f a
nonnegative measurable function on X. Then there is an increasing
sequence {1} of simple functions on X that converges pointwise on X to

f and
lim </ ¢,,du> :/ fdu.
n—oo X X
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Proposition 18.10

Proposition 18.10. Let (X, M, 1) be a measure space and f a
nonnegative measurable function on X. Then there is an increasing
sequence {1} of simple functions on X that converges pointwise on X to

f and
lim </ ¢,,du> :/ fdu.
n—oo X X

Proof. By the Simple Approximation Theorem part (ii), there is an
increasing sequence {y,} of simple functions which converges pointwise to
f on X. By the Monotone Convergence Theorem,

lim /go,,du:/ lim go,,d,u:/fd,u.
n—oo X Xn—>OO X

O
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Proposition 18.11

Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable
Functions.

Let (X, M, 1) be a measure space and f and g nonnegative measurable
functions on X. If a and 3 are positive real numbers, then

/X(af+f3g)du=a/xfdg+ﬁ/xgdu.
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Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable
Functions.

Let (X, M, 1) be a measure space and f and g nonnegative measurable
functions on X. If a and 3 are positive real numbers, then

/X(af+f3g)du=a/xfdg+ﬁ/xgdu.

Proof. By (7) of “Lemma” we have that [, af du = «a [, fdpu, so we
need only establish the result for « = § =1 (i.e., for the “addition of
functions” part).
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Proposition 18.11

Proposition 18.11. Linearity of Integrals of Nonnegative Measurable
Functions.

Let (X, M, 1) be a measure space and f and g nonnegative measurable
functions on X. If o and (3 are positive real numbers, then

/X(af+f3g)du=a/xfdu+ﬁ/xgdu.

Proof. By (7) of “Lemma” we have that [, af du = «a [, fdpu, so we
need only establish the result for « = § =1 (i.e., for the “addition of
functions” part). By Proposition 18.10, there are increasing sequences
{tn} an dyp} of nonnegative simple functions that converge pointwise to
g and f respectively for which

lim /¢ndu:/gduand lim /c,p,,d,u:/fd,u.
n—oo X X n—oo X X
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Proposition 18.11 (continued)

Proof (continued). Then {¢, + v¥,} is an increasing sequence of simple
functions that converges pointwise to f 4 g.
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Proposition 18.11 (continued)

Proof (continued). Then {¢, + v¥,} is an increasing sequence of simple
functions that converges pointwise to f + g. Then

n—oo

/(f+g) = lim /(gon—i-w,,)d,u by the Monotone
X X

Convergence Theorem

= lim (/ ©n du+/ ©n du> by proposition 18.8 (2)
n—oo X X

= lim /go,,d,u—k lim /@Z)ndu
n—oo X n—oo X

= /fdu—i—/gd,u.
X X

O
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