Real Analysis

Chapter 18. Integration Over General Measure Spaces
18.3. Integration of General Measurable Functions—Proofs of Theorems

REAL
ANALYSIS

H.L Royden + PM. Firzparrick Fe
Edition

(I Real Analysis January 20,2019 1/22

L Theoemisi2|
Theorem 18.12
Theorem 18.12. Let (X, M, 1) be a measure space and let f and g be

integrable over X.
(Linearity) For o, 3 € R, af + [3g is integrable over X and

/(a-f+,ﬁg) du = a-/ fd;1+,53/ gdpu.
Jx Jx Jx

(Monotonicity) If f < g a.e. on X, then

j fd;z.gj gdpu.
X X

(Additivity Over Domains) If A and B are disjoint measurable sets, then

/ fd,u,:/fd,u+/fd;;.
AUB A B
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The Integral Comparison Test

The Integral Comparison Test.

Let (X, M, 1) be a measure space and f a measurable function on X. If g
is integrable over X and dominates f on X in the sense that |f| < g a.e.
on X, then f is integrable over X and

‘j fdu S/|f|du£/gd;a.
X X X

Proof. Since |f| < g a.e. on X, (8) of “Lemma” implies that |f| is
integrable over X. Then

]fd;; /f+d,u—/f_d,u
X Jx Jx

< / fr d,u.+/ f~ du by the Triangle Inequality
X X

by linearity (Proposition 18.11)

= /|f|dﬁ§/fd,u by (8) of Lemma.
X X

]
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Theorem 18.12 (continued 1)
Proof. We deal with linearity in two steps. First, let « € R, a > 0, and
consider af. By definition of integral, we have
/ afdyp = / (ar)™ — / (af) " du
X X X
= j af T du —/ af  du
X X
52 0:/ frdu —a/ f~ dpu by Proposition 18.11
Jx X
= a (/ f+d,u.—/ f‘dp:) :o:/ fdpu.
X X X
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Theorem 18.12 (continued 2)

Proof (continued). Similarly, for o < 0,

/Xm‘d,u = /X(m")+ —/X(o:f)_ dpu

= /(—r}-)f_ dp — /(—a-)f+ du since (af)t = (—a)f~
Jx Jx
and (af)” = (—a)f"

= —0-'/ f~du— (—a)] f* du by Proposition 18.11
X X

a (j f+d,u—/ f‘d,u) zcx/ fdpu.
X X X

Second, we consider f + g. By the definition of integrable, |f| and |g| are
both integrable over X. So by Proposition 18.11, |f| + |g] is also
integrable over X. Since |f + g| < |f| + |g| pointwise on X, by (8) of
“Lemma” of the previous section we have that |f + g| is integrable over X.
So the positive and negative parts of f, g, and f + g are integrable over X.
0 | Real Analysis
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L Theoremisi2 |
Theorem 18.12 (continued 3)

Proof (continued). For monotonicity, assume f < g a.e. on X. Then
g —f >0a.e. on X and so by (8) of Lemma,

Osf(g—f):/gdu—/ fdu,
Jx Jx JX

or [\ fdu< [y gdp.
For additivity, with AN B = @ we have fxaus = f(xa + x8)
=fxa+fxson X, so

/ fxaugdp = / f du by definition
Jx Jaus

= / (fxxa + fxg) du by substitution
X

= / fxa+ / X8 by linearity
Jx Jx

= /f+ / f by definition. O
JA JB
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Theorem 18.12 (continued 3)

Proof (contineud). By the note above, we may assume f and g are finite
on all of X. Notice

f+g=(f+g)"—(fF+g) =(f"—f")+ (g — g~) pointwise on X,

all of these are finite, and (f+g)T +f~ +g =(f+g)  +f"+g" on
X. By Proposition 18.11 (since all of these are nonnegative)

/(f +g)tdu+ / f- d,u.-l-/ g du
Jx Jx X

:](f—i—g)_d,u-Jr/ f+d,u-+/ g du.
X X X

By the integrability of all of these, we can rearrange to get

/);(f +g)tdu— jx(f +g)" dp

:/f+d,t;.—/f_d,u.+/g+d,u-—/g_d,u
X X X X

or [\ (f+g)du= [, fdu+ [+Xgdu. Sowe have linearity.
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Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity over Domains of Integration.
Let (X, M, 1) be a measure space, let function f be integrable over X,
and let {X,}72; be a disjoint countable collection of measurable sets

whose union is X. Then
o0

fd,uz/ fdu= (/ fd,u).

/X JEg ; [

Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. For n € N, define
fo=>1_1fxx, on X. Then {f,} — f pointwise on X and the
convergence is monotone, so by the Monotone Convergence Theorem,

/fdpt:/ lim f,dp = lim /fndp:: lim / (ZF'XX") du
JXx . Xﬂ—‘DC- n—.-oo. X ﬂ—'OG. X =1

n oo

:nimmZ(/)(fxxnd!L)ZZ(/X“M)- 0

k=1 k=1
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Theorem 18.14. Continuity of Integration

Theorem 18.14. Continuity of Integration.
Let (X, M) be a measure space and let the function f be integrable over
X
(i) ¥ {Xn}52, is an ascending countable collection of
measurable subsets of X whose union is X, then

/fd,u: lim (/ fd]u)‘
JX =00 NJ X,

(i) If {X,}52 is a descending countable collection of
measurable subsets of X, then

] fdyp= lim (/ fdu).
r—]xn N—o0 "

Proof. Define m: M — [0,00] as m(E) = [ f dj.. By Countable
Additivity over Domain, we have that m is countably additive. So m is a
measure on (X, M, m) is a measure space. So, by the Continuity of
Measure (Proposition 17.2), both (i) and (ii) follow. d
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem.

Let (X, M, ;1) be a measure space and let {f,} be a sequence of
measurable functions on X for which {f,} — f pointwise a.e. on X and
suppose f is measurable. Assume there is a nonnegative function g that is
integrable over X and dominates the sequence {f,} on X in the sense that
|fal < g a.e.on X for all n € N. Then f is integrable over X and

lim (/ f,-,d,u) =/ (Iim f,,) duz/ fdp.
n—oo X X N—o0 X

Proof. For each n€ N, g — f, and g + f,, are nonnegative measurable
functions. By the Integral Comparison Test, for each n € N, f and f, are
integrable over X since g is integrable over X. So

/ gdu— / fdu = /(g — f) dyu by linearity, Theorem 18.12
Jx Jx Jx
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Theorem 18.15

Theorem 18.15. Let (X, M, ;1) be a measure space and f a measurable
function on X. If f is bounded on X and vanishes outside a set of finite
measure, then f is integrable over X.

Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. Let Xp be a set of
finite measure for which f vanishes on X'\ Xp. Let M > 0 be a bound on
f: 0<f < Mon X. Define p = Myx,. Then 0 < f < ¢ on X and so by
(8) of “Lemma,”

/ fdu< ] wdp = Mp(Xp) < oc.
X X

January 20, 2019 11 /22

The Lebesgue Dominated Convergence

The Lebesgue Dominated Convergence Theorem
(continued 1)

Proof (continued).

/gd,u—/ fdu < Iiminfj (g — fy) di by Fatou’s Lemma
X X X

= /gd‘u—llmsup/ fn d;t._
X X

/ gdu+ / fdu = / (g + f) du by linearity, Theorem 18.12
Jx Jx Jx

and

< liminf [ (g + f,) du by Fatou's Lemma
Jx

= /gd,u,-i-liminf/ fndis.
Jx X
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The Lebesgue Dominated Convergence Theorem
(continued 2)

Proof (continued). So

lim sup/ fndu < ] f du by the first inequality
X X

< Iiminf] f du by the second inequality.
X

Therefore,
fdu= lim fn dp.
X n— Jx
O
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L Proposition 1817 ]

Proposition 18.17 (continued 1)

Proof (continued). The in £ C X,

/ Fdpy = / (V+f—2)du= j v dp+ /(f — 1)) dp by linearity,
E E E E
Proposition 18.11

= / vdu+ (/ fdu— / {0 d;,r.) by linearity, Theorem 18.12
JE JE JE

< vdu+ =
Jovans

< Mm(E) +% by monotonicity, Proposition 18.8.

If we take § = &/(2M), then (21) holds for any E with m(E) < 6.
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Proposition 18.17

Proposition 18.17. Let (X, M, i) be a measure space and let the
function f be integrable over X. Then for each £ > 0, thereisa d > 0
such that for any measurable subset E of X,

if W(E) < 0 then / Ifldp < e. (21)
E

Furthermore, for each £ > 0, there is a subset Xy of X that has finite

measure and
/ |fldp < e.
J X\ Xo

Proof. We show the result for f > 0 on X, and the general result will
follow by considering positive and negative parts. Let ¢ > 0. Since [, f dpu
is finite, we have from the definition of the integral of a nonnegative
function (page 367) that there is a simple function 1) on X for which
0<¢¥<fonXand0< [, fdu— [y1du<e/2 Choose M > 0 such
that 0 < 1) < M on X (which can be done since v is simple).
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Proposition 18.17 (continued 2)

Proof (continued). Since v is simple and integrable over X, measurable
set Xo = {x € X | ¥(x) > 0} has finite measure. Moreover,

/ fdu
X\Xo

/ (f —v)du
X\ Xo

(f — %) du by additivity, Theorem 8.12
X

IA

< £
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The Vitali Convergence Theorem

The Vitali Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of functions
on X that is both uniformly integrable and tight over X. Suppose

{fa} — f pointwise over X. Then

lim (/ f,,d,u) =/ (Iim f,,) duz/ fdp.
n—oQ X X n—oo X

Proof. For n € N, |f — f,| < |f| + |f,| pointwise on X. If Xy and X; are
measurable subsets of X for which X; C Xp, then
X =X, U (Xo\ X1) U (X \ Xo). So forall n€N,

/);(f,, — f)du

< / |fo — f| dp by the Integral Comparison Test
X

= |f,,—f|d;;.+/ |f,,—n|d,u.+/ |fo— fldu
I X J X\ X1 JX\Xo
by Additivity over Domains, Theorem 18.12
(I Real Analysis January 20,2019 18 / 22

The Vitali Convergence Theorem (continued 2)

Proof (continued). So

/ (Ifal + [£]) dp = / |fa] dpu + / |f| dp by linearity,
X\Xo X\ Xo X\Xo
Theorem 18.11

¢ ¢ £
< 6+6—§fornEN. (24)
Since {f,} is uniformly integrable over X, there is 4; > 0 such that for
measurable subset £ of X: if j(E) < 61 then [ |fa| dp < £/6 for all
n € N. Since f is integrable over X, by Proposition 18.17 there is 4, > 0
such that for measurable subset E of X: if u(E) < d2 then
Jelfldp < e/6. Let § = min{dy,02}. We now have that if u(E) < 4, then

/(|fn| +|f])dp = / |f,,|d,u+/ |f| du by linearity, Theorem 18.11
E E E

< = % for all n € N. (25)

_l’_

| ™
| ™
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The Vitali Convergence Theorem (continued 1)

Proof (continued).

V(fn—f}du‘ < [ Vo-flans [ Gal+ 1D an
X X1 Xo\ X1

+/ (Ifal + |f]) duu by monotonicity,
X\ Xo
(8) of “Lemma.” (23)

Let € > 0. Since f is integrable over X, y Proposition 18.17 there is
measurable Xo C X (of finite measure) such that [y, |f|du <e/6.
Since {f,} is tight over X, we also have for Xy (of finite measure),

S22, |fal di < €/6. (Technically, we have an X3 for f and an XZ for {f,},
but we can define Xo = X} U X3 to get the above two claims.)
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The Vitali Convergence Theorem (continued 3)

Proof (continued). Since f is integrable over X, then f is finite a.e. on X
by Proposition 18.9 applied to f* an df . Also, for set Xy above we have
1(Xo) < oo. So by Egoroff's Theorem (page 364), there is a measurable
subset Xj of Xy for which (Xo \ X1) > d and {f,} converges uniformly on
X1 to f (remember, Egoroff gives us that pointwise convergence is
“nearly” uniform convergence). So by (25), since p(Xg \ X1) <9,

/ (Ifal + |F]) dp < < for n € N. (26)
X\ X 3

Since {f,} converges uniformly to f on Xj, a set of finite measure (since
Xp is finite measure), there is N € N for which

j [fo = fldp < sup{|fi(x) — |f(x)|}(X1) by Integral Comp. Test
X1 XEXy
< % for all n > N. (27)
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The Vitali Convergence Theorem (continued 4)

Proof (continued). Applying inequalities (24), (26), and (27) to
inequality (23) gives | [, (f, — f)d;;.‘ < ¢ for all n > N. That is, by
linearity (Theorem 18.12)

/fnd;,r.—/fd,u
X X

lim / fodp = / fdpu.
n=ee Jx JX

< g foralln>=N,

or
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