Real Analysis J

Chapter 18. Integration Over General Measure Spaces
18.3. Integration of General Measurable Functions—Proofs of Theorems

REAL
ANALYSIS

H.L. Royden » P.M. Fitzpatrick Fourth
Edition

Real Analysis January 20, 2019 1/ 22



R —
Table of contents

© The Integral Comparison Test

© Theorem 18.12

© Theorem 18.13. Countable Additivity

@ Theorem 18.14. Continuity of Integration

© Theorem 18.15

@ The Lebesgue Dominated Convergence Theorem
@ Proposition 18.17

© The Vitali Convergence Theorem

Real Analysis January 20, 2019 2 /22



The Integral Comparison Test

The Integral Comparison Test

The Integral Comparison Test.

Let (X, M, 1) be a measure space and f a measurable function on X. If g

is integrable over X and dominates f on X in the sense that |f| < g a.e.
on X, then f is integrable over X and

’/ fdu S/!fldué/gdu-
X X X
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The Integral Comparison Test

The Integral Comparison Test.

Let (X, M, 1) be a measure space and f a measurable function on X. If g
is integrable over X and dominates f on X in the sense that |f| < g a.e.
on X, then f is integrable over X and

’/fdu [ ifduz [ gan

Proof. Since |f| < g a.e. on X, (8) of “Lemma” implies that |f| is
integrable over X. Then

/fd,u
X

/ frdu —/ = d,u‘ by linearity (Proposition 18.11)
X X
< / fr du—i—/ f~ du by the Triangle Inequality

X X

= /]f|dy,§/fd,u, by (8) of Lemma.
X X

O
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Theorem 18.12

Theorem 18.12. Let (X, M, 1) be a measure space and let f and g be
integrable over X.

(Linearity) For o, 8 € R, af + g is integrable over X and

/X(af+f3g)du=a/xfdu+ﬁ/xgdu.

(Monotonicity) If f < g a.e. on X, then

/fdu</gdu-
X X

(Additivity Over Domains) If A and B are disjoint measurable sets, then

/ fdu—/fdy,Jr/fdu.
AUB A B
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Theorem 18.12 (continued 1)

Proof. We deal with linearity in two steps. First, let « € R, a > 0, and
consider af. By definition of integral, we have

/Xafdu - /X(ar)+—/x(af)— du
_ /onerdM—/Xaf‘du

= a/ frdu— a/ f~ du by Proposition 18.11
X X

= a</ f+du—/f_du>:a/fdu.
X X X
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Theorem 18.12 (continued 2)

Proof (continued). Similarly, for a < 0,

/onfd,u = /X(af)+—/x(af)— du

= /(—a)f du — / (—a)fT du since (af)t = (—a)f~
X X
and (af)” = (—a)f "

= —a/ fmdp— (—a)/ fT du by Proposition 18.11
X X

= oz(/ f+du—/fd,u):a/ fdu.
X X X
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Theorem 18.12 (continued 2)

Proof (continued). Similarly, for a < 0,

/onfd,u = /X(af)+—/x(af)— du

= /(—a)f du — / (—a)fT du since (af)t = (—a)f~
X X
and (af)” = (—a)f "

= —a/ fmdp— (—a)/ fT du by Proposition 18.11
X X

= oz(/ f+du—/fd,u):a/ fdu.
X X X

Second, we consider f + g. By the definition of integrable, |f| and |g| are

both integrable over X. So by Proposition 18.11, |f| + |g]| is also

integrable over X. Since |f + g| < |f| + |g| pointwise on X, by (8) of

“Lemma" of the previous section we have that |f + g| is integrable over X.

So the positive and negative parts of f, g, and f + g are integrable over X.
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Theorem 18.12 (continued 3)

Proof (contineud). By the note above, we may assume f and g are finite
on all of X. Notice

frg=(f+g)" —(fF+g)  =(ft —f )+ (gt — g~) pointwise on X,
all of these are finite, and (f + g)" +f  +g =(f+g)” +f" + gt on
X.
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Theorem 18.12 (continued 3)

Proof (contineud). By the note above, we may assume f and g are finite
on all of X. Notice

f+g=(Ff+g)t—(f+g) =(ft —f")+ (gt — g~) pointwise on X,
all of these are finite, and (f +g)t +f +g =(f+g)  +f " +g" on
X. By Proposition 18.11 (since all of these are nonnegative)

/(f+g)+du+/ fd,u+/gdu

X X X

:/(f+g)du+/ f+du—|—/g+d,u.
X X X

By the integrability of all of these, we can rearrange to get

J ¢+ ertdu= [ (F+e)du

:/f+du—/fdu+/g+du—/gd,u
X X X X

or [\ (f+g)du= [, fdu+ [ +Xgdu. So we have linearity.

— e e



Theorem 18.12 (continued 3)

Proof (continued). For monotonicity, assume f < g a.e. on X. Then
g —f >0a.e. on X and so by (8) of Lemma,

Og/x(g—f)=/xgdu—/xfdu,

or [\ fdu< [ gdpu.
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Theorem 18.12 (continued 3)

Proof (continued). For monotonicity, assume f < g a.e. on X. Then
g —f >0a.e. on X and so by (8) of Lemma,

Og/x(g—f)=/xgdu—/xfdu,

or [\ fdu< [ gdpu.
For additivity, with AN B = @& we have fxaus = f(xa+ xB)
=fxa+ fxs on X, so

/ fxausdu = / f du by definition
X AuB

= / (fxxa + fxgB) du by substitution
X

= /fXA+/XB by linearity
X X

= / f+ / f by definition. O
A B
Real Analysis January 20, 2019 8 /22



Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity over Domains of Integration.
Let (X, M, 1) be a measure space, let function f be integrable over X,
and let {X,}5°, be a disjoint countable collection of measurable sets
whose union is X. Then

/deu:/UEkfdu:i</Ekfdu>.

n=1

Real Analysis January 20, 2019 9/ 22



Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity over Domains of Integration.
Let (X, M, 1) be a measure space, let function f be integrable over X,
and let {X,}5°, be a disjoint countable collection of measurable sets

whose union is X. Then
o0

fdu:/ fdu= (/ fd,u>.

/)( WE ; Ex

Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. For n € N, define

fn=> r_1fxx, on X.
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Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity over Domains of Integration.
Let (X, M, 1) be a measure space, let function f be integrable over X,
and let {X,}5°, be a disjoint countable collection of measurable sets
whose union is X. Then

/deu:/UEkfdu:i</Ekfdu>.

n=1
Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. For n € N, define
fn=>r_1fXxx, on X. Then {f,} — f pointwise on X and the
convergence is monotone, so by the Monotone Convergence Theorem,

n
/fdu:/ lim f,dp = Iim/fndu: Iim/ ZfXXn du
X Xn—»oo n—oo X n—oo X k:]_
n o0
:IimZ(/fXXnd,u>:Z</fdp,>. O
nﬂook:]- X X

k=1
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Theorem 18.14. Continuity of Integration

Theorem 18.14. Continuity of Integration.

Let (X, M) be a measure space and let the function f be integrable over

X.
(i) If {Xh}52, is an ascending countable collection of
measurable subsets of X whose union is X, then

/fd,u: lim (/ fd,u).
X n—oo n

(i) If {Xn}52, is a descending countable collection of
measurable subsets of X, then

/ fdu= lim (/ fd,u>.
NXn =00 \J X,

Real Analysis January 20, 2019
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Theorem 18.14. Continuity of Integration

Theorem 18.14. Continuity of Integration.
Let (X, M) be a measure space and let the function f be integrable over
X.
(i) If {Xh}52, is an ascending countable collection of
measurable subsets of X whose union is X, then

/fd,u: lim (/ fd,u).
X n—oo n

(i) If {Xn}52, is a descending countable collection of
measurable subsets of X, then

/ fdu= lim (/ fd,u>.
NXn =00 \J X,

Proof. Define m: M — [0,00] as m(E) = [ f dju. By Countable
Additivity over Domain, we have that m is countably additive. So m is a
measure on (X, M, m) is a measure space. So, by the Continuity of
Measure (Proposition 17.2), both (i) and (ii) follow. O
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Theorem 18.15

Theorem 18.15. Let (X, M, 1) be a measure space and f a measurable
function on X. If f is bounded on X and vanishes outside a set of finite
measure, then f is integrable over X.
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Theorem 18.15

Theorem 18.15. Let (X, M, 1) be a measure space and f a measurable
function on X. If f is bounded on X and vanishes outside a set of finite
measure, then f is integrable over X.

Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. Let Xy be a set of
finite measure for which f vanishes on X \ Xy. Let M > 0 be a bound on
f:0<f < Mon X. Define p = Mxx,.
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Theorem 18.15

Theorem 18.15. Let (X, M, 1) be a measure space and f a measurable
function on X. If f is bounded on X and vanishes outside a set of finite
measure, then f is integrable over X.

Proof. We show the result for f > 0 on X, and the general result will
then follow by considering positive and negative parts. Let Xy be a set of
finite measure for which f vanishes on X \ Xy. Let M > 0 be a bound on
f:0<f<Mon X. Define p = Mxx,. Then 0 < f < ¢ on X and so by
(8) of “Lemma,”

/fd,uﬁ/gpdu:/\/l,u(xo)<oo.
X X
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of
measurable functions on X for which {f,} — f pointwise a.e. on X and
suppose f is measurable. Assume there is a nonnegative function g that is
integrable over X and dominates the sequence {f,} on X in the sense that
|fa] < g a.e.on X for all n € N. Then f is integrable over X and

lim </ f,,du> :/ (nm fn> du:/ fdu.
n—oo X X n—oo X
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of
measurable functions on X for which {f,} — f pointwise a.e. on X and
suppose f is measurable. Assume there is a nonnegative function g that is
integrable over X and dominates the sequence {f,} on X in the sense that
|fa] < g a.e.on X for all n € N. Then f is integrable over X and

lim </ f,,du> :/ (nm fn> du:/ fdu.
n—oo X X n—oo X

Proof. For each n € N, g — f, and g + f, are nonnegative measurable
functions. By the Integral Comparison Test, for each n € N, f and f, are
integrable over X since g is integrable over X. So

/gdu—/ fdu = /(g— f) du by linearity, Theorem 18.12
X X X
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 1)
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 1)

Proof (continued).

/gdu—/fdu
X X

IN

lim inf/ (g — fn) dp by Fatou's Lemma
X

= /gd,u—limsup/ fndu,
X X

/gdu—i—/ fdu = /(g+ ) du by linearity, Theorem 18.12
X X X

and

< lim inf/ (g + fy) du by Fatou's Lemma
X

= /gd,u—Himinf/ fndu.
X X
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 2)
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 2)

Proof (continued). So

Iimsup/ fodu < / f du by the first inequality
X X

< Iiminf/ f du by the second inequality.
X

/fd,u— lim /fdu

Therefore,
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Proposition 18.17

Proposition 18.17

Proposition 18.17. Let (X, M, 1) be a measure space and let the
function f be integrable over X. Then for each ¢ > 0, thereisa § > 0
such that for any measurable subset E of X,

if 1u(E) < & then / Il dp < e. (21)
E

Furthermore, for each ¢ > 0, there is a subset Xy of X that has finite

measure and
/ |fldu < e.
X\ Xo
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Proposition 18.17

Proposition 18.17. Let (X, M, 1) be a measure space and let the
function f be integrable over X. Then for each ¢ > 0, thereisa § > 0
such that for any measurable subset E of X,

if 1u(E) < & then / Il dp < e. (21)
E

Furthermore, for each ¢ > 0, there is a subset Xy of X that has finite

measure and
/ |fldu < e.
X\ Xo

Proof. We show the result for f > 0 on X, and the general result will
follow by considering positive and negative parts. Let € > 0. Since fx fdu
is finite, we have from the definition of the integral of a nonnegative
function (page 367) that there is a simple function ¢ on X for which
0<y<fonXand0< [, fdu— [,du<e/2. Choose M > 0 such
that 0 <4 < M on X (which can be done since v is simple).
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Proposition 18.17 (continued 1)

Proof (continued). The in E C X,

/fd,u = /(¢+f—1/))du:/1/1du+/(f—1/1)dubylinearity,
E E E E
Proposition 18.11

= / Ydu+ </ fdu— / wdu> by linearity, Theorem 18.12
E E E

£
< / vdp+ =
E 2

< Mm(E) —|—§ by monotonicity, Proposition 18.8.

If we take 0 = ¢/(2M), then (21) holds for any E with m(E) < 4.
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Proposition 18.17 (continued 2)

Proof (continued). Since ¢ is simple and integrable over X, measurable
set Xo = {x € X | ¢(x) > 0} has finite measure. Moreover,

/ fdu = / (f =) du
X\Xo X\Xo
< /(f — 1)) dp by additivity, Theorem 8.12
X

< e

O
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The Vitali Convergence Theorem

The Vitali Convergence Theorem

The Vitali Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of functions
on X that is both uniformly integrable and tight over X. Suppose
{fa} — f pointwise over X. Then

lim </ f,,du> :/ (Iim fn) du:/ fdu.
n—oo X X n—oo X
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The Vitali Convergence Theorem

The Vitali Convergence Theorem

The Vitali Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of functions
on X that is both uniformly integrable and tight over X. Suppose

{fa} — f pointwise over X. Then

lim </ f,,du> :/ (Iim fn) du:/ fdu.
n—oo X X n—oo X

Proof. For n € N, |f — f,| <|f| + |fy| pointwise on X. If X and X are
measurable subsets of X for which X; C Xy, then
X :X1U(X0\X1)U(X\X0)

Real Analysis January 20, 2019 18 / 22



The Vitali Convergence Theorem

The Vitali Convergence Theorem.

Let (X, M, 1) be a measure space and let {f,} be a sequence of functions
on X that is both uniformly integrable and tight over X. Suppose

{fa} — f pointwise over X. Then

lim </ f,,du> :/ (Iim fn) du:/ fdu.
n—oo X X n—oo X

Proof. For n € N, |f — f,| <|f| + |fy| pointwise on X. If X and X are
measurable subsets of X for which X; C Xy, then
X :X1U(X0\X1)U(X\X0) So for all n € N,

/X(fn—f)du'

IN

/ |f, — f| du by the Integral Comparison Test
X

= ]f,,—f|d,u+/ \f,,—n|d,u+/ |fp— | dp
Xi Xo\ X1 X\Xo
by Additivity over Domains, Theorem 18.12
Real Analysis January 20, 2019 18 / 22



The Vitali Convergence Theorem (continued 1)

Proof (continued).

/(fn—fm] < [ ih=fldus [ (11D
X X1 Xo\ X1

+/ (|fal + |f]) dp by monotonicity,
X\Xo

(8) of “Lemma.” (23)
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The Vitali Convergence Theorem (continued 1)

Proof (continued).

/X(f s du’ / , —fdu+/ IGEROK

+/ (|fal + |f]) dp by monotonicity,
X\Xo

(8) of “Lemma.” (23)

Let € > 0. Since f is integrable over X, y Proposition 18.17 there is
measurable Xy C X (of finite measure) such that fX\Xo |fl du < /6.
Since {f,} is tight over X, we also have for Xy (of finite measure),

fZ\Zo |fa] du < €/6. (Technically, we have an X{ for f and an Xg for {f,},

but we can define Xo = X U X to get the above two claims.)
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The Vitali Convergence Theorem (continued 2)

Proof (continued). So

[ tnisian = [ tidus [ 1f1du by incarity
X\Xo X\ Xo X\Xo

Theorem 18.11

< + :gfornGN. (24)

M

<
6
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The Vitali Convergence Theorem (continued 2)

Proof (continued). So

[ tnisian = [ tidus [ 1f1du by incarity
X\Xo X\ Xo X\Xo

Theorem 18.11
15

< g—i-%:%forneN. (24)

Since {f,} is uniformly integrable over X, there is 41 > 0 such that for
measurable subset E of X: if u(E) < 61 then [ |fp| dp < /6 for all

n € N. Since f is integrable over X, by Proposition 18.17 there is §, > 0
such that for measurable subset E of X: if p(E) < & then

e || dp < /6.
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The Vitali Convergence Theorem (continued 2)

Proof (continued). So

[ tnisian = [ tidus [ 1f1du by incarity
X\Xo X\ Xo X\Xo

Theorem 18.11
15

< g—i-%:%forneN. (24)

Since {f,} is uniformly integrable over X, there is 41 > 0 such that for
measurable subset E of X: if u(E) < 61 then [ |fp| dp < /6 for all

n € N. Since f is integrable over X, by Proposition 18.17 there is §, > 0
such that for measurable subset E of X: if p(E) < & then

Jelfldu < /6. Let § = min{d1,d2}. We now have that if ;(E) < d, then

/(\fn] +|f])dp = / |fa] d,u—i—/ |f| dp by linearity, Theorem 18.11
E E E

e € ¢
< 6+6—§foralln€N. (25)
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The Vitali Convergence Theorem (continued 3)

Proof (continued). Since f is integrable over X, then f is finite a.e. on X
by Proposition 18.9 applied to f* an df ~. Also, for set Xy above we have
1(Xo) < co. So by Egoroff's Theorem (page 364), there is a measurable
subset Xj of Xp for which u(Xp \ X1) > 6 and {f,} converges uniformly on
X1 to f (remember, Egoroff gives us that pointwise convergence is
“nearly” uniform convergence).
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The Vitali Convergence Theorem (continued 3)

Proof (continued). Since f is integrable over X, then f is finite a.e. on X
by Proposition 18.9 applied to f* an df ~. Also, for set Xy above we have
1(Xo) < co. So by Egoroff's Theorem (page 364), there is a measurable
subset Xj of Xp for which u(Xp \ X1) > 6 and {f,} converges uniformly on
X1 to f (remember, Egoroff gives us that pointwise convergence is
“nearly” uniform convergence). So by (25), since u(Xo \ X1) <9,

/ (]fn|+|f\)d,u<§fornEN. (26)
Xo\ X1 3
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The Vitali Convergence Theorem (continued 3)

Proof (continued). Since f is integrable over X, then f is finite a.e. on X
by Proposition 18.9 applied to f* an df ~. Also, for set Xy above we have
1(Xo) < co. So by Egoroff's Theorem (page 364), there is a measurable
subset Xj of Xp for which u(Xp \ X1) > 6 and {f,} converges uniformly on
X1 to f (remember, Egoroff gives us that pointwise convergence is
“nearly” uniform convergence). So by (25), since u(Xo \ X1) <9,

/ (]fn|+|f\)d,u<§fornEN. (26)
Xo\ X1 3

Since {f,} converges uniformly to f on Xj, a set of finite measure (since
Xo is finite measure), there is N € N for which

|fp — fldp < sup{|fi(x) — |f(x)|}(X1) by Integral Comp. Test
X1 xeXi
< % for all n > N. (27)
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The Vitali Convergence Theorem (continued 4)

Proof (continued). Applying inequalities (24), (26), and (27) to
inequality (23) gives | [, (fo — f)du| < e for all n > N. That is, by
linearity (Theorem 18.12)

/f,,d,u—/ fd,u‘<5foraIInZN,
X X

lim /fnd,u:/fd,u.
n—=oo Jx X

or
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