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The Integral Comparison Test

The Integral Comparison Test

The Integral Comparison Test.
Let (X ,M, µ) be a measure space and f a measurable function on X . If g
is integrable over X and dominates f on X in the sense that |f | ≤ g a.e.
on X , then f is integrable over X and∣∣∣∣∫

X
f dµ

∣∣∣∣ ≤ ∫
X
|f | dµ ≤

∫
X

g dµ.

Proof. Since |f | ≤ g a.e. on X , (8) of “Lemma” implies that |f | is
integrable over X . Then∣∣∣∣∫

X
f dµ

∣∣∣∣ =

∣∣∣∣∫
X

f + dµ−
∫

X
f − dµ

∣∣∣∣ by linearity (Proposition 18.11)

≤
∫

X
f + dµ+

∫
X

f − dµ by the Triangle Inequality

=

∫
X
|f | dµ ≤

∫
X

f dµ by (8) of Lemma.
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Theorem 18.12

Theorem 18.12

Theorem 18.12. Let (X ,M, µ) be a measure space and let f and g be
integrable over X .
(Linearity) For α, β ∈ R, αf + βg is integrable over X and∫

X
(αf + βg) dµ = α

∫
X

f dµ+ β

∫
X

g dµ.

(Monotonicity) If f ≤ g a.e. on X , then∫
X

f dµ ≤
∫

X
g dµ.

(Additivity Over Domains) If A and B are disjoint measurable sets, then∫
A∪·B

f dµ =

∫
A

f dµ+

∫
B

f dµ.
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Theorem 18.12

Theorem 18.12 (continued 1)

Proof. We deal with linearity in two steps. First, let α ∈ R, α > 0, and
consider αf . By definition of integral, we have∫

X
αf dµ =

∫
X
(αr)+ −

∫
X
(αf )− dµ

=

∫
X
αf + dµ−

∫
X
αf − dµ

= α

∫
X

f + dµ− α

∫
X

f − dµ by Proposition 18.11

= α

(∫
X

f + dµ−
∫

X
f − dµ

)
= α

∫
X

f dµ.
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Theorem 18.12

Theorem 18.12 (continued 2)

Proof (continued). Similarly, for α < 0,∫
X
αf dµ =

∫
X
(αf )+ −

∫
X
(αf )− dµ

=

∫
X
(−α)f − dµ−

∫
X
(−α)f + dµ since (αf )+ = (−α)f −

and (αf )− = (−α)f +

= −α
∫

X
f − dµ− (−α)

∫
X

f + dµ by Proposition 18.11

= α

(∫
X

f + dµ−
∫

X
f − dµ

)
= α

∫
X

f dµ.

Second, we consider f + g . By the definition of integrable, |f | and |g | are
both integrable over X . So by Proposition 18.11, |f |+ |g | is also
integrable over X . Since |f + g | ≤ |f |+ |g | pointwise on X , by (8) of
“Lemma” of the previous section we have that |f + g | is integrable over X .
So the positive and negative parts of f , g , and f + g are integrable over X .
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Theorem 18.12

Theorem 18.12 (continued 3)

Proof (contineud). By the note above, we may assume f and g are finite
on all of X . Notice
f + g = (f + g)+ − (f + g)− = (f + − f −) + (g+ − g−) pointwise on X ,
all of these are finite, and (f + g)+ + f − + g− = (f + g)− + f + + g+ on
X . By Proposition 18.11 (since all of these are nonnegative)∫

X
(f + g)+ dµ+

∫
X

f − dµ+

∫
X

g− dµ

=

∫
X
(f + g)− dµ+

∫
X

f + dµ+

∫
X

g+ dµ.

By the integrability of all of these, we can rearrange to get∫
X
(f + g)+ dµ−

∫
X
(f + g)− dµ

=

∫
X

f + dµ−
∫

X
f − dµ+

∫
X

g+ dµ−
∫

X
g− dµ

or
∫
X (f + g) dµ =

∫
X f dµ+

∫
+Xg dµ. So we have linearity.
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Theorem 18.12

Theorem 18.12 (continued 3)

Proof (continued). For monotonicity, assume f ≤ g a.e. on X . Then
g − f ≥ 0 a.e. on X and so by (8) of Lemma,

0 ≤
∫

X
(g − f ) =

∫
X

g dµ−
∫

X
f dµ,

or
∫
X f dµ ≤

∫
X g dµ.

For additivity, with A ∩ B = ∅ we have f χA∪·B = f (χA + χB)
= f χA + f χB on X , so∫

X
f χA∪·B dµ =

∫
A∪·B

f dµ by definition

=

∫
X
(fxχA + f χB) dµ by substitution

=

∫
X

f χA +

∫
X
χB by linearity

=

∫
A

f +

∫
B

f by definition. �
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Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity

Theorem 18.13. Countable Additivity over Domains of Integration.
Let (X ,M, µ) be a measure space, let function f be integrable over X ,
and let {Xn}∞n=1 be a disjoint countable collection of measurable sets
whose union is X . Then∫

X
f dµ =

∫
∪· Ek

f dµ =
∞∑

n=1

(∫
Ek

f dµ

)
.

Proof. We show the result for f ≥ 0 on X , and the general result will
then follow by considering positive and negative parts. For n ∈ N, define
fn =

∑n
k=1 f χXn on X .

Then {fn} → f pointwise on X and the
convergence is monotone, so by the Monotone Convergence Theorem,∫

X
f dµ =

∫
X

lim
n→∞

fn dµ = lim
n→∞

∫
X

fn dµ = lim
n→∞

∫
X

(
n∑

k=1

f χXn

)
dµ

= lim
n→∞

n∑
k=1

(∫
X

f χXn dµ

)
=

∞∑
k=1

(∫
X

f dµ

)
. �
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Theorem 18.14. Continuity of Integration

Theorem 18.14. Continuity of Integration

Theorem 18.14. Continuity of Integration.
Let (X ,M) be a measure space and let the function f be integrable over
X .

(i) If {Xn}∞n=1 is an ascending countable collection of
measurable subsets of X whose union is X , then∫

X
f dµ = lim

n→∞

(∫
Xn

f dµ

)
.

(ii) If {Xn}∞n=1 is a descending countable collection of
measurable subsets of X , then∫

∩Xn

f dµ = lim
n→∞

(∫
Xn

f dµ

)
.

Proof. Define m : M→ [0,∞] as m(E ) =
∫
E f dµ. By Countable

Additivity over Domain, we have that m is countably additive. So m is a
measure on (X ,M,m) is a measure space. So, by the Continuity of
Measure (Proposition 17.2), both (i) and (ii) follow.
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Theorem 18.15

Theorem 18.15

Theorem 18.15. Let (X ,M, µ) be a measure space and f a measurable
function on X . If f is bounded on X and vanishes outside a set of finite
measure, then f is integrable over X .

Proof. We show the result for f ≥ 0 on X , and the general result will
then follow by considering positive and negative parts. Let X0 be a set of
finite measure for which f vanishes on X \ X0. Let M ≥ 0 be a bound on
f : 0 ≤ f ≤ M on X . Define ϕ = MχX0 .

Then 0 ≤ f ≤ ϕ on X and so by
(8) of “Lemma,” ∫

X
f dµ ≤

∫
X
ϕ dµ = Mµ(X0) <∞.
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem.
Let (X ,M, µ) be a measure space and let {fn} be a sequence of
measurable functions on X for which {fn} → f pointwise a.e. on X and
suppose f is measurable. Assume there is a nonnegative function g that is
integrable over X and dominates the sequence {fn} on X in the sense that
|fn| ≤ g a.e. on X for all n ∈ N. Then f is integrable over X and

lim
n→∞

(∫
X

fn dµ

)
=

∫
X

(
lim

n→∞
fn
)

dµ =

∫
X

f dµ.

Proof. For each n ∈ N, g − fn and g + fn are nonnegative measurable
functions. By the Integral Comparison Test, for each n ∈ N, f and fn are
integrable over X since g is integrable over X . So∫

X
g dµ−

∫
X

f dµ =

∫
X
(g − f ) dµ by linearity, Theorem 18.12
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 1)

Proof (continued).∫
X

g dµ−
∫

X
f dµ ≤ lim inf

∫
X
(g − fn) dµ by Fatou’s Lemma

=

∫
X

g dµ− lim sup

∫
X

fn dµ,

and∫
X

g dµ+

∫
X

f dµ =

∫
X
(g + f ) dµ by linearity, Theorem 18.12

≤ lim inf

∫
X
(g + fn) dµ by Fatou’s Lemma

=

∫
X

g dµ+ lim inf

∫
X

fn dµ.
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The Lebesgue Dominated Convergence Theorem

The Lebesgue Dominated Convergence Theorem
(continued 2)

Proof (continued). So

lim sup

∫
X

fn dµ ≤
∫

X
f dµ by the first inequality

≤ lim inf

∫
X

f dµ by the second inequality.

Therefore, ∫
X

f dµ = lim
n→∞

∫
X

fn dµ.
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Proposition 18.17

Proposition 18.17

Proposition 18.17. Let (X ,M, µ) be a measure space and let the
function f be integrable over X . Then for each ε > 0, there is a δ > 0
such that for any measurable subset E of X ,

if µ(E ) < δ then

∫
E
|f | dµ < ε. (21)

Furthermore, for each ε > 0, there is a subset X0 of X that has finite
measure and ∫

X\X0

|f | dµ < ε.

Proof. We show the result for f ≥ 0 on X , and the general result will
follow by considering positive and negative parts. Let ε > 0. Since

∫
X f dµ

is finite, we have from the definition of the integral of a nonnegative
function (page 367) that there is a simple function ψ on X for which
0 ≤ ψ ≤ f on X and 0 ≤

∫
X f dµ−

∫
X ψ dµ < ε/2. Choose M > 0 such

that 0 ≤ ψ ≤ M on X (which can be done since ψ is simple).
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Proposition 18.17

Proposition 18.17 (continued 1)

Proof (continued). The in E ⊂ X ,∫
E

f dµ =

∫
E
(ψ + f − ψ) dµ =

∫
E
ψ dµ+

∫
E
(f − ψ) dµ by linearity,

Proposition 18.11

=

∫
E
ψ dµ+

(∫
E

f dµ−
∫

E
ψ dµ

)
by linearity, Theorem 18.12

≤
∫

E
ψ dµ+

ε

2

≤ Mm(E ) +
ε

2
by monotonicity, Proposition 18.8.

If we take δ = ε/(2M), then (21) holds for any E with m(E ) < δ.
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Proposition 18.17

Proposition 18.17 (continued 2)

Proof (continued). Since ψ is simple and integrable over X , measurable
set X0 = {x ∈ X | ψ(x) > 0} has finite measure. Moreover,∫

X\X0

f dµ =

∫
X\X0

(f − ψ) dµ

≤
∫

X
(f − ψ) dµ by additivity, Theorem 8.12

< ε.
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The Vitali Convergence Theorem

The Vitali Convergence Theorem

The Vitali Convergence Theorem.
Let (X ,M, µ) be a measure space and let {fn} be a sequence of functions
on X that is both uniformly integrable and tight over X . Suppose
{fn} → f pointwise over X . Then

lim
n→∞

(∫
X

fn dµ

)
=

∫
X

(
lim

n→∞
fn
)

dµ =

∫
X

f dµ.

Proof. For n ∈ N, |f − fn| ≤ |f |+ |fn| pointwise on X . If X0 and X1 are
measurable subsets of X for which X1 ⊂ X0, then
X = X1 ∪· (X0 \ X1) ∪· (X \ X0).

So for all n ∈ N,∣∣∣∣∫
X
(fn − f ) dµ

∣∣∣∣ ≤
∫

X
|fn − f | dµ by the Integral Comparison Test

=

∫
X1

|fn − f | dµ+

∫
X0\X1

|fn − n| dµ+

∫
X\X0

|fn − f | dµ

by Additivity over Domains, Theorem 18.12
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 1)

Proof (continued).∣∣∣∣∫
X
(fn − f ) dµ

∣∣∣∣ ≤
∫

X1

|fn − f | dµ+

∫
X0\X1

(|fn|+ |f |) dµ

+

∫
X\X0

(|fn|+ |f |) dµ by monotonicity,

(8) of “Lemma.” (23)

Let ε > 0. Since f is integrable over X , y Proposition 18.17 there is
measurable X0 ⊂ X (of finite measure) such that

∫
X\X0

|f | dµ < ε/6.

Since {fn} is tight over X , we also have for X0 (of finite measure),∫
Z\Z0

|fn| dµ < ε/6. (Technically, we have an X 1
0 for f and an X 2

0 for {fn},
but we can define X0 = X 1

0 ∪ X 2
0 to get the above two claims.)
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 2)

Proof (continued). So∫
X\X0

(|fn|+ |f |) dµ =

∫
X\X0

|fn| dµ+

∫
X\X0

|f | dµ by linearity,

Theorem 18.11

<
ε

6
+
ε

6
=
ε

3
for n ∈ N. (24)

Since {fn} is uniformly integrable over X , there is δ1 > 0 such that for
measurable subset E of X : if µ(E ) < δ1 then

∫
E |fn| dµ < ε/6 for all

n ∈ N. Since f is integrable over X , by Proposition 18.17 there is δ2 > 0
such that for measurable subset E of X : if µ(E ) < δ2 then∫
E |f | dµ < ε/6.

Let δ = min{δ1, δ2}. We now have that if µ(E ) < δ, then∫
E
(|fn|+ |f |) dµ =

∫
E
|fn| dµ+

∫
E
|f | dµ by linearity, Theorem 18.11

<
ε

6
+
ε

6
=
ε

3
for all n ∈ N. (25)
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The Vitali Convergence Theorem (continued 2)
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 3)

Proof (continued). Since f is integrable over X , then f is finite a.e. on X
by Proposition 18.9 applied to f + an df −. Also, for set X0 above we have
µ(X0) <∞. So by Egoroff’s Theorem (page 364), there is a measurable
subset X1 of X0 for which µ(X0 \ X1) > δ and {fn} converges uniformly on
X1 to f (remember, Egoroff gives us that pointwise convergence is
“nearly” uniform convergence). So by (25), since µ(X0 \ X1) < δ,∫

X0\X1

(|fn|+ |f |) dµ <
ε

3
for n ∈ N. (26)

Since {fn} converges uniformly to f on X1, a set of finite measure (since
X0 is finite measure), there is N ∈ N for which∫

X1

|fn − f | dµ ≤ sup
x∈X1

{|fx(x)− |f (x)|}µ(X1) by Integral Comp. Test

<
ε

3
for all n ≥ N. (27)
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The Vitali Convergence Theorem

The Vitali Convergence Theorem (continued 4)

Proof (continued). Applying inequalities (24), (26), and (27) to
inequality (23) gives

∣∣∫
X (fn − f )dµ

∣∣ < ε for all n ≥ N. That is, by
linearity (Theorem 18.12)∣∣∣∣∫

X
fn dµ−

∫
X

f dµ

∣∣∣∣ < ε for all n ≥ N,

or

lim
n→∞

∫
X

fn dµ =

∫
X

f dµ.
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