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Real Analysis - s
Proposition 18.19. Let (X, M, ;1) be a measure space and v a finite

measure on the measurable space (X, M). Then v is absolutely
continuous with respect to y if and only if for each € > 0 thereisa § > 0
such that for any set E € M, if u(E) < 6 then v(E) < e.

Chapter 18. Integration Over General Measure Spaces
18.4. The Radon-Nikodym Theorem—Proofs of Theorems

Proof. Suppose the /4 condition holds and p(E) = 0. Then for all
¢ >0, we have ¥(E) < ¢ and hence ¥(E) = 0. So v is absolutely
continuous with respect to .
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Next, suppose v is absolutely continuous with respect to i and the £/4
condition does not hold. Then there is g > 0 and a sequence of sets
{E,} C M such that for each n € N, u(E,) < 1/2" while v(E,) > <o
(otherwise, we could eventually rake dg = 1/2" for some n € N and the
/6 condition would hold). For each n € N, define A, = U2 Ex. Then
{An} is a descending sequence of sets in M.
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Proposition 18.19 (continued 1)

Proof (continued). By the monotonicity of v (Proposition 17.1) and the
countable subadditivity of ;1 (any measure is countably additive by
definition, and so is also countably subadditive on the o-algebra of
measurable sets): v(A,) = v (U2 Ex) > E;) > €0 and

&= 1 1
Z—ﬁ -

00
H(AR) = 1 (U E) < 3 (E) <
k=n

for all n € N. Define A, = U2 ;A. Then
WAx) = p(NiZ1Ax) < (An) by monotonicity

1
< FforallnENg

and so (1(Ax) = 0. Next, ¥(X) < oo since v is a finite measure by
hypothesis and so v(A1) < v(X) < oo by monotonicity.
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Proposition 18.19 (continued 2)

Proposition 18.19. Let (X, M, i) be a measure space and v a finite
measure on the measurable space (X, M). Then v is absolutely
continuous with respect to y if and only if for each ¢ > 0 thereisa d > 0
such that for any set E € M, if u(E) < 6 then v(E) < e.

Proof (continued). Then, by the Continuity of Measure of v (Proposition
17.2) and the fact that v(A,) > g0 > 0 for all n € N, we have

V(Ax) = V( lim A,,) = lim v(Ap) >0 > 0.
n—oo n—oo

But we have hypothesized the absolute continuity of v with respect to p,

and here we have ;1(Ax) = 0 but ¥(Ax) > 0, so this is a contradiction

(to our assumption that the /4 condition does not hold). Therefore, the

¢/ condition does hold. O]
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem. Let (X, M, 1) be a o-finite measure
space and v a o-finite measure defined on the measurable space (X, M)
that is absolutely continuous with respect to y1. Then there is a
nonnegative f on X that is measurable with respect to M for which

v(E) = / fdu for all E € M.
JE
The function f is unique in the sense that if g is any nonnegative
measurable function on X for which v(E) = [, g dp for all E € M, then
g=" u-ae

Proof. We consider the case where both p and v are finite measures and
cover th eo-finite case in Exercise 18.49. If v(E) = 0 for all E € M then
the claim holds with f =0 on X. So without loss of generality we can
assume v does not vanish on all of M.
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The Radon-Nikedym Theorem

The Radon-Nikodym Theorem (continued 2)

Proof (continued). ...since by the definition of “negative set” we have
every subset of Ny has nonpositive measure, and this holds for all A > 0.
That is, v(E) < Au(E) for all E € M and for all A > 0. Since A >0 is

arbitrary and pu(E) < p(X) < oo we must have v(E) = 0 for all E € M.
But this is a CONTRADICTION to the fact that  does not vanish on all

o fM. So the assumption that p(Py) = 0 for all A > 0 is false and there is

some Ao > 0 such that i(Py,) > 0.
Define f = Xoxp,,- Then [y fdu= [y doxp,, diw= Aop(P»,) > 0 and
since ¥ — Ao/t is positive on Py, then
]E fdyp = /EAOXP*O du = AO;J.(P,\O NE)
v(Py, N E) since Py, N E C Py, and so
v(Py, NE) = )\O.U'(P}\O NE)>0
< v(E) by monotonicity.
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The Radon-Nikodym Theorem (continued 1)

Proof (continued). We first prove that there is nonnegative measurable
f on X for which

/ fdu>0and / fdu <v(E)forall Ee M. (32)
E

For A > [.]'Xconsider the finite signed measure v — A\ (since p and v are
finite, v — A\ satisfies the definition of signed measure; see Section 17.21).
By the Hahn Decomposition Theorem, there is a Hahn decomposition
{Py, N\} for v — Ay where X = Py, U N,, PxN Ny = &, P, is a positive
v = Ap measure set, and N, is a negative v — A\jx measure set.

ASSUME p(Py) = 0 for all A > 0. Then for any measurable E C Py we
have absolute continuity, #(E) = 0. Since N, is a negative set for v — Ay
then for any E € M,

(v=Ap)(E) = —=2)((ENPU(ENNy)) =v((ENP)U(ENN,))
= M(ENPYU(ENNY)) =v((ENPy)+v(ENN,)
—MU(ENPY) = AM(ENNyY)=v(ENN,) —A(ENN,y) <0...

The Raden-Nikodym Theorem

The Radon-Nikodym Theorem (continued 3)

Proof (continued). Therefore (32) holds for f = AoXPy, - Define F to be
the collection of nonnegative measurable functions on X for which

Jg fdp < v(E) for all E € M (so F is nonempty since Aoxp,, € F) and
then define M = supsc z [, f dji. Notice that M > 0 since Xoxpy, € F.
We now show that there is f € F for which .fx fdy = M and that

V(E) = [¢ fdpu for all E € M for any such f.

If g, h € F then with E; = {x € E | g)x) < h(x)} and
E; = {x € E | g(x) > h(x)} we have

fmax{ggh}d,u = jhdu-ﬁ-/ ggv
E Ey E;

< v(E1) + v(E) by the definition of F
= v(E),

so that max{g, h} € F.
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The Radon-Nikodym Theorem (continued 4)

Proof (continued). Next, select a sequence {f,} € F for which

limn—oo ([ fa f1t) = M (such a sequence exists by the definition of
supremum). We may assume {f,} is a pointwise increasing sequence of
functions (or else we can replace f, by max{fi, f, ..., f,}, since we now
know max{fi, f2,...,f,} € F, to get an increasing sequence). Define

f(x) = limp_ fa(x) for each x € X. Since F consists only of
nonnegative functions (by the definition of F) and {f,} is monotone, then
by the Monotone Convergence Theorem (of Section 18.2),

/fd,u:/ lim f,dp = lim (/ fnd,u.) = M.
JX JX e = NS X

Also v(E) > [ fydp for all E € M (by the definition of F) and so by the
Monotone Convergence Theorem

n—oQ JE JE n—oo JE

for all E € M, and so f € F, as desired.
0 |
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The Radon-Nikodym Theorem (continued 6)

Proof (continued). Then [, (f +f)du= [, fdu+ [z Fdu>0and for
all E€ M, so [o(f+F)du <v(E)— [z fdu <v(E), sothat f+f € F.
But then [, (f + F)du > Jx fdi= M, a CONTRADICTION to the
definition o fM. So the assumption that 7(E) > 0 for some E € M is
false and hence 7)(E) = 0 for all E € M. Therefore, v(E) = [ f dy for all
E € M, as claimed.

For uniqueness, suppose i and f, both satisfy v(E) = [ idu = [ Hdu
for all E € M. Since v is a finite measure then r; and f> are both
integrable. Also,

[~ 8)du= [ fan- [ hdu=0
E E E

and so by Exercise 18.32, f; = f pi-a.e., as claimed. |
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The Radon-Nikodym Theorem (continued 5)

Proof (continued). Define n(E) = v(E) — [ f dy for all E € M. We
have assumed v is a finite measure and so (X) < oo. Therefore

Jx fdu < v(X) < co. As shown above, v(E) > [ fdpu forall E € M, so
n(E) > 0 for all E € M. Now v is countably additive since it is a measure
and so by Theorem 18.13, “Countable Additivity Over Domains of
Integration,” 7 is countably additive and so 7 is a measure on M. Also,
for E € M with p(E) = 0 we have v(E) = 0 since v is absolutely
continuous with respect to y and [ f dyu = 0 so that 7j(E) = 0; that is, 7
is absolutely continuous with respect to y.

ASSUME there is some set £ € M for which 7(E) > 0. Then, as argued
above for v, we can find f a nonnegative function such that [, f du >0

and [ f dy < n(E) for all E € M (we had the function Aoxp,, as such a

function in F for v). So from the definition of 77 we have for this f that
Jefdp <n(E)=v(E)— [ fdpuforall E€ M (where f is the function
f(x) = limp_.o fn(x) defined above).
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vg on M which is
singular with respect to p, and a measure 1 on M which is absolutely
continuous with respect to p, for which v = 1y + 1. The measures vy and
V1 are unique.

Proof. Define A = p1 +v. In Exercise 18.58 it is to be shown that if g is
nonnegative and measurable with respect to M, then

/gd)xz/gd,u—i—/gduforall E e M.
E e JE

Since i and v are o-finite (that is, X is a union of a countable number of
measurable sets of finite measure) then A\ = 1+ v is also o-finite.
Moreover, if A\(E) =0 then u(E) + v(E) =0 and so p(E) = 0; that is, p
is absolutely continuous with respect to A.
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The Lebesgue Decomposition Theorem (continued 1)

Proof (continued). So by the Radon-Nikodym Theorem there is a
nonnegative measurable functions f for which

,u.(E)z/fdAz/fd(p.—l—u): / fd,u.—l—/ fdvforall Ee M. (37)
JE JE JE JE

Define Xy = {x € X | f(x) > 0} and Xo = {x € X | f(x) = 0}. Since f is
a measurable function then X, and Xy are measurable. Define

vo(E) = v(EN Xp) and v1(E) = v(E N Xy) for all E € M. Then

v =g +v1on M, as claimed. Now 11(Xo) = [, fdA= [, 0dA =0 and
(Xy) = v(Xy N Xo) = v(2) = 0. So (by definition) x and g are
mutually singular (that is, u L 1), as claimed.
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The Lebesgue Decomposition Theorem (continued 2)

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vy on M which is
singular with respect to y, and a measure 11 on M which is absolutely
continuous with respect to u, for which ¥ = vy 4+ v1. The measures vy and
V1 are unique.

Proof (continued). Next, we show v is absolutely continuous with
respect to . Let (E) = 0. Then [ f du = 0. Therefore by (37)
Jgfdv=0and so (by additivity) 0 = [ fdv = [¢\ fdv+ [g ffr.
Since f = 0 on E N Xp then j;':'nxg fdv =0 and so J.me_‘_ fdv =0. But
f>0on EN X, and so by Exercise 18.19 f = 0 v-a.e. on EN Xy. So we
must have (E N X;) =0. Thatis, 1(E) = 0. So v is absolutely
continuous with respect to u, as claimed. Uniqueness is to be shown in
Exercise 18.55. U
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