Real Analysis Chapter 18. Integration Over General Measure Spaces 18.4. The Radon-Nikodym Theorem—Proofs of Theorems December 23, 2018 December 23, 2018 3 / 15 #### Proposition 18.19 (continued 1) **Proof (continued).** By the monotonicity of ν (Proposition 17.1) and the countable subadditivity of μ (any measure is countably additive by definition, and so is also countably subadditive on the σ -algebra of measurable sets): $\nu(A_n) = \nu\left(\bigcup_{k=n}^{\infty} E_k\right) \geq E_n$ and $$\mu(A_n) = \mu\left(\bigcup_{k=n}^{\infty} E_k\right) \le \sum_{k=n}^{\infty} \mu(E_k) < \sum_{k=n}^{\infty} \frac{1}{2^k} = \frac{1}{2^{n-1}}$$ for all $n \in \mathbb{N}$. Define $A_{\infty} = \bigcup_{k=1}^{\infty} A_k$. Then $$\mu(A_{\infty}) = \mu(\bigcap_{k=1}^{\infty} A_k) \le (A_n)$$ by monotonicity $< \frac{1}{2^{n-1}}$ for all $n \in \mathbb{N}$, and so $\mu(A_{\infty}) = 0$. Next, $\nu(X) < \infty$ since ν is a finite measure by hypothesis and so $\nu(A_1) \leq \nu(X) < \infty$ by monotonicity. Proposition 18.19 **Proposition 18.19.** Let (X, \mathcal{M}, μ) be a measure space and ν a finite measure on the measurable space (X, \mathcal{M}) . Then ν is absolutely continuous with respect to μ if and only if for each $\epsilon > 0$ there is a $\delta > 0$ such that for any set $E \in \mathcal{M}$, if $\mu(E) < \delta$ then $\nu(E) < \epsilon$. **Proof.** Suppose the ε/δ condition holds and $\mu(E) = 0$. Then for all $\varepsilon > 0$, we have $\nu(E) < \varepsilon$ and hence $\nu(E) = 0$. So ν is absolutely continuous with respect to μ . Next, suppose ν is absolutely continuous with respect to μ and the ε/δ condition does not hold. Then there is $\varepsilon_0 > 0$ and a sequence of sets $\{E_n\}\subset\mathcal{M}$ such that for each $n\in\mathbb{N}$, $\mu(E_n)<1/2^n$ while $\nu(E_n)\geq\varepsilon_0$ (otherwise, we could eventually rake $\delta_0=1/2^n$ for some $n\in\mathbb{N}$ and the ε/δ condition would hold). For each $n \in \mathbb{N}$, define $A_n = \bigcup_{k=n}^{\infty} E_k$. Then $\{A_n\}$ is a descending sequence of sets in \mathcal{M} . #### Proposition 18.19 (continued 2) **Proposition 18.19.** Let (X, \mathcal{M}, μ) be a measure space and ν a finite measure on the measurable space (X, \mathcal{M}) . Then ν is absolutely continuous with respect to μ if and only if for each $\epsilon>0$ there is a $\delta>0$ such that for any set $E \in \mathcal{M}$, if $\mu(E) < \delta$ then $\nu(E) < \epsilon$. **Proof (continued).** Then, by the Continuity of Measure of ν (Proposition 17.2) and the fact that $\nu(A_n) \geq \varepsilon_0 > 0$ for all $n \in \mathbb{N}$, we have $$\nu(A_{\infty}) = \nu\left(\lim_{n\to\infty}A_n\right) = \lim_{n\to\infty}\nu(A_n) \geq \varepsilon_0 > 0.$$ But we have hypothesized the absolute continuity of ν with respect to μ , and here we have $\mu(A_{\infty}) = 0$ but $\nu(A_{\infty}) > 0$, so this is a contradiction (to our assumption that the ε/δ condition does not hold). Therefore, the ε/δ condition does hold. Real Analysis December 23, 2018 Real Analysis December 23, 2018 $$\nu(E) = \int_E f \, d\mu \text{ for all } E \in \mathcal{M}.$$ The function f is unique in the sense that if g is any nonnegative measurable function on X for which $\nu(E) = \int_E g \ d\mu$ for all $E \in \mathcal{M}$, then $g = f \ \mu$ -a.e. **Proof.** We consider the case where both μ and ν are finite measures and cover th $e\sigma$ -finite case in Exercise 18.49. If $\nu(E)=0$ for all $E\in\mathcal{M}$ then the claim holds with f=0 on X. So without loss of generality we can assume ν does not vanish on all of \mathcal{M} . # The Radon-Nikodym Theorem (continued 2) **Proof (continued).** . . . since by the definition of "negative set" we have every subset of N_{λ} has nonpositive measure, and this holds for all $\lambda > 0$. That is, $\nu(E) \leq \lambda \mu(E)$ for all $E \in \mathcal{M}$ and for all $\lambda > 0$. Since $\lambda > 0$ is arbitrary and $\mu(E) \leq \mu(X) < \infty$ we must have $\nu(E) = 0$ for all $E \in \mathcal{M}$. But this is a CONTRADICTION to the fact that ν does not vanish on all of \mathcal{M} . So the assumption that $\mu(P_{\lambda}) = 0$ for all $\lambda > 0$ is false and there is some $\lambda_0 > 0$ such that $\mu(P_{\lambda_0}) > 0$. Define $f = \lambda_0 \chi_{P_{\lambda_0}}$. Then $\int_X f d\mu = \int_X \lambda_0 \chi_{P_{\lambda_0}} d\mu = \lambda_0 \mu(P_{\lambda_0}) > 0$ and since $\nu - \lambda_0 \mu$ is positive on P_{λ_0} then $$\int_{E} f \, d\mu = \int_{E} \lambda_{0} \chi_{P_{\lambda_{0}}} \, d\mu = \lambda_{0} \mu(P_{\lambda_{0}} \cap E)$$ $$\leq \nu(P_{\lambda_{0}} \cap E) \text{ since } P_{\lambda_{0}} \cap E \subset P_{\lambda_{0}} \text{ and so}$$ $$\nu(P_{\lambda_{0}} \cap E) = \lambda_{0} \mu(P_{\lambda_{0}} \cap E) \geq 0$$ $$\leq \nu(E) \text{ by monotonicity.}$$ ## The Radon-Nikodym Theorem (continued 1) **Proof (continued).** We first prove that there is nonnegative measurable f on X for which $$\int_X f \, d\mu > 0 \text{ and } \int_E f \, d\mu \le \nu(E) \text{ for all } E \in \mathcal{M}. \tag{32}$$ For $\lambda>0$, consider the finite signed measure $\nu-\lambda\mu$ (since μ and ν are finite, $\nu-\lambda\mu$ satisfies the definition of signed measure; see Section 17.21). By the Hahn Decomposition Theorem, there is a Hahn decomposition $\{P_{\lambda},N_{\lambda}\}$ for $\nu-\lambda\mu$ where $X=P_{\lambda}\cup N_{\lambda},\,P_{\lambda}\cap N_{\lambda}=\varnothing,\,P_{\lambda}$ is a positive $\nu=\lambda\mu$ measure set, and N_{λ} is a negative $\nu-\lambda\mu$ measure set. ASSUME $\mu(P_{\lambda})=0$ for all $\lambda>0$. Then for any measurable $E\subset P_{\lambda}$ we have absolute continuity, $\nu(E)=0$. Since N_{λ} is a negative set for $\nu-\lambda\mu$ then for any $E\in\mathcal{M}$, $$(\nu - \lambda \mu)(E) = (\nu - \lambda \mu)((E \cap P_{\lambda}) \cup (E \cap N_{\lambda})) = \nu((E \cap P_{\lambda}) \cup (E \cap N_{\lambda}))$$ $$-\lambda \mu((E \cap P_{\lambda}) \cup (E \cap N_{\lambda})) = \nu((E \cap P_{\lambda}) + \nu(E \cap N_{\lambda})$$ $$-\lambda \mu(E \cap P_{\lambda}) - \lambda \mu(E \cap N_{\lambda}) = \nu(E \cap N_{\lambda}) - \lambda \mu(E \cap N_{\lambda}) \leq 0...$$ ## The Radon-Nikodym Theorem (continued 3) **Proof (continued).** Therefore (32) holds for $f=\lambda_0\chi_{P_{\lambda_0}}$. Define $\mathcal F$ to be the collection of nonnegative measurable functions on X for which $\int_E f\ d\mu \leq \nu(E)$ for all $E\in \mathcal M$ (so $\mathcal F$ is nonempty since $\lambda_0\chi_{P_{\lambda_0}}\in \mathcal F$) and then define $M=\sup_{f\in \mathcal F}\int_X f\ d\mu$. Notice that M>0 since $\lambda_0\chi_{P_{\lambda_0}}\in \mathcal F$. We now show that there is $f\in \mathcal F$ for which $\int_X f\ d\mu=M$ and that $\nu(E)=\int_E f\ d\mu$ for all $E\in \mathcal M$ for any such f. If $g, h \in \mathcal{F}$ then with $E_1 = \{x \in E \mid g(x)\} < h(x)\}$ and $E_2 = \{x \in E \mid g(x) \geq h(x)\}$ we have $$\int_{E} \max\{g,h\} d\mu = \int_{E_{1}} h d\mu + \int_{E_{2}} g g \nu$$ $$\leq \nu(E_{1}) + \nu(E_{2}) \text{ by the definition of } \mathcal{F}$$ $$= \nu(E),$$ so that $\max\{g,h\} \in \mathcal{F}$. December 23, 2018 7 / 15 December 23, 2018 #### The Radon-Nikodym Theorem (continued 4) **Proof (continued).** Next, select a sequence $\{f_n\} \in \mathcal{F}$ for which $\lim_{n \to \infty} \left(\int_X f_n f \mu \right) = M$ (such a sequence exists by the definition of supremum). We may assume $\{f_n\}$ is a pointwise increasing sequence of functions (or else we can replace f_n by $\max\{f_1, f_2, \ldots, f_n\}$, since we now know $\max\{f_1, f_2, \ldots, f_n\} \in \mathcal{F}$, to get an increasing sequence). Define $f(x) = \lim_{n \to \infty} f_n(x)$ for each $x \in X$. Since \mathcal{F} consists only of nonnegative functions (by the definition of \mathcal{F}) and $\{f_n\}$ is monotone, then by the Monotone Convergence Theorem (of Section 18.2), $$\int_X f d\mu = \int_X \lim_{n \to \infty} f_n d\mu = \lim_{n \to \infty} \left(\int_X f_n d\mu \right) = M.$$ Also $\nu(E) \ge \int_E f_n \, d\mu$ for all $E \in \mathcal{M}$ (by the definition of \mathcal{F}) and so by the Monotone Convergence Theorem $$\nu(E) \ge \lim_{n \to \infty} \left(\int_{E} f_n \, d\mu \right) = \int_{E} \left(\lim_{n \to \infty} f_n \right) d\mu = \int_{E} f \, d\mu$$ for all $E \in \mathcal{M}$, and so $f \in \mathcal{F}$, as desired. ## The Radon-Nikodym Theorem (continued 6) **Proof (continued).** Then $\int_X (f+\hat{f}) \, d\mu = \int_X f \, d\mu + \int_E \hat{f} \, d\mu > 0$ and for all $E \in \mathcal{M}$, so $\int_E (f+\hat{f}) \, d\mu \leq \nu(E) - \int_E f \, d\mu \leq \nu(E)$, so that $f+\hat{f} \in \mathcal{F}$. But then $\int_X (f+\hat{f}) \, d\mu > \int_X f \, d\mu = M$, a CONTRADICTION to the definition o fM. So the assumption that $\eta(E) > 0$ for some $E \in \mathcal{M}$ is false and hence $\eta(E) = 0$ for all $E \in \mathcal{M}$. Therefore, $\nu(E) = \int_E f \, d\mu$ for all $E \in \mathcal{M}$, as claimed. For uniqueness, suppose f_1 and f_2 both satisfy $\nu(E) = \int_E f_1 d\mu = \int_E f_2 d\mu$ for all $E \in \mathcal{M}$. Since ν is a finite measure then r_1 and r_2 are both integrable. Also, $$\int_{E} (f_1 - f_2) d\mu = \int_{E} f_1 d\mu - \int_{E} f_2 d\mu = 0$$ and so by Exercise 18.32, $f_1 = f_2 \mu$ -a.e., as claimed. #### The Radon-Nikodym Theorem # The Radon-Nikodym Theorem (continued 5) **Proof (continued).** Define $\eta(E)=\nu(E)-\int_E f\,d\mu$ for all $E\in\mathcal{M}$. We have assumed ν is a finite measure and so $\nu(X)<\infty$. Therefore $\int_X f\,d\mu\leq\nu(X)<\infty$. As shown above, $\nu(E)\geq\int_E f\,d\mu$ for all $E\in\mathcal{M}$, so $\eta(E)\geq0$ for all $E\in\mathcal{M}$. Now ν is countably additive since it is a measure and so by Theorem 18.13, "Countable Additivity Over Domains of Integration," η is countably additive and so η is a measure on \mathcal{M} . Also, for $E\in\mathcal{M}$ with $\mu(E)=0$ we have $\nu(E)=0$ since ν is absolutely continuous with respect to μ and $\int_E f\,d\mu=0$ so that $\eta(E)=0$; that is, η is absolutely continuous with respect to μ . ASSUME there is some set $E \in \mathcal{M}$ for which $\eta(E) > 0$. Then, as argued above for ν , we can find \hat{f} a nonnegative function such that $\int_X \hat{f} \ d\mu > 0$ and $\int_E \hat{f} \ d\mu \leq \eta(E)$ for all $E \in \mathcal{M}$ (we had the function $\lambda_0 \chi_{P_{\lambda_0}}$ as such a function in \mathcal{F} for ν). So from the definition of η we have for this \hat{f} that $\int_E \hat{f} \ d\mu \leq \eta(E) = \nu(E) - \int_E f \ d\mu$ for all $E \in \mathcal{M}$ (where f is the function $f(x) = \lim_{n \to \infty} f_n(x)$ defined above). December 23, 2018 11 / 15 The Lebesgue Decomposition Theore #### The Lebesgue Decomposition Theorem #### The Lebesgue Decomposition Theorem. Let (X,\mathcal{M},μ) be a σ -finite measure space and ν a σ -finite measure on the measurable space (X,\mathcal{M}) . Then there is a measure ν_0 on \mathcal{M} which is singular with respect to μ , and a measure ν_1 on \mathcal{M} which is absolutely continuous with respect to μ , for which $\nu = \nu_0 + \nu_1$. The measures ν_0 and ν_1 are unique. **Proof.** Define $\lambda = \mu + \nu$. In Exercise 18.58 it is to be shown that if g is nonnegative and measurable with respect to \mathcal{M} , then $$\int_E g \, d\lambda = \int_e g \, d\mu + \int_E g \, d\nu \text{ for all } E \in \mathcal{M}.$$ Since μ and ν are σ -finite (that is, X is a union of a countable number of measurable sets of finite measure) then $\lambda = \mu + \nu$ is also σ -finite. Moreover, if $\lambda(E) = 0$ then $\mu(E) + \nu(E) = 0$ and so $\mu(E) = 0$; that is, μ is absolutely continuous with respect to λ . #### The Lebesgue Decomposition Theorem (continued 1) **Proof (continued).** So by the Radon-Nikodym Theorem there is a nonnegative measurable functions f for which $$\mu(E) = \int_{E} f \, d\lambda = \int_{E} f \, d(\mu + \nu) = \int_{E} f \, d\mu + \int_{E} f \, d\nu \text{ for all } E \in \mathcal{M}.$$ (37) Define $X_+=\{x\in X\mid f(x)>0\}$ and $X_0=\{x\in X\mid f(x)=0\}$. Since f is a measurable function then X_+ and X_0 are measurable. Define $\nu_0(E)=\nu(E\cap X_0)$ and $\nu_1(E)=\nu(E\cap X_+)$ for all $E\in \mathcal{M}$. Then $\nu=\nu_0+\nu_1$ on \mathcal{M} , as claimed. Now $\mu(X_0)=\int_{X_0}f\ d\lambda=\int_{X_0}0\ d\lambda=0$ and $\nu_1(X_+)=\nu(X_+\cap X_0)=\nu(\varnothing)=0$. So (by definition) μ and ν_0 are mutually singular (that is, $\mu\perp\nu_0$), as claimed. #### The Lebesgue Decomposition Theorem (continued 2) #### The Lebesgue Decomposition Theorem. Let (X,\mathcal{M},μ) be a σ -finite measure space and ν a σ -finite measure on the measurable space (X,\mathcal{M}) . Then there is a measure ν_0 on \mathcal{M} which is singular with respect to μ , and a measure ν_1 on \mathcal{M} which is absolutely continuous with respect to μ , for which $\nu = \nu_0 + \nu_1$. The measures ν_0 and ν_1 are unique. **Proof (continued).** Next, we show ν_1 is absolutely continuous with respect to μ . Let $\mu(E)=0$. Then $\int_E f \, d\mu=0$. Therefore by (37) $\int_E f \, d\nu=0$ and so (by additivity) $0=\int_E f \, d\nu=\int_{E\cap X_0} f \, d\nu+\int_{E\cap X_+} f \, f\nu$. Since f=0 on $E\cap X_0$ then $\int_{E\cap X_0} f \, d\nu=0$ and so $\int_{E\cap X_+} f \, d\nu=0$. But f>0 on $E\cap X_+$ and so by Exercise 18.19 f=0 ν -a.e. on $E\cap X_+$. So we must have $\nu(E\cap X_+)=0$. That is, $\nu_1(E)=0$. So ν_1 is absolutely continuous with respect to μ , as claimed. Uniqueness is to be shown in Exercise 18.55.