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Proposition 18.19

Proposition 18.19. Let (X, M, ;1) be a measure space and v a finite
measure on the measurable space (X, M). Then v is absolutely
continuous with respect to y if and only if for each € > 0 there isa é >0
such that for any set E € M, if u(E) < 0 then v(E) < e.
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Proposition 18.19

Proposition 18.19. Let (X, M, ;1) be a measure space and v a finite
measure on the measurable space (X, M). Then v is absolutely
continuous with respect to y if and only if for each € > 0 there isa é >0
such that for any set E € M, if u(E) < 0 then v(E) < e.

Proof. Suppose the /6 condition holds and p(E) = 0. Then for all
e > 0, we have v(E) < € and hence v(E) = 0. So v is absolutely
continuous with respect to p.
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Proposition 18.19

Proposition 18.19. Let (X, M, ;1) be a measure space and v a finite
measure on the measurable space (X, M). Then v is absolutely
continuous with respect to y if and only if for each € > 0 there isa é >0
such that for any set E € M, if u(E) < 0 then v(E) < e.

Proof. Suppose the /6 condition holds and p(E) = 0. Then for all
e > 0, we have v(E) < € and hence v(E) = 0. So v is absolutely
continuous with respect to p.

Next, suppose v is absolutely continuous with respect to p and the /6
condition does not hold. Then there is eg > 0 and a sequence of sets
{En} C M such that for each n € N, p(E,) < 1/2" while v(E,) > £
(otherwise, we could eventually rake dp = 1/2" for some n € N and the
e/ condition would hold). For each n € N, define A, = U2 Ex. Then
{An} is a descending sequence of sets in M.
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Proposition 18.19

Proposition 18.19 (continued 1)

Proof (continued). By the monotonicity of v (Proposition 17.1) and the
countable subadditivity of i (any measure is countably additive by
definition, and so is also countably subadditive on the o-algebra of
measurable sets): v(A,) = v (U2 Ex) > E,;) > € and

(An) = 1 (U ,Ex) < ) (B < ok =
k=n k=n

for all n € N. Define Ay, = U2, Ax.
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Proposition 18.19 (continued 1)

Proof (continued). By the monotonicity of v (Proposition 17.1) and the
countable subadditivity of i (any measure is countably additive by
definition, and so is also countably subadditive on the o-algebra of
measurable sets): v(A,) = v (U2 Ex) > E,;) > € and

. 00 >~ 4 1
M(Aﬂ) Uk nEk < Z Ek) < Z 27 = on—1
k: J—

for all n € N. Define Ay, = U2, Ax. Then
wAx) = wu(NZ1Ax) < (An) by monotonicity
1
< F for all n e N,

and so p(Ax) = 0. Next, v(X) < oo since v is a finite measure by
hypothesis and so v(A;) < v(X) < oo by monotonicity.
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Proposition 18.19 (continued 2)

Proposition 18.19. Let (X, M, 1) be a measure space and v a finite
measure on the measurable space (X, M). Then v is absolutely
continuous with respect to p if and only if for each € > 0 thereisa d > 0
such that for any set E € M, if u(E) < 0 then v(E) < e.

Proof (continued). Then, by the Continuity of Measure of v (Proposition
17.2) and the fact that v(A,) > g9 > 0 for all n € N, we have

V(Ax) = V( lim A,,) = lim v(A,) > e > 0.
n—oo n—oo

But we have hypothesized the absolute continuity of v with respect to p,

and here we have p(Ax) = 0 but ¥(Ax) > 0, so this is a contradiction

(to our assumption that the £/§ condition does not hold). Therefore, the

/0 condition does hold. O
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem. Let (X, M, 1) be a o-finite measure
space and v a o-finite measure defined on the measurable space (X, M)
that is absolutely continuous with respect to . Then there is a
nonnegative f on X that is measurable with respect to M for which

v(E) :/ fdu forall E € M.
E
The function f is unique in the sense that if g is any nonnegative

measurable function on X for which v(E) = [ g du for all E € M, then
g="f p-ae.
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem. Let (X, M, 1) be a o-finite measure
space and v a o-finite measure defined on the measurable space (X, M)
that is absolutely continuous with respect to . Then there is a
nonnegative f on X that is measurable with respect to M for which

V(E):/ fdu forall E € M.
E

The function f is unique in the sense that if g is any nonnegative
measurable function on X for which v(E) = [ g du for all E € M, then
g="f p-ae.

Proof. We consider the case where both i and v are finite measures and
cover th eo-finite case in Exercise 18.49. If v(E) = 0 for all E € M then
the claim holds with f = 0 on X. So without loss of generality we can
assume v does not vanish on all of M.
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The Radon-Nikodym Theorem (continued 1)

Proof (continued). We first prove that there is nonnegative measurable
f on X for which

/fdu>Oand/fdugy(E)forallEEM. (32)
E

For A > O,Xconsider the finite signed measure v — Ay (since p and v are
finite, v — A\u satisfies the definition of signed measure; see Section 17.21).
By the Hahn Decomposition Theorem, there is a Hahn decomposition
{Px, N\} for v — A\ where X = Py U Ny, PN Ny =&, P, is a positive
v = Au measure set, and N, is a negative v — A\ measure set.
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The Radon-Nikodym Theorem (continued 1)

Proof (continued). We first prove that there is nonnegative measurable
f on X for which

fdu>Oand/fd,ugy(E)forallEEM. (32)
E

For A > O,Xconsider the finite signed measure v — Ay (since p and v are
finite, v — A\u satisfies the definition of signed measure; see Section 17.21).
By the Hahn Decomposition Theorem, there is a Hahn decomposition
{Px, N\} for v — A\ where X = Py U Ny, PN Ny =&, P, is a positive
v = Au measure set, and N, is a negative v — A\ measure set.

ASSUME p(Py) =0 for all A > 0. Then for any measurable E C Py we
have absolute continuity, (E) = 0. Since N, is a negative set for v — Au
then for any E € M,

(v = Au)(E) = (v = A)((E N PA) U (E N Ny)) = v((E NPy U(ENNy))
—AM((ENPNU(ENNY)) =v((ENP))+v(ENN,)
“MUE N PY) = Mu(E N Ny) =v(ENNy) —Au(ENNy) <0...
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The Radon-Nikodym Theorem (continued 2)

Proof (continued). ...since by the definition of “negative set” we have
every subset of Ny has nonpositive measure, and this holds for all A > 0.
That is, v(E) < Au(E) for all E € M and for all A > 0. Since A >0 is
arbitrary and p(E) < pu(X) < oo we must have v(E) =0 for all E € M.
But this is a CONTRADICTION to the fact that v does not vanish on all
o fM. So the assumption that x(Py) = 0 for all A > 0 is false and there is
some A\g > 0 such that p(Py,) > 0.
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The Radon-Nikodym Theorem (continued 2)

Proof (continued). ...since by the definition of “negative set” we have
every subset of Ny has nonpositive measure, and this holds for all A > 0.
That is, v(E) < Au(E) for all E € M and for all A > 0. Since A >0 is
arbitrary and p(E) < pu(X) < oo we must have v(E) =0 for all E € M.
But this is a CONTRADICTION to the fact that v does not vanish on all
o fM. So the assumption that x(Py) = 0 for all A > 0 is false and there is
some A\g > 0 such that p(Py,) > 0.

Define f = Aoxp, . Then Jxfdu= [y Aoxpy, di = Aopt(Py,) >0 and
since v — Ao/t is positive on Py, then
/ fdu = / Aoxp,, di = Aop(Pr, N E)
E E
v(Py, N E) since Py, N E C Py, and so
I/(P/\O N E) = )‘OM(P)\O N E) >0
< v(E) by monotonicity.

Real Analysis December 23, 2018 8 / 15

IN



The Radon-Nikodym Theorem (continued 3)

Proof (continued). Therefore (32) holds for f = Aoxp, . Define F to be
the collection of nonnegative measurable functions on X for which

Je fdu < v(E) for all E € M (so F is nonempty since Aoxp,, € F) and
then define M = supsc + [, f duu. Notice that M > 0 since Xoxp,, € F.
We now show that there is f € F for which fx fdu =M and that

V(E) = [¢fdu forall E € M for any such f.
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The Radon-Nikodym Theorem (continued 3)

Proof (continued). Therefore (32) holds for f = Aoxp, . Define F to be
the collection of nonnegative measurable functions on X for which

Je fdu < v(E) for all E € M (so F is nonempty since Aoxp,, € F) and
then define M = supsc + [, f duu. Notice that M > 0 since Xoxp,, € F.
We now show that there is f € F for which fx fdu =M and that

V(E) = [¢fdu forall E € M for any such f.

If g, h € F then with E; = {x € E | g)x) < h(x)} and
E; = {x € E | g(x) > h(x)} we have

/max{g,h}du = /hdu+/ ggv
E E E;

< v(E1) + v(Ez) by the definition of F
= v(E),

A

so that max{g, h} € F.
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The Radon-Nikodym Theorem (continued 4)

Proof (continued). Next, select a sequence {f,} € F for which
limn—oo ([ fn f1t) = M (such a sequence exists by the definition of
supremum). We may assume {f,} is a pointwise increasing sequence of
functions (or else we can replace f, by max{fi, f,...,f,}, since we now
know max{fi, f,...,fp} € F, to get an increasing sequence). Define
f(x) = limp— o fa(x) for each x € X.
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The Radon-Nikodym Theorem (continued 4)

Proof (continued). Next, select a sequence {f,} € F for which

limn—oo ([ fn f1t) = M (such a sequence exists by the definition of
supremum). We may assume {f,} is a pointwise increasing sequence of
functions (or else we can replace f, by max{fi, f,...,f,}, since we now
know max{fi, f,...,fp} € F, to get an increasing sequence). Define

f(x) = limp_o0 fn(x) for each x € X. Since F consists only of
nonnegative functions (by the definition of F) and {f,} is monotone, then
by the Monotone Convergence Theorem (of Section 18.2),

/fdu:/ lim f,dyu = lim </ f,,du>:l\/l.
X Xn—»oo n—oo X

Also V(E) > [ fodp for all E € M (by the definition of F) and so by the
Monotone Convergence Theorem

© o ()~ [ (1 )= [ 3

for all E € M, and so f € F, as desired.
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The Radon-Nikodym Theorem (continued 5)

Proof (continued). Define n(E) = v(E) — [ f dp for all E € M. We
have assumed v is a finite measure and so v(X) < co. Therefore

Jx fdp < v(X) < oo. As shown above, v(E) > [ f du for all E € M, so
n(E) > 0 for all E € M. Now v is countably additive since it is a measure
and so by Theorem 18.13, “Countable Additivity Over Domains of
Integration,” 7 is countably additive and so 7 is a measure on M. Also,
for E € M with u(E) = 0 we have v(E) = 0 since v is absolutely
continuous with respect to y and [ f dy = 0 so that n(E) = 0; that is, n
is absolutely continuous with respect to .
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The Radon-Nikodym Theorem (continued 5)

Proof (continued). Define n(E) = v(E) — [ f dp for all E € M. We
have assumed v is a finite measure and so v(X) < co. Therefore

Jx fdp < v(X) < oo. As shown above, v(E) > [ f du for all E € M, so
n(E) > 0 for all E € M. Now v is countably additive since it is a measure
and so by Theorem 18.13, “Countable Additivity Over Domains of
Integration,” 7 is countably additive and so 7 is a measure on M. Also,
for E € M with u(E) = 0 we have v(E) = 0 since v is absolutely
continuous with respect to y and [ f dy = 0 so that n(E) = 0; that is, n
is absolutely continuous with respect to .

ASSUME there is some set E € M for which n(E) > 0. Then, as argued
above for v, we can find 7 a nonnegative function such that [, f du >0

and [ fdu < n(E) for all E € M (we had the function Aoxp,, as such a
function in F for /). So from the definition of 7 we have for this # that
[z fdu<n(E)=v(E)— [¢fduforall E€ M (where f is the function
f(x) = limp_o0 fa(x) defined above).
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The Radon-Nikodym Theorem (continued 6)

Proof (continued). Then [, (f + FYdu = Jx fdu+ [g fdu > 0 and for
all E€ M, so [(f +F)du < v(E) — [ fdu < v(E), sothat f +f € F.
But then [, (f + #)dp > [y f diu =M, a CONTRADICTION to the
definition o fM. So the assumption that n(E) > 0 for some E € M is
false and hence n(E) = 0 for all E € M. Therefore, v(E) = [ f dp for all
E € M, as claimed.
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The Radon-Nikodym Theorem (continued 6)

Proof (continued). Then [, (f + FYdu = Jx fdu+ [g fdu > 0 and for
all E€ M, so [(f +F)du < v(E) — [ fdu < v(E), sothat f +f € F.
But then [y (f + F)du > [y f dju = M, a CONTRADICTION to the
definition o fM. So the assumption that n(E) > 0 for some E € M is
false and hence n(E) = 0 for all E € M. Therefore, v(E) = [ f dp for all
E € M, as claimed.

For uniqueness, suppose f; and f, both satisfy v(E) = [ Adu = [ fdu
for all E € M. Since v is a finite measure then r; and £ are both

integrable. Also,
[~ tydu= [ Adu- [ frdu=o
E E E

and so by Exercise 18.32, f; = f, p-a.e., as claimed. ]
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vy on M which is
singular with respect to 1, and a measure v; on M which is absolutely
continuous with respect to u, for which v = vg 4+ v1. The measures vy and
V1 are unique.
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vy on M which is
singular with respect to 1, and a measure v; on M which is absolutely
continuous with respect to u, for which v = vg 4+ v1. The measures vy and
V1 are unique.

Proof. Define A = 1+ v. In Exercise 18.58 it is to be shown that if g is
nonnegative and measurable with respect to M, then

/gd)\:/gdu+/gdl/foraIIE€M.
E e E

Since 1 and v are o-finite (that is, X is a union of a countable number of
measurable sets of finite measure) then A = i + v is also o-finite.
Moreover, if A(E) =0 then u(E) + v(E) =0 and so p(E) = 0; that is, 4
is absolutely continuous with respect to A.
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The Lebesgue Decomposition Theorem (continued 1)

Proof (continued). So by the Radon-Nikodym Theorem there is a
nonnegative measurable functions f for which

,u(E)_/fd)\_/fd(;H—y)—/fd,u—i-/fduforaIIEE./\/l. (37)
E E E E

Define Xy = {x € X | f(x) > 0} and Xp = {x € X | f(x) = 0}. Since f is
a measurable function then X} and Xy are measurable. Define

w(E) =v(ENXo) and v1(E) = v(ENX4) for all E € M. Then

v =19+ 11 on M, as claimed.
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The Lebesgue Decomposition Theorem (continued 1)

Proof (continued). So by the Radon-Nikodym Theorem there is a
nonnegative measurable functions f for which

,u(E)_/fd)\_/fd(/H—y)—/fd,u—i-/fduforaIIEE./\/l. (37)
E E E E

Define Xy = {x € X | f(x) > 0} and Xp = {x € X | f(x) = 0}. Since f is
a measurable function then X} and Xy are measurable. Define

w(E) =v(ENXo) and v1(E) = v(ENX4) for all E € M. Then

v =19 +1; on M, as claimed. Now pu(Xp) = fx fd\ = fx 0d\ =0 and
n(Xy) = v(Xy N Xo) = v(2) = 0. So (by deﬂmtlon) and vg are
mutually singular (that is, 1 L 1p), as claimed.

Real Analysis December 23, 2018 14 / 15



The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem (continued 2)

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vy on M which is
singular with respect to i, and a measure v; on M which is absolutely
continuous with respect to u, for which v = vg 4+ v1. The measures v and
V1 are unique.

Proof (continued). Next, we show v is absolutely continuous with
respect to y. Let u(E) = 0. Then [ f dp = 0. Therefore by (37)
Je fdv=0and so (by additivity) 0 = [ fdv = [py fdv+ [gx ffL.
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem (continued 2)

The Lebesgue Decomposition Theorem.

Let (X, M, 1) be a o-finite measure space and v a o-finite measure on the
measurable space (X, M). Then there is a measure vy on M which is
singular with respect to i, and a measure v; on M which is absolutely
continuous with respect to u, for which v = vg 4+ v1. The measures v and
V1 are unique.

Proof (continued). Next, we show v is absolutely continuous with
respect to y. Let u(E) = 0. Then [ f dp = 0. Therefore by (37)

Je fdv=0and so (by additivity) 0 = [ fdv = [py fdv+ [gx ffL.
Since f =0 on ENXp then [, fdv=0andso [ fdv=0 But

f >0on EN X, and so by Exercise 18.19 f =0 v-a.e. on EN X;. So we
must have v(E N X;) =0. Thatis, v1(E) = 0. So vy is absolutely
continuous with respect to p, as claimed. Uniqueness is to be shown in
Exercise 18.55. O
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