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Proposition 18.19

Proposition 18.19

Proposition 18.19. Let (X ,M, µ) be a measure space and ν a finite
measure on the measurable space (X ,M). Then ν is absolutely
continuous with respect to µ if and only if for each ε > 0 there is a δ > 0
such that for any set E ∈M, if µ(E ) < δ then ν(E ) < ε.

Proof. Suppose the ε/δ condition holds and µ(E ) = 0. Then for all
ε > 0, we have ν(E ) < ε and hence ν(E ) = 0. So ν is absolutely
continuous with respect to µ.

Next, suppose ν is absolutely continuous with respect to µ and the ε/δ
condition does not hold. Then there is ε0 > 0 and a sequence of sets
{En} ⊂ M such that for each n ∈ N, µ(En) < 1/2n while ν(En) ≥ ε0

(otherwise, we could eventually rake δ0 = 1/2n for some n ∈ N and the
ε/δ condition would hold). For each n ∈ N, define An = ∪∞k=nEk . Then
{An} is a descending sequence of sets in M.
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Proposition 18.19

Proposition 18.19 (continued 1)

Proof (continued). By the monotonicity of ν (Proposition 17.1) and the
countable subadditivity of µ (any measure is countably additive by
definition, and so is also countably subadditive on the σ-algebra of
measurable sets): ν(An) = ν (∪∞k=nEk) ≥ En) ≥ ε0 and

µ(An) = µ (∪∞k=nEk) ≤
∞∑

k=n

µ(Ek) <

∞∑
k=n

1

2k
=

1

2n−1

for all n ∈ N. Define A∞ = ∪∞k=1Ak . Then

µ(A∞) = µ (∩∞k=1Ak) ≤ (An) by monotonicity

<
1

2n−1
for all n ∈ N,

and so µ(A∞) = 0. Next, ν(X ) < ∞ since ν is a finite measure by
hypothesis and so ν(A1) ≤ ν(X ) < ∞ by monotonicity.
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Proposition 18.19

Proposition 18.19 (continued 2)

Proposition 18.19. Let (X ,M, µ) be a measure space and ν a finite
measure on the measurable space (X ,M). Then ν is absolutely
continuous with respect to µ if and only if for each ε > 0 there is a δ > 0
such that for any set E ∈M, if µ(E ) < δ then ν(E ) < ε.

Proof (continued). Then, by the Continuity of Measure of ν (Proposition
17.2) and the fact that ν(An) ≥ ε0 > 0 for all n ∈ N, we have

ν(A∞) = ν
(

lim
n→∞

An

)
= lim

n→∞
ν(An) ≥ ε0 > 0.

But we have hypothesized the absolute continuity of ν with respect to µ,
and here we have µ(A∞) = 0 but ν(A∞) > 0, so this is a contradiction
(to our assumption that the ε/δ condition does not hold). Therefore, the
ε/δ condition does hold.
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem

The Radon-Nikodym Theorem. Let (X ,M, µ) be a σ-finite measure
space and ν a σ-finite measure defined on the measurable space (X ,M)
that is absolutely continuous with respect to µ. Then there is a
nonnegative f on X that is measurable with respect to M for which

ν(E ) =

∫
E

f dµ for all E ∈M.

The function f is unique in the sense that if g is any nonnegative
measurable function on X for which ν(E ) =

∫
E g dµ for all E ∈M, then

g = f µ-a.e.

Proof. We consider the case where both µ and ν are finite measures and
cover th eσ-finite case in Exercise 18.49. If ν(E ) = 0 for all E ∈M then
the claim holds with f = 0 on X . So without loss of generality we can
assume ν does not vanish on all of M.
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 1)

Proof (continued). We first prove that there is nonnegative measurable
f on X for which∫

X
f dµ > 0 and

∫
E

f dµ ≤ ν(E ) for all E ∈M. (32)

For λ > 0, consider the finite signed measure ν − λµ (since µ and ν are
finite, ν − λµ satisfies the definition of signed measure; see Section 17.21).
By the Hahn Decomposition Theorem, there is a Hahn decomposition
{Pλ,Nλ} for ν − λµ where X = Pλ ∪ Nλ, Pλ ∩ Nλ = ∅, Pλ is a positive
ν = λµ measure set, and Nλ is a negative ν − λµ measure set.

ASSUME µ(Pλ) = 0 for all λ > 0. Then for any measurable E ⊂ Pλ we
have absolute continuity, ν(E ) = 0. Since Nλ is a negative set for ν − λµ
then for any E ∈M,

(ν − λµ)(E ) = (ν − λµ)((E ∩ Pλ) ∪ (E ∩ Nλ)) = ν((E ∩ Pλ) ∪ (E ∩ Nλ))

−λµ((E ∩ Pλ) ∪ (E ∩ Nλ)) = ν((E ∩ Pλ) + ν(E ∩ Nλ)

−λµ(E ∩ Pλ)− λµ(E ∩ Nλ) = ν(E ∩ Nλ)− λµ(E ∩ Nλ) ≤ 0 . . .
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 2)

Proof (continued). . . . since by the definition of “negative set” we have
every subset of Nλ has nonpositive measure, and this holds for all λ > 0.
That is, ν(E ) ≤ λµ(E ) for all E ∈M and for all λ > 0. Since λ > 0 is
arbitrary and µ(E ) ≤ µ(X ) < ∞ we must have ν(E ) = 0 for all E ∈M.
But this is a CONTRADICTION to the fact that ν does not vanish on all
o fM. So the assumption that µ(Pλ) = 0 for all λ > 0 is false and there is
some λ0 > 0 such that µ(Pλ0) > 0.

Define f = λ0χPλ0
. Then

∫
X f dµ =

∫
X λ0χPλ0

dµ = λ0µ(Pλ0) > 0 and
since ν − λ0µ is positive on Pλ0 then∫

E
f dµ =

∫
E

λ0χPλ0
dµ = λ0µ(Pλ0 ∩ E )

≤ ν(Pλ0 ∩ E ) since Pλ0 ∩ E ⊂ Pλ0 and so

ν(Pλ0 ∩ E ) = λ0µ(Pλ0 ∩ E ) ≥ 0

≤ ν(E ) by monotonicity.
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 3)

Proof (continued). Therefore (32) holds for f = λ0χPλ0
. Define F to be

the collection of nonnegative measurable functions on X for which∫
E f dµ ≤ ν(E ) for all E ∈M (so F is nonempty since λ0χPλ0

∈ F) and

then define M = supf ∈F
∫
X f dµ. Notice that M > 0 since λ0χPλ0

∈ F .

We now show that there is f ∈ F for which
∫
X f dµ = M and that

ν(E ) =
∫
E f dµ for all E ∈M for any such f .

If g , h ∈ F then with E1 = {x ∈ E | g)x) < h(x)} and
E2 = {x ∈ E | g(x) ≥ h(x)} we have∫

E
max{g , h} dµ =

∫
E1

h dµ +

∫
E2

g gν

≤ ν(E1) + ν(E2) by the definition of F
= ν(E ),

so that max{g , h} ∈ F .
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 4)

Proof (continued). Next, select a sequence {fn} ∈ F for which
limn→∞

(∫
X fn f µ

)
= M (such a sequence exists by the definition of

supremum). We may assume {fn} is a pointwise increasing sequence of
functions (or else we can replace fn by max{f1, f2, . . . , fn}, since we now
know max{f1, f2, . . . , fn} ∈ F , to get an increasing sequence). Define
f (x) = limn→∞ fn(x) for each x ∈ X . Since F consists only of
nonnegative functions (by the definition of F) and {fn} is monotone, then
by the Monotone Convergence Theorem (of Section 18.2),∫

X
f dµ =

∫
X

lim
n→∞

fn dµ = lim
n→∞

(∫
X

fn dµ

)
= M.

Also ν(E ) ≥
∫
E fn dµ for all E ∈M (by the definition of F) and so by the

Monotone Convergence Theorem

ν(E ) ≥ lim
n→∞

(∫
E

fn dµ

)
=

∫
E

(
lim

n→∞
fn

)
dµ =

∫
E

f dµ

for all E ∈M, and so f ∈ F , as desired.
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 5)

Proof (continued). Define η(E ) = ν(E )−
∫
E f dµ for all E ∈M. We

have assumed ν is a finite measure and so ν(X ) < ∞. Therefore∫
X f dµ ≤ ν(X ) < ∞. As shown above, ν(E ) ≥

∫
E f dµ for all E ∈M, so

η(E ) ≥ 0 for all E ∈M. Now ν is countably additive since it is a measure
and so by Theorem 18.13, “Countable Additivity Over Domains of
Integration,” η is countably additive and so η is a measure on M. Also,
for E ∈M with µ(E ) = 0 we have ν(E ) = 0 since ν is absolutely
continuous with respect to µ and

∫
E f dµ = 0 so that η(E ) = 0; that is, η

is absolutely continuous with respect to µ.

ASSUME there is some set E ∈M for which η(E ) > 0. Then, as argued
above for ν, we can find f̂ a nonnegative function such that

∫
X f̂ dµ > 0

and
∫
E f̂ dµ ≤ η(E ) for all E ∈M (we had the function λ0χPλ0

as such a

function in F for ν). So from the definition of η we have for this f̂ that∫
E f̂ dµ ≤ η(E ) = ν(E )−

∫
E f dµ for all E ∈M (where f is the function

f (x) = limn→∞ fn(x) defined above).
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The Radon-Nikodym Theorem

The Radon-Nikodym Theorem (continued 6)

Proof (continued). Then
∫
X (f + f̂ ) dµ =

∫
X f dµ +

∫
E f̂ dµ > 0 and for

all E ∈M, so
∫
E (f + f̂ ) dµ ≤ ν(E )−

∫
E f dµ ≤ ν(E ), so that f + f̂ ∈ F .

But then
∫
X (f + f̂ ) dµ >

∫
X f dµ = M, a CONTRADICTION to the

definition o fM. So the assumption that η(E ) > 0 for some E ∈M is
false and hence η(E ) = 0 for all E ∈M. Therefore, ν(E ) =

∫
E f dµ for all

E ∈M, as claimed.

For uniqueness, suppose f1 and f2 both satisfy ν(E ) =
∫
E f1 dµ =

∫
E f2 dµ

for all E ∈M. Since ν is a finite measure then r1 and f2 are both
integrable. Also,∫

E
(f1 − f2) dµ =

∫
E

f1 dµ−
∫

E
f2 dµ = 0

and so by Exercise 18.32, f1 = f2 µ-a.e., as claimed.
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem.
Let (X ,M, µ) be a σ-finite measure space and ν a σ-finite measure on the
measurable space (X ,M). Then there is a measure ν0 on M which is
singular with respect to µ, and a measure ν1 on M which is absolutely
continuous with respect to µ, for which ν = ν0 + ν1. The measures ν0 and
ν1 are unique.

Proof. Define λ = µ + ν. In Exercise 18.58 it is to be shown that if g is
nonnegative and measurable with respect to M, then∫

E
g dλ =

∫
e
g dµ +

∫
E

g dν for all E ∈M.

Since µ and ν are σ-finite (that is, X is a union of a countable number of
measurable sets of finite measure) then λ = µ + ν is also σ-finite.
Moreover, if λ(E ) = 0 then µ(E ) + ν(E ) = 0 and so µ(E ) = 0; that is, µ
is absolutely continuous with respect to λ.
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The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem (continued 1)

Proof (continued). So by the Radon-Nikodym Theorem there is a
nonnegative measurable functions f for which

µ(E ) =

∫
E

f dλ =

∫
E

f d(µ+ν) =

∫
E

f dµ+

∫
E

f dν for all E ∈M. (37)

Define X+ = {x ∈ X | f (x) > 0} and X0 = {x ∈ X | f (x) = 0}. Since f is
a measurable function then X+ and X0 are measurable. Define
ν0(E ) = ν(E ∩ X0) and ν1(E ) = ν(E ∩ X+) for all E ∈M. Then
ν = ν0 + ν1 on M, as claimed. Now µ(X0) =

∫
X0

f dλ =
∫
X0

0 dλ = 0 and
ν)(X+) = ν(X+ ∩ X0) = ν(∅) = 0. So (by definition) µ and ν0 are
mutually singular (that is, µ ⊥ ν0), as claimed.
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f dµ+

∫
E

f dν for all E ∈M. (37)

Define X+ = {x ∈ X | f (x) > 0} and X0 = {x ∈ X | f (x) = 0}. Since f is
a measurable function then X+ and X0 are measurable. Define
ν0(E ) = ν(E ∩ X0) and ν1(E ) = ν(E ∩ X+) for all E ∈M. Then
ν = ν0 + ν1 on M, as claimed. Now µ(X0) =

∫
X0

f dλ =
∫
X0

0 dλ = 0 and
ν)(X+) = ν(X+ ∩ X0) = ν(∅) = 0. So (by definition) µ and ν0 are
mutually singular (that is, µ ⊥ ν0), as claimed.

() Real Analysis December 23, 2018 14 / 15



The Lebesgue Decomposition Theorem

The Lebesgue Decomposition Theorem (continued 2)

The Lebesgue Decomposition Theorem.
Let (X ,M, µ) be a σ-finite measure space and ν a σ-finite measure on the
measurable space (X ,M). Then there is a measure ν0 on M which is
singular with respect to µ, and a measure ν1 on M which is absolutely
continuous with respect to µ, for which ν = ν0 + ν1. The measures ν0 and
ν1 are unique.

Proof (continued). Next, we show ν1 is absolutely continuous with
respect to µ. Let µ(E ) = 0. Then

∫
E f dµ = 0. Therefore by (37)∫

E f dν = 0 and so (by additivity) 0 =
∫
E f dν =

∫
E∩X0

f dν +
∫
E∩X+

f f ν.

Since f = 0 on E ∩ X0 then
∫
E∩X0

f dν = 0 and so
∫
E∩X+

f dν = 0. But
f > 0 on E ∩ X+ and so by Exercise 18.19 f = 0 ν-a.e. on E ∩ X+. So we
must have ν(E ∩ X+) = 0. That is, ν1(E ) = 0. So ν1 is absolutely
continuous with respect to µ, as claimed. Uniqueness is to be shown in
Exercise 18.55.
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