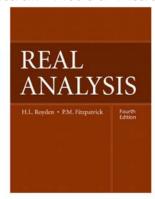
Real Analysis

Chapter 18. Integration Over General Measure Spaces

18.5. The Nikodym Metric Space: The Vitali-Hahn-Saks Theorem—Proofs of Theorems



Real Analysis

December 26, 2018 1 / 18

Lemma 18.5.A

Lemma 18.5.A. The map $\rho_{\mu}: \mathcal{M}/_{\sim} \times \mathcal{M}/_{\sim} \to \mathbb{R}$ is well-defined and is a metric on $\mathcal{M}/_{\sim}$.

Proof. First, we show ρ_u is well-defined. Let $A_1 \simeq A_2$ and $B_1 \simeq B_2$; that is, $\mu(A_1 \triangle A_2) = \mu(B_1 \triangle B_2) = 0$. So

$$\rho_{\mu}([A_{1}],[B_{2}]) = \mu(A_{1}\triangle B_{1})$$

$$= \mu((A_{1}\triangle A_{2})\triangle(A_{2}\triangle B_{1})) \text{ since } (A\triangle B)\triangle(B\triangle C) = A\triangle C$$

$$= \nu((A_{1}\triangle A_{2})\triangle((A_{2}\triangle B_{2})\triangle(B_{2}\triangle B_{1})))$$

$$\text{since } (A\triangle B)\triangle(B\triangle C) = A\triangle C.$$

Now $\mu(B_1 \triangle B_2) = \mu(B_2 \triangle B_1) = 0$, so $(A_{\triangle} B_2) \triangle (B_2 \triangle B_1)$ consists of almost all elements of $A_1 \triangle B_2$ along with some subset of $B_2 \triangle B_1$ (which must have μ -measure 0), so that $\mu((A_2 \triangle B_2) \triangle (B_2 \triangle B_1)) = \mu(A_2 \triangle B_2)$.

December 26, 2018 3 / 18

Lemma 18.5.A (continued 2)

Proof (continued).

- $\geq \mu((A\triangle B)\triangle(B\triangle C))$ by monotonicity since $(A\triangle B)\triangle(B\triangle C) = ((A\triangle B) \setminus (B\triangle C)) \cup ((B\triangle C) \setminus (A\triangle B))$ $\subset (A\triangle B) \cup (B\triangle C)$
- $= \mu(A\triangle C)$ since $(A\triangle B)\triangle(B\triangle C) = A\triangle C$
- $= \rho_{\mu}([A], [C]),$

and the Triangle Inequality holds.

Therefore ρ_{μ} is a metric.

Lemma 18.5.A (continued 1)

Proof (continued). Similarly, since $\mu(A_1 \triangle A_2) = 0$,

$$\mu((A_1 \triangle A_2) \triangle ((A_2 \triangle B_2) \triangle (B_2 \triangle B_1))$$

= $\mu((A_2 \triangle B_2) \triangle (B_2 \triangle B_1)) = \mu(A_2 \triangle B_2).$

Hence, $\rho_{\mu}([A_1], [B_1]) = \mu(A_2 \triangle B_2) = \rho_{\mu}([A_2], [B_2])$ and ρ_{μ} is well-defined.

We now check the definition of "metric" (see Section 9.1). Let $[A], [B], [C] \in \mathcal{M}/_{\simeq}$.

- (i) $\rho_{\mu}([A], [B]) = \mu(A \triangle B) \ge 0$,
- (ii) $\rho_{\mu}([A], [B]) = 0$ if and only if $\mu(A \triangle B) = 0$ if and only if $A \simeq B$ if and only if [A] = [B],
- (iii) $\rho_{\mu}([A], [B]) = \mu(A \triangle B) = \mu(B \triangle A) = \rho_{\mu}([B], [A]),$
- (iv) $\rho_{\mu}([A], [B]) + \rho_{\mu}([B], [C])$

$$= \mu(A\triangle B) + \mu(B\triangle C) \ge \mu((A\triangle B) \cup (B\triangle C))$$
by subadditivity

Real Analysis December 26, 2018 December 26, 2018 5 / 18

Theorem 18.21

Theorem 18.21. Let (X, \mathcal{M}, μ) be a finite measure space. Then the Nikodym metric space $(\mathcal{M}, \rho_{\mu})$ is complete; that is, every Cauchy sequence converges.

Proof. For $A, B \in \mathcal{M}$, we have $\chi_{A \triangle B} = |\chi_A - \chi_B|$, so

$$\mu(A\triangle B) = \int_X |\chi_A - \chi_B| \, d\mu. \quad (41)$$

Define $T: \mathcal{M} \to L^1(X, \mu)$ by $T(E) = \chi_E$ (we need the fact that μ is a finite measure here). Then T is an isometry between the metric spaces since by (41),

$$\rho_{\mu}(A,B) = \mu(A \triangle B) = \int_{X} |\chi_{A} - \chi_{B}| d\mu = ||T(A) - T(B)||_{1} \text{ for all } A, B \in \mathcal{M}.$$

Let $\{A_n\}$ be a Cauchy sequence in (M, ρ_{μ}) . Then $\{T(A_n)\}$ is a Cauchy sequence in $L^1(X, \mu)$ since T is an isometry.

Real Analysis

Lemma 18.22

Lemma 18.22. Let (X, \mathcal{M}, μ) be a finite measure space and ν a finite measure on \mathcal{M} . Let E_0 be a measurable set and $\varepsilon > 0$ and $\delta > 0$ be such that for any measurable set E,

if
$$\rho_{\nu}(E, E_0) < \delta$$
 then $|\nu(E) - \nu(E_0)| < \varepsilon/4$.

Then for any measurable sets A and B,

if
$$\rho_{\mu}(A, B) < \delta$$
 then $|\nu(A) - \nu(B)| < \varepsilon$.

Proof. We first show

if
$$\rho_{\mu}(A, B) < \delta$$
 then $|\nu(A) - \nu(B)| < \varepsilon/2$. (45)

Now if $D \subset C$ then $C \triangle D = (C \setminus D) \cup (D \setminus C) = C \setminus D$. Let $A \in \mathcal{M}$ and $\rho(A, \emptyset) = \mu(A \triangle \emptyset) = \mu(A) < \delta$. We have

$$(E_0 \setminus A) \triangle E_0 = (E_0 \setminus (E_0 \setminus A)) \cup (E_0 \setminus (E_0 \setminus A)) = E_0 \setminus (E_0 \setminus A) = E_0 \cap A \subset A.$$

Hence $\rho_{\mu}(E_0 \setminus A, E_0) = \mu((E_0 \setminus A) \triangle E_0) = \mu(A) < \delta$, and so by hypothesis $|\nu(E_0) - \nu(E_0 \setminus A)| = \nu(E_0) - \nu(E_0 \setminus A) < \varepsilon/4$.

Theorem 18.21 (continued)

Theorem 18.21. Let (X, \mathcal{M}, μ) be a finite measure space. Then the Nikodym metric space $(\mathcal{M}, \rho_{\mu})$ is complete; that is, every Cauchy sequence converges.

Proof (continued). By the Riesz-Fischer Theorem (we actually need the version for measure spaces which is not stated until Section 19.1) there is $f \in L^1(X,\mu)$ such that $\{T(A_n)\} \to f$ in $L^1(X,\mu)$, and there is a subsequence of $\{T(A_n)\}$ that converges pointwise to f μ -a.e. on X. Since each $T(A_n)$ is a characteristic function and so only takes on the values 0 and 1, if we define A_0 to be the set of points in X at which the pointwise convergent subsequence converges to 1, then the limit function f satisfies $f = \chi_{A_0} \mu$ -a.e. on X. Since $\{T(A_n)\}$ converges to $T(A_0) = \chi_{A_0}$ in $L^1(X,\mu)$ then (because T is an isometry) $\{A_n\}$ converges to A_0 in (\mathcal{M},ρ_μ) . Since $\{A_n\}$ is an arbitrary Cauchy sequence in (\mathcal{M},ρ_μ) , then (\mathcal{M},ρ_μ) is complete.

Lamma 19 22

Lemma 18.22 (continued 1)

Proof (continued). By the excision property (Proposition 17.1), since ν is a finite measure,

$$\nu(A \cap E_0) = \nu(E_0 \setminus (E_0 \setminus A)) = \nu(E_0) - \nu(E_0 \setminus A) < \varepsilon/4.$$

Now observe that

$$E_0\triangle(E_0\cup(A\setminus E_0))=(E_0\setminus(E_0\cup(A\setminus E_0)))\cup((E_0\cup(A\setminus E_0))\setminus E_0)$$

=\varnothing \cup((E_0\cup(A\\ E_0))\\ E_0)=(E_0\cup(A\\ E_0))\\ E_0=A\\ E_0\cup A.

So

$$\rho_{\mu}(E_0, E_0 \cup (A \setminus E_0)) = \mu(E_0 \triangle (E_0 \cup (A \setminus E_0))) = \mu(A \setminus E_0) \leq \mu(A) < \delta.$$

Thus, again by the excision property, and hypothesis

$$\nu(A \setminus E_0) = \nu((E_0 \cup (A \setminus E_0)) \setminus E_0) = |\nu(E_0 \cup (A \setminus E_0)) - \nu(E_0)|$$
$$= \nu(E_0 \cup (A \setminus E_0)) - \nu(E_0) < \varepsilon/4.$$

December 26, 2018

December 26, 2018

Lemma 18.22 (continued 2)

Proof (continued). Therefore

$$\nu(A) = \nu((A \cap E_0) \cup (A \setminus E_0))$$

$$= \nu(A \cap E_0) + \nu(A \setminus E_0) \text{ by additivity}$$

$$< \varepsilon/4 + \varepsilon/4 = \varepsilon/2.$$

So (45) holds.

Now let $A, B \in \mathcal{M}$. Then

$$\nu(A) - \nu(B) = \nu((A \cap B) \cup (A \setminus B)) - \nu((A \cap B) \cup (B \setminus A))$$

$$= \nu(A \cap B) + \nu(A \setminus B) = \nu(A \cap B) - \nu(B \setminus A) \text{ by additivity}$$

$$= \nu(A \setminus B) - \nu(B \setminus A),$$

Real Analysis

so
$$|\nu(A) - \nu(B)| = |\nu(A \setminus B) - \nu(B \setminus)| \le |\nu(A \setminus B)| + |\nu(B \setminus A)|$$
.

Proposition 18.23

Proposition 18.23. Let (X, \mathcal{M}, μ) be a finite measure space and ν a finite measure on \mathcal{M} that is absolutely continuous with respect to μ . Then ν induces a properly defined (i.e., "well-defined"), uniformly continuous function on the Nikodym metric space associated with (X, \mathcal{M}, μ) .

Proof. Since finite measure space ν is absolutely continuous with respect to μ then, by Proposition 18.19, for every $\varepsilon > 0$ there is $\delta > 0$ such that for any $E \in \mathcal{M}$, if $\mu(E) < \delta$ then $\nu(E) < \varepsilon$. Since $\mu(E) = \rho_{\mu}(E,\varnothing)$, this means that $\nu : \mathcal{M} \to \mathbb{R}$ is continuous at $E_0 = \varnothing$ (where ν maps metric space $(\mathcal{M}, \rho_{\mu})$ to metric space $(\mathbb{R}, |\cdot|)$. By Lemma 18.22, ν is uniformly continuous on $(\mathcal{M}, \rho_{\mu})$.

Lemma 18.22 (continued 3)

Lemma 18.22. Let (X, \mathcal{M}, μ) be a finite measure space and ν a finite measure on \mathcal{M} . Let E_0 be a measurable set and $\varepsilon > 0$ and $\delta > 0$ be such that for any measurable set E,

if
$$\rho_{\mu}(E, E_0) < \delta$$
 then $|\nu(E) - \nu(E_0)| < \varepsilon/4$.

Then for any measurable sets A and B,

if
$$\rho_{\mu}(A, B) < \delta$$
 then $|\nu(A) - \nu(B)| < \varepsilon$.

Proof (continued). Suppose $\rho_{\mu}(A,B) = \mu(A \triangle B) < \delta$. Since $A \setminus B, B \setminus A \subset A \triangle B$ then $\rho_{\mu}(A \setminus B,\varnothing) = \mu(A \setminus B) \leq \mu(A \triangle B) < \delta$ and so $\rho_{\mu}(B \setminus A,\varnothing) = \mu(B \setminus A) \leq \nu(A \triangle B) < \delta$ by monotonicity (Proposition 17.1). So by (45), we have $\nu(A \setminus B) < \varepsilon/2$ and $\nu(B \setminus A) < \varepsilon/2$. Hence, $|\nu(A) - \nu(B)| \leq |\nu(A \setminus B)| + |\nu(B \setminus A)| < \varepsilon$, as claimed.

Theorem 18.2

Theorem 18.25

Theorem 18.25. Let (X, \mathcal{M}, μ) be a finite measure space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} that is uniformly absolutely continuous with respect to μ . If $\{\nu_n\}$ converges setwise on \mathcal{M} to ν , then ν is a measure of \mathcal{M} that is absolutely continuous with respect to μ .

Proof. Since each ν_n is nonnegative then ν is nonnegative. Let $\{E_k\}_{k=1}^m$ be disjoint. Then

$$\nu\left(\bigcup_{k=1}^{m} E_{k}\right) = \lim_{n \to \infty} \nu_{n}\left(\bigcup_{k=1}^{m} E_{k}\right) = \lim_{n \to \infty} \left(\nu_{n}(E_{1}) + \nu_{n}(E_{2}) + \cdots + \nu_{n}(E_{m})\right)$$

$$=\lim_{n\to\infty}\nu_n(E_1)+\lim_{n\to\infty}\nu_n(E_2)+\cdots+\lim_{n\to\infty}\nu_n(E_m)=\nu(E_1)+\nu(E_2)+\cdots+\nu(E_m)$$

and so ν is finite additive. If $A \subset B$ then $\nu_n(A) \leq \nu_n(B)$, so $\nu(A) = \lim_{n \to \infty} \nu_n(A) \leq \lim_{n \to \infty} \nu_n(B) = \nu(B)$ and so ν is monotone. For countable additivity, consider disjoint $\{E_k\}_{k=1}^\infty$. If $\nu(E_k) = \infty$ for some E_k , then $\nu\left(\cup_{k=1}^\infty E_k\right) \geq \nu(E_k) = \infty = \sum_{k=1}^\infty \nu(E_k)$ and so countable additivity holds. So we can assume without loss of generality that $\nu(E_k) < \infty$ for all $k \in \mathbb{N}$.

December 26, 2018

Theorem 18.25 (continued 2)

Theorem 18.25 (continued 1)

Proof (continued). By finite additivity, for each $n \in \mathbb{N}$

$$\nu\left(\cup_{k=1}^{\infty} E_{k}\right) = \sum_{k=1}^{n} \nu(E_{k}) + \nu\left(\cup_{k=n+1}^{\infty} E_{k}\right). \tag{47}$$

Let $\varepsilon > 0$. Since $\{\nu_n\}$ is uniformly absolutely continuous with respect fo μ , there is $\delta > 0$ such that for $E \in \mathcal{M}$ and for all $n \in \mathbb{N}$,

if
$$\mu(E) < \delta$$
 then $\nu_n(E) < \varepsilon/2$. (48)

Since $\nu(E) = \lim_{n \to \infty} \nu_n(E)$ for all $E \in \mathcal{M}$, then $\nu_n(E) < \varepsilon/2$ implies $\nu(E) \le \varepsilon/2 < \varepsilon$. Since $\mu(X) < \infty$ and μ is countably additive then $\mu\left(\cup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k) < \infty$ and so there is $N \in \mathbb{N}$ for which $\mu\left(\cup_{k+N+1}^{\infty} E_k\right) = \sum_{k=N+1}^{\infty} \mu(E_k) < \delta$ (since the "tail" of a convergent series must be small) and so $\nu\left(\cup_{k=N+1}^{\infty} E_n\right) < \varepsilon$. So from (47),

$$0 \leq \nu \left(\bigcup_{k=1}^{\infty} E_k \right) - \sum_{k=1}^{N} \nu(E_k) = \nu \left(\bigcup_{k=N+1}^{\infty} E_k \right) < \varepsilon.$$

Treat 7 the

mber 26, 2018 14

Real Analy

combor 26, 2018

15 / 18

The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem.

Let (X, \mathcal{M}, μ) be a finite measure space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} , each if which is absolutely continuous with respect to μ . Suppose that $\{\nu_n(X)\}$ is bounded and $\{\nu_n\}$ converges setwise on \mathcal{M} to ν . Then the sequence $\{\nu_n\}$ is uniformly continuous with respect to μ . Moreover, ν is a finite measure on \mathcal{M} that is absolutely continuous with respect to μ .

Proof. By Proposition 18.23, $\{\nu_n\}$ induces a sequence of (uniformly) continuous functions on the Nikodym metric space where $\nu_n: \mathcal{M} \to \mathbb{R}$ (and the domain of ν_n is the metric space (\mathcal{M}, ρ_μ)). Since $\{\nu_n(X)\}$ is bounded for ν is finite on \mathcal{M} . By Theorem 18.21, (\mathcal{M}, ρ_μ) is a complete metric space.

Theorem 18.25. Let (X, \mathcal{M}, μ) be a finite measure space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} that is uniformly absolutely continuous with respect to μ . If $\{\nu_n\}$ converges setwise on \mathcal{M} to ν , then ν is a measure of \mathcal{M} that is absolutely continuous with respect to μ .

Proof (continued). Therefore

$$\lim_{N\to\infty} \left(\sum_{k=1}^N \nu(E_k) \right) = \sum_{k=1}^\infty \nu(E_k) = \nu\left(\bigcup_{k=1}^\infty E_k \right),$$

as claimed. So ν is a measure on \mathcal{M} .

From (48) (based on the uniformly absolute continuity of $\{\nu_n\}$ with respect to μ) we see that if $\mu(E)=0$ then $\nu_n(E)=0$ for all $n\in\mathbb{N}$ and so $\nu(E)=\lim_{n\to\infty}\nu_n(E)=0$. So ν is absolutely continuous with respect to μ .

The Vitali-Hahn-Saks Theoren

The Vitali-Hahn-Saks Theorem (continued)

Proof (continued). So by Theorem 10.7 (a consequence of the Baire Category Theorem), there is a set $E_0 \in \mathcal{M}$ for which the sequence $\{\nu_n : \mathcal{M} \to \mathbb{R}\}$ is equicontinuous at E_0 ; that is, for each $\varepsilon > 0$ there is $\delta > 0$ such that for each measurable set E and $n \in \mathbb{N}$,

if
$$\rho_{\mu}(E, E_0) < \delta$$
 then $|\nu_n(E) - \nu_n(E_0)| < \varepsilon$.

Since each ν_n is finite, Lemma 18.22 implies that for each $\varepsilon > 0$ there is $\delta > 0$ such that for each $E \in \mathcal{M}$ and each $n \in \mathbb{N}$

if
$$\rho_{\mu}(E,\varnothing) = \mu(E) < \delta$$
 then $|\nu_n(E) - \nu_n(\varnothing)| = \nu_n(E) < \varepsilon$.

Hence $\{\nu_n\}$ is uniformly absolutely continuous with respect to μ , as claimed. Since $\{\nu_n\}$ converges setwise to ν , by Theorem 18.25, ν is a finite measure that is absolutely continuous with respect to μ , as claimed.

 Real Analysis
 December 26, 2018
 16 / 18
 ()
 Real Analysis
 December 26, 2018
 17 / 1

Theorem 18.26

Theorem 18.26. Nikodym.

Let (X, \mathcal{M}) be a measurable space and $\{\nu_n\}$ a sequence of finite measures on \mathcal{M} which converges setwise on \mathcal{M} to the set function ν . Assume $\{\nu_n(X)\}$ is bounded. Then ν is a measure on \mathcal{M} .

Proof. For $E \in \mathcal{M}$, define $\mu(E) = \sum_{n=1}^{\infty} \frac{1}{2^n} \nu_n(E)$. By Exercise 18.63, μ is a

finite measure on \mathcal{M} . If $\mu(E)=0$ then each $\nu_n(E)=0$ and so each ν_n is absolutely continuous with respect to μ . Since $\{\nu_n(X)\}$ is bounded and converges setwise to ν , then by the Vitali-Hahn-Saks Theorem, ν is a measure on \mathcal{M} . In fact, ν is finite and absolutely continuous with respect to μ .

() Real Analysis December 26, 2018 18 / 1