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Real Analysis

Chapter 18. Integration Over General Measure Spaces
18.5. The Nikodym Metric Space: The Vitali-Hahn-Saks
Theorem—Proofs of Theorems
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Lemma 18.5.A (continued 1)

Proof (continued). Similarly, since (A1 AA) =0,
1((A1AA) A((A2ABR) A(B2ABy))
= ;i((AzABz)A(BzABl)) = ,{L(AQABQ).
Hence, p.([A1]. [B1]) = 1(A2AB) = pu([A2]. [B2]) and p,, is well-defined.
We now check the definition of “metric” (see Section 9.1). Let
[A].[B]. [C] € M/~.
(i) pu([A].[B]) = n(AAB) = 0,
(ii) pu([A],[B]) = 0 if and only if u(AAB) = 0 if and only if
A~ B if and only if [A] = [B],
(i) pu([A],[B]) = m(AAB) = i(BAA) = pu([B]. [A]),
(iv) pu([Al,[B]) + pu([B],[C])
= W(AAB) + u(BAC) > u((AAB) U (BAC))
by subadditivity
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0 Rest Anatis

Lemma 18.5.A

Lemma 18.5.A. The map p, : M/~ x M/~ — R is well-defined and is a
metric on M/~.

Proof. First, we show p, is well-defined. Let A; ~ A; and By ~ Bj; that
iS, ;.L(Al./_\.A;g) = ,U,( 81A82) =0. So

pu(lAil, [B2]) = w(A1AB)
= p((A1AA)A(A2ABL)) since (AAB)A(BAC) = AAC
= V((ALA)A((AAB)A(BABY)))
since (AAB)A(BAC) = AAC.
Now ji(BiABy) = pu(B2ABy) =0, so (AaB2)A(B2/ABy) consists of

almost all elements of A;AB; along with some subset of Bo/AB; (which
must have p-measure 0), so that p((A2AB)A(BaABy)) = p(A2ABy).
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Lemma 18.5.A (continued 2)

Proof (continued).

> u((AAB)A(BAC)) by monotonicity since
(AAB)A(BAC) = ((AAB)\ (BAC)) U ((BAC) \ (AAB))
C (AAB)U (BAC)

= W(AAC) since (AAB)A(BAC) = AAC

= pu([ALIC]),

and the Triangle Inequality holds.
Therefore p,, is a metric. O
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Theorem 18.21

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.

Proof. For A, B € M, we have xans = |xa — x5, so
w(AsB) = [ xa-xeldu. (a1)
Jx

Define T : M — LY(X,p) by T(E) = xe (we need the fact that y is a
finite measure here). Then T is an isometry between the metric spaces
since by (41),

pu(AB) = u(ALE) = [ [xa—xel di = | T(A)-T(B)]s for all A8 & M.
X

Let {A,} be a Cauchy sequence in (M, p,). Then {T(A,)} is a Cauchy
sequence in L1(X, i) since T is an isometry.
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Lemma 18.22

Lemma 18.22. Let (X, M, 1) be a finite measure space and v a finite
measure on M. Let Ey be a measurable set and £ > 0 and § > 0 be such
that for any measurable set E,

if pu(E, Eg) < 0 then [V(E) —v(E)| < e/4.
Then for any measurable sets A and B,
if pu(A, B) < § then |[V(A) — v(B)| < .

Proof. We first show
if pu(A, B) < 4 then |v(A) —v(B)| <e/2. (45)
Now if D C C then CAD = (C\D)U(D\ C)=C\D. Let Ae M and
p(A, @) = W(ALD) = u(A) < §. We have
(Eo\A)AEy = (Eo\(Eo \ A))U(Eo\ (Eo\A)) = Eo\ (Eo\A) = EbNA C A.

Hence p.(Eo \ A, Eo) = u((Eo \ A)AEg) = 1(A) < 6, and so by hypothesis
W(Eo) — v(Eo \ A)| = v(Eo) — v(Eo \ A) < &/4.
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L Theoem 1821 ]
Theorem 18.21 (continued)

Theorem 18.21. Let (X, M, p) be a finite measure space. Then the
Nikodym metric space (M, p,) is complete; that is, every Cauchy
sequence converges.

Proof (continued). By the Riesz-Fischer Theorem (we actually need the
version for measure spaces which is not stated until Section 19.1) there is
f € LY(X, u) such that {T(A,)} — f in L}(X, i), and there is a
subsequence of { T(A;)} that converges pointwise to f p-a.e. on X. Since
each T(A,) is a characteristic function and so only takes on the values 0
and 1, if we define Ap to be the set of points in X at which the pointwise
convergent subsequence converges to 1, then the limit function f satisfies
f = Xa, p-a.e. on X. Since {T(A,)} converges to T(Ap) = x4, in

LY(X, p) then (because T is an isometry) {A,} converges to Ag in

(M, p,). Since {A,} is an arbitrary Cauchy sequence in (M, p,), then
(M, p,) is complete. O
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L Lemma 1822 ]
Lemma 18.22 (continued 1)

Proof (continued). By the excision property (Proposition 17.1), since v
is a finite measure,

V(AN Ey) =v(Ey \ (Eo \ A)) = v(Eo) —v(Eo \ A) < /4.
Now observe that
EoA(Eo U (AN Eo)) = (Eo \ (o U(A\ Eo))) U ((Eo U (A\ Eo)) \ Eo)
=2 U((EoU(A\ E))\ Eo) = (B0 U(A\ Eo)) \Eo = A\ B C A.
So
pu(Eo, Eo U(A\ Eo)) = (EoA(Eo U (A Bo))) = (AN Eo) < p(A) < 6.
Thus, again by the excision property, and hypothesis
V(A\ Eo) = v((Eo U (A\ Eo)) \ Eo) = [V(Eo U(A\ Eo)) — v(Eo)
=v(EyU(A\ EB)) — v(Ey) < e/4.
0 |
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. lmmais2]
Lemma 18.22 (continued 2)

. lemmals22]
Lemma 18.22 (continued 3)

Proof (continued). Therefore Lemma 18.22. Let (X, M, i) be a finite measure space and v a finite

measure on M. Let Ey be a measurable set and £ > 0 and ¢ > 0 be such

v(A) = v((ANE)U(A\ E)) that for any measurable set E,

= V(AN Ey) +v(A\ E) by additivity )
< c/htc/h=c/2. if pu(E, Eg) < d then |[V(E) —v(Eo)| < /4.

Then fi I A B
So (45) holds. en for any measurable sets A and B,

Now let A, B € M. Then if pu(A, B) <4 then [v(A) —v(B)| <e.

Y(A)—v(B) = W(ANB)U(A\B))—1((ANB)U(B\A))
= v(ANB)+v(A\ B) =v(ANB) —vy(B\ A) by additivity
= V(A\B)—v(B\A),

Proof (continued). Suppose p,(A, B) = u(AAB) < 4. Since

A\ B,B\ AC AAB then p,(A\ B,@) = (A\ B) < n(AAB) < § and
so pu(B\ A @) =B\ A) <v(AAB) < é by monotonicity (Proposition
17.1). So by (45), we have ¥(A\ B) < /2 and v(B\ A) < £/2. Hence,

50 [1(A) = ¥(B)| = [V(A\ B) — 1(B\)| < [(A\ B)| +[v(B\ A)| (A) —v(B)l < A\ B)l + (B A)| <, as claimed. -
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Proposition 18.23

Proposition 18.23. Let (X, M, 1) be a finite measure space and v a
finite measure on M that is absolutely continuous with respect to pi. Then
v induces a properly defined (i.e., “well-defined”), uniformly continuous
function on the Nikodym metric space associated with (X, M, u).

Proof. Since finite measure space v is absolutely continuous with respect
to p then, by Proposition 18.19, for every £ > 0 there is § > 0 such that
for any E € M, if u(E) < § then v(E) < e. Since u(E) = p,(E, @), this
means that v : M — R is continuous at Eg = & (where v maps metric
space (M, p,,) to metric space (R, |-[). By Lemma 18.22, v is uniformly
continuous on (M, p,,). O
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Theorem 18.25

Theorem 18.25. Let (X, M, ;1) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to ji.

Proof. Since each v, is nonnegative then v is nonnegative. Let { Ex}[.
be disjoint. Then

v(WiliEx) = nlimr)C Vn (U1 Ex) = n&mx(vn(El) + Un(E2) + - - - vn(Em))
— lim vp(En)+ lim vn(Eo)+ -+ i v(Em) = U(ED)+0(Ex) 4+ +1(En)

and so v is finite additive. If A C B then v,(A) < vp(B), so

V(A) = limp_o0 V5(A) < limp_oo v5(B) = v(B) and so v is monotone. For
countable additivity, consider disjoint { Ex}7° ;. If v(Ex) = oo for some Ey,
then v (W32, Ex) > v(Ex) = o0 = Y 4oy ¥(Ex) and so countable additivity
holds. So we can assume without loss of generality that v(Ex) < oo for all
k € N.
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Theorem 18.25 (continued 1)

Proof (continued). By finite additivity, for each n € N

n
V(Uc:i_lEk) :ZI}(Ek)+V(Uﬁn+1Ek)- (47)
k=1
Let € > 0. Since {v,} is uniformly absolutely continuous with respect fo f,
there is & > 0 such that for £E € M and for all n € N,
if W(E) < & then v,(E) <e/2. (48)

Since V(E) = limy_.oo vn(E) for all E € M, then v,(E) < £/2 implies
V(E) <e/2 < e. Since pu(X) < oo and p is countably additive then
(W32 Ex) = > 721 1(Ex) < oo and so there is N € N for which

1 (W3S a1 Ex) = D rensq (Ek) < & (since the “tail” of a convergent
series must be small) and so v (W32 .1 En) < £. So from (47),

N
0 < v(WUReEr) — Y v(Ek) = v (2nsFx) <e.
k=1
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The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem.

Let (X, M, 1) be a finite measure space and {v,} a sequence of finite
measures on M, each if which is absolutely continuous with respect to /.
Suppose that {v,(X)} is bounded and {v,} converges setwise on M to v.
Then the sequence {v,} is uniformly continuous with respect to .
Moreover, v is a finite measure on M that is absolutely continuous with
respect to 1.

Proof. By Proposition 18.23, {v,} induces a sequence of (uniformly)
continuous functions on the Nikodym metric space where v, : M — R
(and the domain of v, is the metric space (M, p,)). Since {vp(X)} is
bounded for v is finite on M. By Theorem 18.21, (M, p,,) is a complete
metric space.
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Theorem 18.25 (continued 2)

Theorem 18.25. Let (X, M, ) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to p. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to ji.

Proof (continued). Therefore

N o0
lim (Z .U(Ek)) = Zv(Ek) =v (U Ek).

N—c

as claimed. So v is a measure on M.

From (48) (based on the uniformly absolute continuity of {v,} with
respect to y1) we see that if u(E) = 0 then v,(E) = 0 for all n € N and so
V(E) = limy_oo Vn(E) = 0. So v is absolutely continuous with respect to
L. O
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The Vitali-Hahn-Saks Theorem (continued)

Proof (continued). So by Theorem 10.7 (a consequence of the Baire
Category Theorem), there is a set Eg € M for which the sequence

{vnh : M — R} is equicontinuous at Ep; that is, for each £ > 0 there is
0 > 0 such that for each measurable set E and n € N,

if pu(E, Eg) < 0 then |v,(E) — vp(Eo)| < e.

Since each v, is finite, Lemma 18.22 implies that for each £ > 0 there is
d > 0 such that for each E € M and each n € N

if pu(E, @) = p(E) < d then |vp(E) — vp(D)| = vn(E) < e.

Hence {v,} is uniformly absolutely continuous with respect to p, as
claimed. Since {v,} converges setwise to v, by Theorem 18.25, v is a finite
measure that is absolutely continuous with respect to u, as claimed. O
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Theorem 18.26

Theorem 18.26. Nikodym.

Let (X, M) be a measurable space and {v,} a sequence of finite measures
on M which converges setwise on M to the set function v. Assume
{vn(X)} is bounded. Then v is a measure on M.

o0
Proof. For E € M, define u(E) = Z 2—1,,Vn(E)- By Exercise 18.63, j1 is a
1

n—
finite measure on M. If p(E) = 0 then each v,(E) = 0 and so each v, is
absolutely continuous with respect to p. Since {v,(X)} is bounded and
converges setwise to v/, then by the Vitali-Hahn-Saks Theorem, v is a
measure on M. In fact, v is finite and absolutely continuous with respect
to p. O



