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Lemma 18.5.A

Lemma 18.5.A. The map p, : M/~ x M/~ — R is well-defined and is a
metric on M /~.

Real Analysis December 26, 2018 3 / 18



Lemma 18.5.A

Lemma 18.5.A. The map p, : M/~ x M/~ — R is well-defined and is a
metric on M /~.

Proof. First, we show p,, is well-defined. Let A; ~ A, and By ~ By; that
iS, ,U(A1AA2) = M(BlABz) =0. So

pu([A1]; [B2]) = w(A1AB1)
= v((AIAA)A((AAB)A(BABY)))
since (AAB)A(BAC) = AAC.
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Lemma 18.5.A

Lemma 18.5.A. The map p, : M/~ x M/~ — R is well-defined and is a
metric on M /~.

Proof. First, we show p,, is well-defined. Let A; ~ A, and By ~ By; that
iS, ,U(A1AA2) = M(BlABz) =0. So

pu([A1]; [B2]) = w(A1AB1)
= v((AIAA)A((AAB)A(BABY)))
since (AAB)A(BAC) = AAC.
Now p(B1ABy) = u(BaABy) =0, so (AaB2)A(B2ABy) consists of

almost all elements of A;AB; along with some subset of B,/AB; (which
must have p-measure 0), so that p((A2AB)A(BaABy)) = (A2 ABo).
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Lemma 18.5.A (continued 1)
Proof (continued). Similarly, since (A1 AAz) =0,
p((A1AA)A((A2AB2) A(BAB))

= u((AAB)A(B2ABL)) = i(A2ABy).
Hence, p.([A1], [Bi]) = p(A2AB2) = pu([A2], [B2]) and p,, is well-defined.
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Lemma 18.5.A (continued 1)

Proof (continued). Similarly, since (A1 AAz) =0,
1((ALAA)A((A2AB2) A(BABy))
= 1((ALsBo) A(ByABy)) = p(AsSBy).
Hence, p.([A1], [Bi]) = p(A2AB2) = pu([A2], [B2]) and p,, is well-defined.
We now check the definition of “metric” (see Section 9.1). Let
[A],[B],[C] € M/~.
(i) pu([Al, [B]) = W(AAB) = 0,
(it) pu([A],[B]) = 0 if and only if u(AAB) =0 if and only if
A~ B if and only if [A] = [B],
(ii1) pu([A], [B]) = n(ALB) = w(BAA) = pu([BI, [A]),
(V) pu([AL, [B]) + pu(B], [C])
= wAAB) + u(BAC) > n((AAB) U (BAC))
by subadditivity
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Lemma 18.5.A (continued 2)

Proof (continued).

> p((AAB)A(BAC)) by monotonicity since
(AAB)A(BAC) = ((AAB) \ (BAC))U((BAC)\ (AAB))
C (AAB)U(BAC)

= p(AAC) since (AAB)A(BAC) = AAC

= pu([AL[C]),

and the Triangle Inequality holds.
Therefore p,, is a metric. O
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Theorem 18.21

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.
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Theorem 18.21

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.

Proof. For A, B € M, we have xaans = |xa — xB/, so

W(AAB) = /x Ixa — xsldp.  (41)
Define T: M — LY(X, ) by T(E) = xe (we need the fact that p is a
finite measure here). Then T is an isometry between the metric spaces

since by (41),

pu(A, B) = n(AAB) = / Ixa—xB|du = || T(A)—T(B)|1 for all A,B € M.
X
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Theorem 18.21

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.

Proof. For A, B € M, we have xaans = |xa — xB/, so
u(ALE) = [ Ixa- xel du. (1)
Define T: M — LY(X, ) by T(E) = xe (we need the fact that p is a

finite measure here). Then T is an isometry between the metric spaces
since by (41),

pu(A, B) = n(AAB) = / Ixa—xB|du = || T(A)—T(B)|1 for all A,B € M.
X
Let {A,} be a Cauchy sequence in (M, p,). Then {T(A,)} is a Cauchy

sequence in L1(X, ) since T is an isometry.
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Theorem 18.21 (continued)

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.

Proof (continued). By the Riesz-Fischer Theorem (we actually need the
version for measure spaces which is not stated until Section 19.1) there is
f € LX(X, u) such that {T(A,)} — f in L}(X, ), and there is a
subsequence of { T(A,)} that converges pointwise to f p-a.e. on X.
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Theorem 18.21 (continued)

Theorem 18.21. Let (X, M, 1) be a finite measure space. Then the
Nikodym metric space (M, p,,) is complete; that is, every Cauchy
sequence converges.

Proof (continued). By the Riesz-Fischer Theorem (we actually need the
version for measure spaces which is not stated until Section 19.1) there is
f € LX(X, u) such that {T(A,)} — f in L}(X, ), and there is a
subsequence of { T(A,)} that converges pointwise to f p-a.e. on X. Since
each T(A,) is a characteristic function and so only takes on the values 0
and 1, if we define Ag to be the set of points in X at which the pointwise
convergent subsequence converges to 1, then the limit function f satisfies
f = xa, p-a.e. on X. Since {T(Ap)} converges to T(Ag) = xa, in
L1(X, ) then (because T is an isometry) {A,} converges to Ag in

(M, py). Since {A,} is an arbitrary Cauchy sequence in (M, p,,), then
(M, pu) is complete. O
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Lemma 18.22

Lemma 18.22. Let (X, M, 1) be a finite measure space and v a finite

measure on M. Let Ey be a measurable set and € > 0 and § > 0 be such
that for any measurable set E,

if pu(E, Eo) < 0 then [v(E) — v(Eo)| < g/4.
Then for any measurable sets A and B,

if p,(A, B) < & then [1(A) — v(B)| < e.

Real Analysis December 26, 2018 8 /18



Lemma 18.22

Lemma 18.22. Let (X, M, 1) be a finite measure space and v a finite

measure on M. Let Ey be a measurable set and € > 0 and § > 0 be su
that for any measurable set E,

if pu(E, Eo) < 0 then [v(E) — v(Eo)| < g/4.
Then for any measurable sets A and B,

if pu(A, B) < 4§ then |[v(A) —v(B)| <e.
Proof. We first show

if pu(A, B) < then |[v(A) —v(B)| <e/2. (45)
Now if D  C then CAD = (C\D)U(D\ C) = C\ D.
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Lemma 18.22

Lemma 18.22. Let (X, M, 1) be a finite measure space and v a finite
measure on M. Let Ey be a measurable set and € > 0 and § > 0 be such
that for any measurable set E,

if pu(E, Eo) < 0 then [v(E) — v(Eo)| < g/4.
Then for any measurable sets A and B,
if pu(A, B) < 4§ then |[v(A) —v(B)| <e.
Proof. We first show

if pu(A, B) < then |[v(A) —v(B)| <e/2. (45)
Now if D C C then CAD =(C\D)U(D\ C)=C\D. Let A€ M and
p(A, @) = W(AAD) = p(A) < 8. We have
(Bo\A)AEy = (Eo\\ (Eo\ A) U(Eo\ (o A)) = Eo\ (Eo\ A) = Eo1A C A

Hence p,(Eo \ A, Eo) = p((Eo \ A)AEg) = pu(A) < 6, and so by hypothesis
|V(Eo) — v(Eo \ A)| = v(Eo) — v(Ep \ A) < /4.
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Lemma 18.22 (continued 1)

Proof (continued). By the excision property (Proposition 17.1), since v
is a finite measure,

V(AN Ep) =v(Eo \ (Eo \ A)) = v(Eo) — v(Eo \ A) < /4.
Now observe that
EolM(Eo U (A\ Eo)) = (B0 \ (Eo U (A E))) U ((Eo U (A\ o)) \ o)
=0 U((BU(A\ Eo)) \ Bo) = (Eo U(A\ o))\ Eo = A\ B C A.
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Lemma 18.22 (continued 1)

Proof (continued). By the excision property (Proposition 17.1), since v
is a finite measure,

V(AN Ep) =v(Eo \ (Eo \ A)) = v(Eo) — v(Eo \ A) < /4.

Now observe that

EolM(Eo U (A\ Eo)) = (B0 \ (Eo U (A E))) U ((Eo U (A\ o)) \ o)

— B U((BU(A\ Eo))\ Eo) = (By U(A\ Eo)) \ Bo = A\ By C A.
So
pu(Eo, Eo U (A\ Eo)) = u(Eol>(Eo U (A\ o)) = i(A\ Eo) < p(A) < 6.
Thus, again by the excision property, and hypothesis

V(AN Eo) = v((Ey U (A\ Eo)) \ Eo) = [v(Eo U (A\ Eo)) — w(Eo)

= (B U (A\ E)) — v(Eo) < £/4.
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Lemma 18.22 (continued 2)

Proof (continued). Therefore

v(A) = v((ANEo)U(A\ E))
= v(ANE) +v(A\ Eo) by additivity
< efb+e/h=¢/2

So (45) holds.
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Lemma 18.22 (continued 2)

Proof (continued). Therefore

v(A) = v((ANEo)U(A\ E))
= v(ANE) +v(A\ Eo) by additivity
< efb+e/h=¢/2

So (45) holds.
Now let A, B € M. Then

v(A)—v(B) = v((ANB)U(A\B))—v((ANB)U(B\ A))
= v(ANB)+v(A\B)=v(ANB)—v(B\ A) by additivity
— LA\ B) - u(B\ A)

so [v(A) = v(B)| = [v(A\ B) = v(B\)| < [v(A\ B)| + [v(B\ A)|.
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Lemma 18.22 (continued 3)

Lemma 18.22. Let (X, M, ) be a finite measure space and v a finite
measure on M. Let Ey be a measurable set and € > 0 and § > 0 be such
that for any measurable set E,

if pu(E, Eg) < 0 then |v(E) — v(Ep)| < g/4.
Then for any measurable sets A and B,

if pu(A, B) < 4§ then |[v(A) —v(B)| <e.

Proof (continued). Suppose p,(A, B) = u(AAB) < 4. Since

A\ B,B\ AC AAB then p,(A\ B,@) = u(A\ B) < u(AAB) < § and
so pu(B\ A,@)=u(B\A) <v(AAB) < § by monotonicity (Proposition
17.1). So by (45), we have v(A\ B) < ¢/2 and v(B \ A) < ¢/2. Hence,
[v(A) —v(B)| < [v(A\ B)| + [v(B\ A)| < ¢, as claimed. O
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Proposition 18.23

Proposition 18.23. Let (X, M, ) be a finite measure space and v a
finite measure on M that is absolutely continuous with respect to p. Then
v induces a properly defined (i.e., “well-defined”), uniformly continuous
function on the Nikodym metric space associated with (X, M, u).
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Proposition 18.23

Proposition 18.23. Let (X, M, ) be a finite measure space and v a
finite measure on M that is absolutely continuous with respect to p. Then
v induces a properly defined (i.e., “well-defined”), uniformly continuous
function on the Nikodym metric space associated with (X, M, u).

Proof. Since finite measure space v is absolutely continuous with respect
to u then, by Proposition 18.19, for every € > 0 there is § > 0 such that
for any E € M, if u(E) < 6 then v(E) < e. Since u(E) = pu(E, @), this
means that v : M — R is continuous at Ey = @ (where v maps metric
space (M, p,) to metric space (R, |-|). By Lemma 18.22, v is uniformly
continuous on (M, p,). O
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Theorem 18.25

Theorem 18.25
Theorem 18.25. Let (X, M, 1) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous

with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to p.
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Theorem 18.25

Theorem 18.25. Let (X, M, 1) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to p.

Proof. Since each v, is nonnegative then v is nonnegative. Let {E,}"
be disjoint. Then

v(Ur, Ex) = nleOO Vn (Wil Ex) (vn(Ex) + va(E2) + - vn(Em))

= lim
n—oo

= n||—>m<>o Vn(E1)+n|i—>n;o Vn(E2)+' : +n||—>n;o Vn(Em) = V(E1)+V(E2)+ : "H/(Em)

and so v is finite additive.
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Theorem 18.25

Theorem 18.25. Let (X, M, 1) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to p.

Proof. Since each v, is nonnegative then v is nonnegative. Let {E,}"
be disjoint. Then

(vn(E1) + vn(E2) + - - vp(Em))

= n||—>m<>o Vn(E1)+n|i—>n;o Vn(E2)+' : +n||—>n<10 Vn(Em) = V(E1)+V(E2)+ : "H/(Em)

v (Uit Bx) = lim v, (gl Ex) = lim

and so v is finite additive. If A C B then v,(A) < vp(B), so
V(A) = limp_oo Vn(A) < limp_oo vn(B) = v(B) and so v is monotone. For
countable additivity, consider disjoint {Ex}?2 ;. If v(Ex) = oo for some Ej,
then v (U2, Ex) > v(Ex) = 0o = > 7 ; ¥(Ex) and so countable additivity
holds. So we can assume without loss of generality that v(Ey) < oo for all
k € N.
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Theorem 18.25 (continued 1)

Proof (continued). By finite additivity, for each n € N

n

V(U E) = > v(Ek) + v (U2 ,aBe) - (47)
k=1

Let € > 0. Since {v,} is uniformly absolutely continuous with respect fo p,
there is 6 > 0 such that for E € M and for all n € N,

if W(E) < 0 then vp(E) <e/2. (48)

Since v(E) = limp—.oo vn(E) for all E € M, then v,(E) < &/2 implies
v(E)<e/2<e.
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Theorem 18.25 (continued 1)

Proof (continued). By finite additivity, for each n € N
n
v(WRiEe) =Y v(Ex) + v (i Ee) . (47)
k=1
Let € > 0. Since {v,} is uniformly absolutely continuous with respect fo p,
there is 6 > 0 such that for E € M and for all n € N,

if W(E) < 0 then vp(E) <e/2. (48)

Since v(E) = limp—.oo vn(E) for all E € M, then v,(E) < &/2 implies
v(E) <e/2 < e. Since pu(X) < oo and p is countably additive then
p (W2 Ex) = > 721 i(Ex) < oo and so there is N € N for which
1 (U g1 Ek) = D pe st #(Ek) < 6 (since the “tail” of a convergent
series must be small) and so v (32, 1 Ey) < e. So from (47),
N
0 < v (UL Ex) — Y v(Ek) =v (UlyiEx) <e.
k=1
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Theorem 18.25

Theorem 18.25 (continued 2)

Theorem 18.25. Let (X, M, 11) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous

with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to u.

Proof (continued). Therefore

N 0o
i (S50 = S =)

as claimed. So v is a measure on M.
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Theorem 18.25 (continued 2)

Theorem 18.25. Let (X, M, 11) be a finite measure space and {v,} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to u. If {v,} converges setwise on M to v, then v is a
measure of M that is absolutely continuous with respect to u.

Proof (continued). Therefore

N oo
lim (Z z/(Ek)> =Y (Ex) = v (Ui ),

N—oo

as claimed. So v is a measure on M.

From (48) (based on the uniformly absolute continuity of {v,} with
respect to u) we see that if u(E) = 0 then v,(E) =0 for all n € N and so
V(E) = lim,_oo vn(E) = 0. So v is absolutely continuous with respect to
7 L]
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The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem.

Let (X, M, 1) be a finite measure space and {v,} a sequence of finite
measures on M, each if which is absolutely continuous with respect to p.
Suppose that {v,(X)} is bounded and {v,} converges setwise on M to v.
Then the sequence {v,} is uniformly continuous with respect to .
Moreover, v is a finite measure on M that is absolutely continuous with
respect to .
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The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem.

Let (X, M, 1) be a finite measure space and {v,} a sequence of finite
measures on M, each if which is absolutely continuous with respect to p.
Suppose that {v,(X)} is bounded and {v,} converges setwise on M to v.
Then the sequence {v,} is uniformly continuous with respect to .
Moreover, v is a finite measure on M that is absolutely continuous with
respect to .

Proof. By Proposition 18.23, {v,} induces a sequence of (uniformly)
continuous functions on the Nikodym metric space where v, : M — R
(and the domain of v, is the metric space (M, p,,)). Since {vp(X)} is
bounded for v is finite on M. By Theorem 18.21, (M, p,,) is a complete
metric space.
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The Vitali-Hahn-Saks Theorem (continued)

Proof (continued). So by Theorem 10.7 (a consequence of the Baire
Category Theorem), there is a set Ey € M for which the sequence

{vn : M — R} is equicontinuous at Ep; that is, for each ¢ > 0 there is
6 > 0 such that for each measurable set E and n € N,

if pu(E, Eg) < 0 then |v,(E) — vp(Eo)| < e.
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The Vitali-Hahn-Saks Theorem (continued)

Proof (continued). So by Theorem 10.7 (a consequence of the Baire
Category Theorem), there is a set Ey € M for which the sequence

{vn : M — R} is equicontinuous at Ep; that is, for each ¢ > 0 there is
6 > 0 such that for each measurable set E and n € N,

if pu(E, Eg) < 0 then |v,(E) — vp(Eo)| < e.

Since each v, is finite, Lemma 18.22 implies that for each € > 0 there is
0 > 0 such that for each E € M and each n € N

if pu(E, @) = p(E) < d then |vp(E) — vp(@)| = va(E) < e.

Hence {v,} is uniformly absolutely continuous with respect to p, as
claimed. Since {v,} converges setwise to v, by Theorem 18.25, v is a finite
measure that is absolutely continuous with respect to p, as claimed. O
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Theorem 18.26. Nikodym

Theorem 18.26

Theorem 18.26. Nikodym.

Let (X, M) be a measurable space and {v,} a sequence of finite measures
on M which converges setwise on M to the set function v. Assume
{vn(X)} is bounded. Then v is a measure on M.
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Theorem 18.26

Theorem 18.26. Nikodym.

Let (X, M) be a measurable space and {v,} a sequence of finite measures
on M which converges setwise on M to the set function v. Assume
{vn(X)} is bounded. Then v is a measure on M.

o0
1

Proof. For E € M, define u(E) = Z EV,,(E). By Exercise 18.63, u is a

n=1
finite measure on M. If u(E) = 0 then each v,(E) =0 and so each v, is
absolutely continuous with respect to . Since {v,(X)} is bounded and
converges setwise to v, then by the Vitali-Hahn-Saks Theorem, v is a
measure on M. In fact, v is finite and absolutely continuous with respect
to pu. L]
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