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Lemma 18.5.A

Lemma 18.5.A

Lemma 18.5.A. The map ρµ : M/' ×M/' → R is well-defined and is a
metric on M/'.

Proof. First, we show ρµ is well-defined. Let A1 ' A2 and B1 ' B2; that
is, µ(A14A2) = µ(B14B2) = 0. So

ρµ([A1], [B2]) = µ(A14B1)

= µ((A14A2)4(A24B1)) since (A4B)4(B4C ) = A4C

= ν((A14A2)4((A24B2)4(B24B1)))

since (A4B)4(B4C ) = A4C .

Now µ(B14B2) = µ(B24B1) = 0, so (A4B2)4(B24B1) consists of
almost all elements of A14B2 along with some subset of B24B1 (which
must have µ-measure 0), so that µ((A24B2)4(B24B1)) = µ(A24B2).
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Lemma 18.5.A

Lemma 18.5.A (continued 1)

Proof (continued). Similarly, since µ(A14A2) = 0,

µ((A14A2)4((A24B2)4(B24B1))

= µ((A24B2)4(B24B1)) = µ(A24B2).

Hence, ρµ([A1], [B1]) = µ(A24B2) = ρµ([A2], [B2]) and ρµ is well-defined.

We now check the definition of “metric” (see Section 9.1). Let
[A], [B], [C ] ∈M/'.

(i) ρµ([A], [B]) = µ(A4B) ≥ 0,
(ii) ρµ([A], [B]) = 0 if and only if µ(A4B) = 0 if and only if

A ' B if and only if [A] = [B],
(iii) ρµ([A], [B]) = µ(A4B) = µ(B4A) = ρµ([B], [A]),
(iv) ρµ([A], [B]) + ρµ([B], [C ])

= µ(A4B) + µ(B4C ) ≥ µ((A4B) ∪ (B4C ))

by subadditivity
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Lemma 18.5.A

Lemma 18.5.A (continued 2)

Proof (continued).

≥ µ((A4B)4(B4C )) by monotonicity since

(A4B)4(B4C ) = ((A4B) \ (B4C )) ∪ ((B4C ) \ (A4B))

⊂ (A4B) ∪ (B4C )

= µ(A4C ) since (A4B)4(B4C ) = A4C

= ρµ([A], [C ]),

and the Triangle Inequality holds.
Therefore ρµ is a metric.
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Theorem 18.21

Theorem 18.21

Theorem 18.21. Let (X ,M, µ) be a finite measure space. Then the
Nikodym metric space (M, ρµ) is complete; that is, every Cauchy
sequence converges.

Proof. For A,B ∈M, we have χA4B = |χA − χB |, so

µ(A4B) =

∫
X
|χA − χB | dµ. (41)

Define T : M→ L1(X , µ) by T (E ) = χE (we need the fact that µ is a
finite measure here). Then T is an isometry between the metric spaces
since by (41),

ρµ(A,B) = µ(A4B) =

∫
X
|χA−χB | dµ = ‖T (A)−T (B)‖1 for all A,B ∈M.

Let {An} be a Cauchy sequence in (M, ρµ). Then {T (An)} is a Cauchy
sequence in L1(X , µ) since T is an isometry.
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Theorem 18.21

Theorem 18.21 (continued)

Theorem 18.21. Let (X ,M, µ) be a finite measure space. Then the
Nikodym metric space (M, ρµ) is complete; that is, every Cauchy
sequence converges.

Proof (continued). By the Riesz-Fischer Theorem (we actually need the
version for measure spaces which is not stated until Section 19.1) there is
f ∈ L1(X , µ) such that {T (An)} → f in L1(X , µ), and there is a
subsequence of {T (An)} that converges pointwise to f µ-a.e. on X . Since
each T (An) is a characteristic function and so only takes on the values 0
and 1, if we define A0 to be the set of points in X at which the pointwise
convergent subsequence converges to 1, then the limit function f satisfies
f = χA0 µ-a.e. on X . Since {T (An)} converges to T (A0) = χA0 in
L1(X , µ) then (because T is an isometry) {An} converges to A0 in
(M, ρµ). Since {An} is an arbitrary Cauchy sequence in (M, ρµ), then
(M, ρµ) is complete.
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Lemma 18.22

Lemma 18.22

Lemma 18.22. Let (X ,M, µ) be a finite measure space and ν a finite
measure on M. Let E0 be a measurable set and ε > 0 and δ > 0 be such
that for any measurable set E ,

if ρµ(E ,E0) < δ then |ν(E )− ν(E0)| < ε/4.

Then for any measurable sets A and B,

if ρµ(A,B) < δ then |ν(A)− ν(B)| < ε.

Proof. We first show

if ρµ(A,B) < δ then |ν(A)− ν(B)| < ε/2. (45)

Now if D ⊂ C then C4D = (C \ D) ∪ (D \ C ) = C \ D.

Let A ∈M and
ρ(A, ∅) = µ(A4∅) = µ(A) < δ. We have

(E0 \A)4E0 = (E0 \(E0 \A))∪(E0 \(E0 \A)) = E0 \(E0 \A) = E0∩A ⊂ A.

Hence ρµ(E0 \ A,E0) = µ((E0 \ A)4E0) = µ(A) < δ, and so by hypothesis
|ν(E0)− ν(E0 \ A)| = ν(E0)− ν(E0 \ A) < ε/4.
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Lemma 18.22

Lemma 18.22 (continued 1)

Proof (continued). By the excision property (Proposition 17.1), since ν
is a finite measure,

ν(A ∩ E0) = ν(E0 \ (E0 \ A)) = ν(E0)− ν(E0 \ A) < ε/4.

Now observe that

E04(E0 ∪ (A \ E0)) = (E0 \ (E0 ∪ (A \ E0))) ∪ ((E0 ∪ (A \ E0)) \ E0)

= ∅ ∪ ((E0 ∪ (A \ E0)) \ E0) = (E0 ∪ (A \ E0)) \ E0 = A \ E0 ⊂ A.

So

ρµ(E0,E0 ∪ (A \ E0)) = µ(E04(E0 ∪ (A \ E0))) = µ(A \ E0) ≤ µ(A) < δ.

Thus, again by the excision property, and hypothesis

ν(A \ E0) = ν((E0 ∪ (A \ E0)) \ E0) = |ν(E0 ∪ (A \ E0))− ν(E0)|

= ν(E0 ∪ (A \ E0))− ν(E0) < ε/4.
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Lemma 18.22

Lemma 18.22 (continued 2)

Proof (continued). Therefore

ν(A) = ν((A ∩ E0) ∪ (A \ E0))

= ν(A ∩ E0) + ν(A \ E0) by additivity

< ε/4 + ε/4 = ε/2.

So (45) holds.

Now let A,B ∈M. Then

ν(A)− ν(B) = ν((A ∩ B) ∪· (A \ B))− ν((A ∩ B) ∪· (B \ A))

= ν(A ∩ B) + ν(A \ B) = ν(A ∩ B)− ν(B \ A) by additivity (Proposition 17.1)

= ν(A \ B)− ν(B \ A),

so |ν(A)− ν(B)| = |ν(A \ B)− ν(B\)| ≤ |ν(A \ B)|+ |ν(B \ A)|.
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Lemma 18.22

Lemma 18.22 (continued 2)
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Lemma 18.22

Lemma 18.22 (continued 3)

Lemma 18.22. Let (X ,M, µ) be a finite measure space and ν a finite
measure on M. Let E0 be a measurable set and ε > 0 and δ > 0 be such
that for any measurable set E ,

if ρµ(E ,E0) < δ then |ν(E )− ν(E0)| < ε/4.

Then for any measurable sets A and B,

if ρµ(A,B) < δ then |ν(A)− ν(B)| < ε.

Proof (continued). Suppose ρµ(A,B) = µ(A4B) < δ. Since
A \ B,B \ A ⊂ A4B then ρµ(A \ B, ∅) = µ(A \ B) ≤ µ(A4B) < δ and
so ρµ(B \ A, ∅) = µ(B \ A) ≤ ν(A4B) < δ by monotonicity (Proposition
17.1). So by (45), we have ν(A \ B) < ε/2 and ν(B \ A) < ε/2. Hence,
|ν(A)− ν(B)| ≤ |ν(A \ B)|+ |ν(B \ A)| < ε, as claimed.
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Proposition 18.23

Proposition 18.23

Proposition 18.23. Let (X ,M, µ) be a finite measure space and ν a
finite measure on M that is absolutely continuous with respect to µ. Then
ν induces a properly defined (i.e., “well-defined”), uniformly continuous
function on the Nikodym metric space associated with (X ,M, µ).

Proof. Since finite measure space ν is absolutely continuous with respect
to µ then, by Proposition 18.19, for every ε > 0 there is δ > 0 such that
for any E ∈M, if µ(E ) < δ then ν(E ) < ε. Since µ(E ) = ρµ(E , ∅), this
means that ν : M→ R is continuous at E0 = ∅ (where ν maps metric
space (M, ρµ) to metric space (R, | · |). By Lemma 18.22, ν is uniformly
continuous on (M, ρµ).
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Theorem 18.25

Theorem 18.25

Theorem 18.25. Let (X ,M, µ) be a finite measure space and {νn} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to µ. If {νn} converges setwise on M to ν, then ν is a
measure of M that is absolutely continuous with respect to µ.

Proof. Since each νn is nonnegative then ν is nonnegative. Let {Ek}m
k=1

be disjoint. Then

ν (∪· mk=1Ek) = lim
n→∞

νn (∪· mk=1Ek) = lim
n→∞

(νn(E1) + νn(E2) + · · · νn(Em))

= lim
n→∞

νn(E1)+ lim
n→∞

νn(E2)+· · ·+ lim
n→∞

νn(Em) = ν(E1)+ν(E2)+· · ·+ν(Em)

and so ν is finite additive.

If A ⊂ B then νn(A) ≤ νn(B), so
ν(A) = limn→∞ νn(A) ≤ limn→∞ νn(B) = ν(B) and so ν is monotone. For
countable additivity, consider disjoint {Ek}∞k=1. If ν(Ek) = ∞ for some Ek ,
then ν (∪·∞k=1Ek) ≥ ν(Ek) = ∞ =

∑∞
k=1 ν(Ek) and so countable additivity

holds. So we can assume without loss of generality that ν(Ek) < ∞ for all
k ∈ N.
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Theorem 18.25

Theorem 18.25 (continued 1)

Proof (continued). By finite additivity, for each n ∈ N

ν (∪·∞k=1Ek) =
n∑

k=1

ν(Ek) + ν
(
∪·∞k=n+1Ek

)
. (47)

Let ε > 0. Since {νn} is uniformly absolutely continuous with respect fo µ,
there is δ > 0 such that for E ∈M and for all n ∈ N,

if µ(E ) < δ then νn(E ) < ε/2. (48)

Since ν(E ) = limn→∞ νn(E ) for all E ∈M, then νn(E ) < ε/2 implies
ν(E ) ≤ ε/2 < ε. Since µ(X ) < ∞ and µ is countably additive then
µ (∪·∞k=1Ek) =

∑∞
k=1 µ(Ek) < ∞ and so there is N ∈ N for which

µ
(
∪·∞k+N+1Ek

)
=
∑∞

k=N+1 µ(Ek) < δ (since the “tail” of a convergent
series must be small) and so ν

(
∪·∞k=N+1En

)
< ε. So from (47),

0 ≤ ν (∪·∞k=1Ek)−
N∑

k=1

ν(Ek) = ν
(
∪·∞k=N+1Ek

)
< ε.
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Theorem 18.25 (continued 1)
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Theorem 18.25

Theorem 18.25 (continued 2)

Theorem 18.25. Let (X ,M, µ) be a finite measure space and {νn} a
sequence of finite measures on M that is uniformly absolutely continuous
with respect to µ. If {νn} converges setwise on M to ν, then ν is a
measure of M that is absolutely continuous with respect to µ.

Proof (continued). Therefore

lim
N→∞

(
N∑

k=1

ν(Ek)

)
=
∞∑

k=1

ν(Ek) = ν (∪·∞k=1Ek) ,

as claimed. So ν is a measure on M.

From (48) (based on the uniformly absolute continuity of {νn} with
respect to µ) we see that if µ(E ) = 0 then νn(E ) = 0 for all n ∈ N and so
ν(E ) = limn→∞ νn(E ) = 0. So ν is absolutely continuous with respect to
µ.
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The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem.
Let (X ,M, µ) be a finite measure space and {νn} a sequence of finite
measures on M, each if which is absolutely continuous with respect to µ.
Suppose that {νn(X )} is bounded and {νn} converges setwise on M to ν.
Then the sequence {νn} is uniformly continuous with respect to µ.
Moreover, ν is a finite measure on M that is absolutely continuous with
respect to µ.

Proof. By Proposition 18.23, {νn} induces a sequence of (uniformly)
continuous functions on the Nikodym metric space where νn : M→ R
(and the domain of νn is the metric space (M, ρµ)). Since {νn(X )} is
bounded for ν is finite on M. By Theorem 18.21, (M, ρµ) is a complete
metric space.
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The Vitali-Hahn-Saks Theorem

The Vitali-Hahn-Saks Theorem (continued)

Proof (continued). So by Theorem 10.7 (a consequence of the Baire
Category Theorem), there is a set E0 ∈M for which the sequence
{νn : M→ R} is equicontinuous at E0; that is, for each ε > 0 there is
δ > 0 such that for each measurable set E and n ∈ N,

if ρµ(E ,E0) < δ then |νn(E )− νn(E0)| < ε.

Since each νn is finite, Lemma 18.22 implies that for each ε > 0 there is
δ > 0 such that for each E ∈M and each n ∈ N

if ρµ(E , ∅) = µ(E ) < δ then |νn(E )− νn(∅)| = νn(E ) < ε.

Hence {νn} is uniformly absolutely continuous with respect to µ, as
claimed. Since {νn} converges setwise to ν, by Theorem 18.25, ν is a finite
measure that is absolutely continuous with respect to µ, as claimed.
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Theorem 18.26

Theorem 18.26. Nikodym.
Let (X ,M) be a measurable space and {νn} a sequence of finite measures
on M which converges setwise on M to the set function ν. Assume
{νn(X )} is bounded. Then ν is a measure on M.

Proof. For E ∈M, define µ(E ) =
∞∑

n=1

1

2n
νn(E ). By Exercise 18.63, µ is a

finite measure on M. If µ(E ) = 0 then each νn(E ) = 0 and so each νn is
absolutely continuous with respect to µ. Since {νn(X )} is bounded and
converges setwise to ν, then by the Vitali-Hahn-Saks Theorem, ν is a
measure on M. In fact, ν is finite and absolutely continuous with respect
to µ.
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