Real Analysis

Chapter 19. General L^p Spaces: Completeness, Duality, and Weak Convergence

19.1. The Completeness of $L^p(X,\mu)$, $1 \le p \le \infty$ —Proofs of Theorems

Real Analysis

January 27, 2019 1 / 12

Theorem 19.1

Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hólder's Inequality, the claim that $f \in L^p(X,\mu)$ and $g \in L^1(X,\mu)$ imply $fg \in L^1(X,\mu)$ will then follow. (i) If p=1 and $q=\infty$ then

$$\int_X |fg| \, d\mu \leq \int_X \|g\|_\infty |f| \, d\mu \text{ by monotonicity, Lemma 18.2.A}$$

$$= \|g\|_\infty \int_X |f| \, d\mu \text{ by linearity, Lemma 18.2.A}$$

$$= \|f\|_1 \|g\|_\infty.$$

Also, for p=1 and $q=\infty$, if $f\neq 0$ then

$$|f^*| = |\|f\|_p^{p-1} \operatorname{sgn}(f)|f|^{p-1}| = \|f\|_1^0 |f^0| = 1,$$

so $\|f^*\|_{\infty} = 1$ and $f^* \in L^q(X, \mu)$. In addition, $\int_X ff^* d\mu = \int_X f \|f\|_p^{1-p} \mathrm{sgn}(f) |f|^{p-1} d\mu = \int_X |f| \|f\|_1^0 |f|^0 d\mu = \int_X |f| d\mu = \|f\|_1$, so that Hölder's Inequality holds for p = 1.

Theorem 19.1

Theorem 19.1. Let (X, \mathcal{M}, μ) be a measure space, $1 \le p \le \infty$, and q the conjugate of p (that is, $\frac{1}{p} + \frac{1}{q} = 1$). If $f \in L^p(X, \mu)$ and $g \in L^q(X, \mu)$, then the product $fg \in L^1(X, \mu)$ and:

- (i) Hölder's Inequality. $\int_X |fg| \ d\mu = \|fg\|_1 \le \|f\|_p \|g\|_q$. Moreover, if $f \ne 0$, the function $f^* = \|f\|_p^{1-p} \mathrm{sgn}(f) |F|^{p-1} \in L^q(X,\mu)$, $\int_X ff^* \ d\mu = \|f\|_p$ and $\|f^*\|_q = 1$.
- (ii) Minkowski's Inequality. For $1 \le p \le \infty$ and $f, g \in L^p(X, \mu)$, $\|f + g\|_p \le \|f\|_p + \|g\|_p$. Therefore $L^p(X, \mu)$ is a normed linear space.
- (iii) The Cauchy-Schwarz Inequality. Let f and g be measurable functions on X for which f^2 and g^2 are integrable over X. Then their product fg also is integrable over X and $\int_{\mathcal{E}} |fg| \ d\mu \leq \sqrt{\int_X f^2 \ d\mu} \sqrt{\int_X g^2 \ d\mu}.$

Real Analysis January 27, 2019 3 / 1

Theorem 19

Proposition 19.1 (continued 2)

Proof (continued). Now consider p>1. Young's Inequality gives for $a,b\in\mathbb{R},\ ab\leq \frac{1}{p}a^p+\frac{1}{q}b^q.$ Define $\alpha=\int_X|f|^p\,d\mu$ and $\beta=\int_X|g|^q\,d\mu.$ If either $\alpha=0$ or $\beta=0$ then either $\|f\|_p=0$ or $\|g\|_q=0$ (respectively) and so either f=0 a.e. or g=0 a.e. In either case, $\int_X|fg|\,d\mu=0$ and Hölder's Inequality holds. So we can without loss of generality assume α and β are both positive. Since $f\in L^p(X,\mu)$ and $g\in L^q(X,\mu)$ then f and g are both finite μ -a.e. by Proposition 18.9. If f(x) and g(x) are finite, substitute $|f(x)|/\alpha^{1/p}$ for a and $|g(x)|/\beta^{1/q}$ for b in Young's Inequality to conclude that

$$ab = \frac{1}{\alpha^{1/p} \beta^{1/q}} |f(x)g(x)| \le \frac{1}{p} a^p + \frac{1}{q} \beta^q = \frac{1}{p} \frac{1}{\alpha} |f(x)|^p + \frac{1}{q} \frac{1}{\beta} |g(x)|^q$$

for almost all $x \in X$.

January 27, 2019 4 / 12 () Real Analysis January 27, 2019 5 / 12

Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

$$\begin{split} \frac{1}{\alpha^{1/p}\beta^{1/q}} \int_X |fg| \, d\mu & \leq & \frac{1}{p} \frac{1}{\alpha} \int_X |f|^p + \frac{1}{q} \frac{1}{\beta} \int_X |g|^q \, d\mu \text{ by linearity,} \\ & \text{Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)} \\ & = & \frac{1}{p} \frac{1}{\alpha} \alpha + \frac{1}{q} \frac{1}{\beta} \beta = \frac{1}{p} + \frac{1}{q} = 1, \end{split}$$

or $\int_X |fg| d\mu = ||fg||_1 \le \alpha^{1/P} \beta^{1/q} = ||f||_p ||g||_q$, as claimed. So Hölder's Inequality holds for $1 \le p < \infty$.

(ii) We commented above that if $f, g \in L^p(X, \mu)$ then $f + g \in L^p(X, \mu)$. So, by Hölder's Inequality (the "Moreover" part), $(f+g)^* \in L^q(X,\mu)$.

Proposition 19.1 (continued 5)

Proof (continued). Hence

$$\begin{split} \|f+g\|_p &= \int_X f(f+g)^* \, d\mu + \int_X f(f+g)^* \, d\mu \\ &\leq \|f\|_p \|(f+g)^*\|_q + \|g\|_p \|(f+g)^*\|_q \\ &= \|f\|_p + \|g\|_q \text{ since } \|(f+g)^*\|_q = 1 \text{ by H\"older's Inequality} \\ &\text{the "Moreover" part)}. \end{split}$$

So Minkowski's Inequality holds, as claimed.

(iii) With p = q = 2 in Hölder's Inequality, we get the Cauchy-Schwarz Inequality.

Proposition 19.1 (continued 4)

Proof (continued). Therefore,

$$||f+g||_p = \int_X (f+g)(f+g)^* d\mu$$
 by Hölder's Inequality ("Moreover")
= $\int +Xf(f+g)^* d\mu + \int_X g(f+g)^* d\mu$ by linearity, Propositio

Now $\int_{X} |f(f+g)^*| d\mu \leq ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \leq |f(f+g)^*|$ on X, so by the Integral Comparison Test,

$$\int_X f(f+g)^* d\mu \le \left| \int_X f(f+g)^* d\mu \right| \le \int_X |f(f+g)^*| d\mu \le \|f\|_{\rho} \|(f+g)^*\|_{q}.$$

Similarly $\int_{Y} g(f+g)^* d\mu \leq ||g||_p ||(f+g)^*||_q$.

Corollary 19.3

Corollary 19.3. Let (X, \mathcal{M}, μ) be a measure space and 1 . If $\{f_n\}$ is a bounded sequence of functions in $L^p(X,\mu)$, then $\{f_n\}$ is uniformly integrable over X.

Proof. Let M > 0 be such that $||f||_p \leq M$ for $n \in \mathbb{N}$. Define $\gamma = 1$ if $p = \infty$ and $\gamma = (p-1)/p$ if $1 . By Corollary 19.2, with <math>p_1 = 1$, $p_2 = p$, and X of Corollary 19.2 replaced with any set E of finite measure in \mathcal{M} , we have

$$||f||_{p_1} = ||p||_1 = \int_E |f| d\mu \le c ||f||_{p_2} \le Mc = M(\mu(E))^{\gamma}.$$
 (*)

Let $\varepsilon > 0$. Let $\delta = (\varepsilon/M)^{1/\gamma}$. If $A \subset X$ is μ -measurable with $\mu(A) < \delta$ then from (*) with E = A,

$$\int_{A} |f| d\mu \leq M(\mu(A))^{\gamma} < M((\varepsilon/M))^{1/\gamma})^{\gamma} = \varepsilon.$$

So $\{f_n\}$ is uniformly integrable over X (by definition), as claimed.

January 27, 2019