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Theorem 19.1

Theorem 19.1. Let (X, M, 1) be a measure space, 1 < p < o0, and g
the conjugate of p (that is, %—i—% =1). If f € LP(X,p) and g € LI(X, p),
then the product fg € L1(X, ) and:
(i) Holder's Inequality. [y |fgdu = [Ifgll1 < [Ifllsllgllq-
Moreover, if f #£ 0, the function
f* = |Ifll5 Psen(f)IFIP~* € L9(X, ), [y fF* dpu = ||f]|, and
1F*llqg = 1.
(i) Minkowski's Inequality. For 1 < p < oo and f, g € LP(X, p),
If +gllp < |Ifllp + |lgllp- Therefore LP(X, 1) is a normed
linear space.
(iii) The Cauchy-Schwarz Inequality. Let f and g be measurable
functions on X for which 2 and g2 are integrable over X.
Then their product fg also is integrable over X and

Jelfeldu < \/fx f2 dM\/fX g2dp.
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Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hélder's Inequality, the claim that

f e LP(X,u) and g € LY(X, u) implu fg € LY(X, 1) will then follow.
(i) If p=1and g = oo then

/ Ifg|dp < / llg|loo|f|| d1v by monotonicity, Lemma 18.2.A
X X

= ||g|oo/x |f| du by linearity, Lemma 18.2.A
= [[fll1llglloo-
Also, for p =1 and g = oo, if f # 0 then
£ = 15" sen(F)IFIP~H = IFI21F°] = 1,

5O ||[f*]|lec =1 and f* € LI(X, p).
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Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hélder's Inequality, the claim that
f e LP(X,u) and g € LY(X, u) implu fg € LY(X, 1) will then follow.
(i) If p=1and g = oo then

/ Ifg|dp < / llg|loo|f|| d1v by monotonicity, Lemma 18.2.A
X X

= ||g|oo/x |f| du by linearity, Lemma 18.2.A
= [[fll1llglloo-
Also, for p =1 and g = oo, if f # 0 then
£ = 15" sen(F)IFIP~H = IFI21F°] = 1,

50 [[f*]|oc = 1 and * € L9(X, ). In addition, [y ff* dp =

1- —_
Jx FlFllp Psgn(OIFP~ du= [ IFIIFIRIFI° di = [x [l dp = || ]2, so
that Holder's Inequality holds for p = 1.
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Proposition 19.1 (continued 2)

Proof (continued). Now consider p > 1. Young's Inequality gives for
1
a,beR, ab< —ap—i— bq Define v = [, |[f|Pdp and 8 = [y |g|9dp. If

q
either « =0 or ﬂ = 0 then either ||f||, =0 or ||g|lq = O (respectively) and
so either f =0 a.e. or g =0 a.e. In either case, [, |fg|du =0 and
Holder's Inequality holds.
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Proposition 19.1 (continued 2)

Proof (continued). Now consider p > 1. Young's Inequality gives for
1
a,beR, ab< —ap—i— b" Define v = [, |[f|Pdp and 8 = [y |g|9dp. If
q

either « =0 or ﬂ = 0 then either ||f||, =0 or ||g|lq = O (respectively) and
so either f =0 a.e. or g =0 a.e. In either case, [, |fg|du =0 and
Holder's Inequality holds. So we can without loss of generality assume «
and (3 are both positive. Since f € LP(X, ) and g € L9(X, ) then f and
g are both finite p-a.e. by Proposition 18.9. If f(x) and g(x) are finite,
substitute |f(x)|/al/P for a and |g(x)|/3Y9 for b in Young's Inequality to
conclude that

1 1 1 11 11
— < P39 -~ P q
o= 1ol (080 < S8 057 = LTI+ 5lelx)

for almost all x € X.
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Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

1 11 11
“1/pal/q fgldp < —— fp-l-/ 9 du by linearity,
al/pﬁl/q/x‘gu > POé/x| a5 X\g\ by linearity
Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)
11 11 1 1

pa qp P q

or [y |fgldp=|fgl1 < a/PYa = ||f|,llgllq. as claimed. So Holder's
Inequality holds for 1 < p < oo.
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Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

1 11 11
“1/pal/q fgldp < —— fp-l-/ 9 du by linearity,
al/pﬁl/q/x‘gu > POz/x‘ a5 X\g\ by linearity,
Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)
11 11 1 1
pa qp P q

or [y |fgldp=|fgl1 < a/PYa = ||f|,llgllq. as claimed. So Holder's

Inequality holds for 1 < p < oo.

(ii) We commented above that if f,g € LP(X, ) then f + g € LP(X, u).
So, by Holder's Inequality (the “Moreover” part), (f + g)* € LI(X, p).
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Proposition 19.1 (continued 4)

Proof (continued). Therefore,
If+glp = /(f + g)(f + g)* dp by Holder's Inequality (“Moreover”)
X

= /—|—Xf(f +g) du +/ g(f + g)* du by linearity, Propositic
X
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Proposition 19.1 (continued 4)

Proof (continued). Therefore,
If+glp = /(f + g)(f + g)* dp by Holder's Inequality (“Moreover”)
X

= /—|—Xf(f +g) du +/ g(f + g)* du by linearity, Propositic
X

Now [y |F(f 4+ g)*[du < ||f|lpll(f + &g)*|lq by Holder's Inequality and
f(f+g)* <|f(f + g)* on X, so by the Integral Comparison Test,

/X F(Frg) du < \ /X f(f+g)*du‘ < /X F(Frg)* dpn < |l (Fre)* o
Similarly [, g(f 4+ &)* du < [|gllplI(f + &)*llg-
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Proposition 19.1 (continued 5)

Proof (continued). Hence

/f(f+g)*du+/f(f+g)*du
X X

< [fllplI(F +&)"llq + llgllpll(f +&)"llq
= ||f]lp+ |lgllq since ||[(f + &)*|lq¢ = 1 by Holder's Inequality

I + &l

the “Moreover” part).

So Minkowski's Inequality holds, as claimed.
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Proposition 19.1 (continued 5)

Proof (continued). Hence

IF +ll, /Xf(f+g)*du+/xf(f+g)*du

< [fllplI(F +&)"llq + llgllpll(f +&)"llq
= ||f]lp+ |lgllq since ||[(f + &)*|lq¢ = 1 by Holder's Inequality
the “Moreover” part).

So Minkowski's Inequality holds, as claimed.

(iii) With p = g = 2 in Holder's Inequality, we get the Cauchy-Schwarz
Inequality. O
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Corollary 19.3

Corollary 19.3

Corollary 19.3. Let (X, M, 1) be a measure space and 1 < p < co. If

{fa} is a bounded sequence of functions in LP(X, p), then {f,} is
uniformly integrable over X.
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Corollary 19.3

Corollary 19.3. Let (X, M, 1) be a measure space and 1 < p < co. If
{fa} is a bounded sequence of functions in LP(X, p), then {f,} is
uniformly integrable over X.

Proof. Let M > 0 be such that ||f||, < M for n € N. Define v =1 if
p=ocandy=(p—1)/pif 1 < p < oco. By Corollary 19.2, with p; =1,
p2 = p, and X of Corollary 19.2 replaced with any set E of finite measure
in M, we have

11l = llpll = /E fldu < cllfllp, < Me = M(u(E))". (*)
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Corollary 19.3

Corollary 19.3. Let (X, M, 1) be a measure space and 1 < p < co. If
{fa} is a bounded sequence of functions in LP(X, p), then {f,} is
uniformly integrable over X.

Proof. Let M > 0 be such that ||f||, < M for n € N. Define v =1 if
p=ocandy=(p—1)/pif 1 < p < oco. By Corollary 19.2, with p; =1,
p2 = p, and X of Corollary 19.2 replaced with any set E of finite measure
in M, we have

11l = llpll = /E fldu < cllfllp, < Me = M(u(E))". (*)

Let € > 0. Let 6 = (¢/M)Y7. If AC X is y-measurable with p(A) < &
then from (x) with E = A,

/ 1f] du < M(u(A))Y < M((e/ M) )7 = e,
A

So {f,} is uniformly integrable over X (by definition), as claimed. O
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Lemma 19.4

Lemma 19.4

Lemma 19.4. Let (X, M, 1) be a measure space and 1 < p < co. Then
every rapidly Cauchy sequence in LP(X, 1) converges to a function in
LP(X, ), both with respect to the LP(X, ) norm and pointwise a.e. in X.
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Lemma 19.4. Let (X, M, 1) be a measure space and 1 < p < co. Then
every rapidly Cauchy sequence in LP(X, 1) converges to a function in
LP(X, ), both with respect to the LP(X, ) norm and pointwise a.e. in X.

Proof.
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The Reisz-Fischer Theorem

The Reisz-Fischer Theorem

The Reisz-Fischer Theorem.

Let (X, M, 1) be a measure space and 1 < p < oo. Then LP(X, ) is a
Banach space. Moreover, if a sequence in LP(X, 1) converges in LP(X, )
to f € LP(X, ), then a subsequence converges pointwise a.e. on X to f.
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The Reisz-Fischer Theorem

The Reisz-Fischer Theorem

The Reisz-Fischer Theorem.

Let (X, M, 1) be a measure space and 1 < p < oo. Then LP(X, ) is a
Banach space. Moreover, if a sequence in LP(X, 1) converges in LP(X, )
to f € LP(X, ), then a subsequence converges pointwise a.e. on X to f.

Proof.
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Theorem 19.5

Theorem 19.5. Let (X, M, 1) be a measure space and 1 < p < co. Then
the subspace of simple functions on X that vanish outside a set of finite
measure is dense in LP(X, p).
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Theorem 19.5

Theorem 19.5. Let (X, M, 1) be a measure space and 1 < p < co. Then
the subspace of simple functions on X that vanish outside a set of finite
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