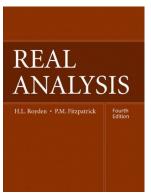
Real Analysis

Chapter 19. General *L^p* Spaces: Completeness, Duality, and Weak Convergence

19.1. The Completeness of $L^p(X,\mu)$, $1 \le p \le \infty$ —Proofs of Theorems



Real Analysis

- 2 Corollary 19.3
- 3 Lemma 19.4
- 4 The Reisz-Fischer Theorem
- 5 Theorem 19.5

Theorem 19.1

Theorem 19.1. Let (X, \mathcal{M}, μ) be a measure space, $1 \le p \le \infty$, and q the conjugate of p (that is, $\frac{1}{p} + \frac{1}{q} = 1$). If $f \in L^p(X, \mu)$ and $g \in L^q(X, \mu)$, then the product $fg \in L^1(X, \mu)$ and:

- (i) Hölder's Inequality. $\int_X |fg| d\mu = ||fg||_1 \le ||f||_p ||g||_q.$ Moreover, if $f \ne 0$, the function $f^* = ||f||_p^{1-p} \operatorname{sgn}(f)|F|^{p-1} \in L^q(X,\mu), \int_X ff^* d\mu = ||f||_p \text{ and } ||f^*||_q = 1.$
- (ii) Minkowski's Inequality. For $1 \le p \le \infty$ and $f, g \in L^p(X, \mu)$, $\|f + g\|_p \le \|f\|_p + \|g\|_p$. Therefore $L^p(X, \mu)$ is a normed linear space.
- (iii) The Cauchy-Schwarz Inequality. Let f and g be measurable functions on X for which f^2 and g^2 are integrable over X. Then their product fg also is integrable over X and $\int_E |fg| d\mu \le \sqrt{\int_X f^2 d\mu} \sqrt{\int_X g^2 d\mu}$.

Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hólder's Inequality, the claim that $f \in L^p(X, \mu)$ and $g \in L^1(X, \mu)$ implu $fg \in L^1(X, \mu)$ will then follow. (i) If p = 1 and $q = \infty$ then

$$\begin{split} \int_{X} |fg| \, d\mu &\leq \int_{X} \|g\|_{\infty} |f\| \, d\mu \text{ by monotonicity, Lemma 18.2.A} \\ &= \|g\|_{\infty} \int_{X} |f| \, d\mu \text{ by linearity, Lemma 18.2.A} \\ &= \|f\|_{1} \|g\|_{\infty}. \end{split}$$

Also, for p = 1 and $q = \infty$, if $f \neq 0$ then

$$|f^*| = |||f||_p^{p-1} \operatorname{sgn}(f)|f|^{p-1}| = ||f||_1^0 |f^0| = 1,$$

so $||f^*||_{\infty} = 1$ and $f^* \in L^q(X, \mu)$. In addition, $\int_X ff^* d\mu = \int_X f||f||_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} d\mu = \int_X |f|||f||_1^0 |f|^0 d\mu = \int_X |f| d\mu = ||f||_1$, so that Hölder's Inequality holds for p = 1.

Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hólder's Inequality, the claim that $f \in L^p(X, \mu)$ and $g \in L^1(X, \mu)$ implu $fg \in L^1(X, \mu)$ will then follow. (i) If p = 1 and $q = \infty$ then

$$\begin{split} \int_{X} |fg| \, d\mu &\leq \int_{X} \|g\|_{\infty} |f\| \, d\mu \text{ by monotonicity, Lemma 18.2.A} \\ &= \|g\|_{\infty} \int_{X} |f| \, d\mu \text{ by linearity, Lemma 18.2.A} \\ &= \|f\|_{1} \|g\|_{\infty}. \end{split}$$

Also, for p = 1 and $q = \infty$, if $f \neq 0$ then

$$|f^*| = |||f||_p^{p-1} \operatorname{sgn}(f)|f|^{p-1}| = ||f||_1^0 |f^0| = 1,$$

so $||f^*||_{\infty} = 1$ and $f^* \in L^q(X, \mu)$. In addition, $\int_X ff^* d\mu = \int_X f||f||_p^{1-p} \operatorname{sgn}(f)|f|^{p-1} d\mu = \int_X |f||f||_1^0 |f|^0 d\mu = \int_X |f| d\mu = ||f||_1$, so that Hölder's Inequality holds for p = 1.

Proposition 19.1 (continued 2)

Proof (continued). Now consider p > 1. Young's Inequality gives for $a, b \in \mathbb{R}$, $ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$. Define $\alpha = \int_X |f|^p d\mu$ and $\beta = \int_X |g|^q d\mu$. If either $\alpha = 0$ or $\beta = 0$ then either $||f||_p = 0$ or $||g||_q = 0$ (respectively) and so either f = 0 a.e. or g = 0 a.e. In either case, $\int_X |fg| d\mu = 0$ and Hölder's Inequality holds. So we can without loss of generality assume α and β are both positive. Since $f \in L^p(X, \mu)$ and $g \in L^q(X, \mu)$ then f and g are both finite μ -a.e. by Proposition 18.9. If f(x) and g(x) are finite, substitute $|f(x)|/\alpha^{1/p}$ for a and $|g(x)|/\beta^{1/q}$ for b in Young's Inequality to conclude that

$$ab = \frac{1}{\alpha^{1/p}\beta^{1/q}}|f(x)g(x)| \le \frac{1}{p}a^p + \frac{1}{q}\beta^q = \frac{1}{p}\frac{1}{\alpha}|f(x)|^p + \frac{1}{q}\frac{1}{\beta}|g(x)|^q$$

for almost all $x \in X$.

Proposition 19.1 (continued 2)

Proof (continued). Now consider p > 1. Young's Inequality gives for $a, b \in \mathbb{R}$, $ab \leq \frac{1}{p}a^p + \frac{1}{q}b^q$. Define $\alpha = \int_X |f|^p d\mu$ and $\beta = \int_X |g|^q d\mu$. If either $\alpha = 0$ or $\beta = 0$ then either $||f||_p = 0$ or $||g||_q = 0$ (respectively) and so either f = 0 a.e. or g = 0 a.e. In either case, $\int_X |fg| d\mu = 0$ and Hölder's Inequality holds. So we can without loss of generality assume α and β are both positive. Since $f \in L^p(X, \mu)$ and $g \in L^q(X, \mu)$ then f and g are both finite μ -a.e. by Proposition 18.9. If f(x) and g(x) are finite, substitute $|f(x)|/\alpha^{1/p}$ for a and $|g(x)|/\beta^{1/q}$ for b in Young's Inequality to conclude that

$$ab = rac{1}{lpha^{1/p}eta^{1/q}}|f(x)g(x)| \leq rac{1}{p}a^p + rac{1}{q}eta^q = rac{1}{p}rac{1}{lpha}|f(x)|^p + rac{1}{q}rac{1}{eta}|g(x)|^q$$

for almost all $x \in X$.

Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

$$\begin{aligned} \frac{1}{\alpha^{1/p}\beta^{1/q}} \int_X |fg| \, d\mu &\leq \frac{1}{p} \frac{1}{\alpha} \int_X |f|^p + \frac{1}{q} \frac{1}{\beta} \int_X |g|^q \, d\mu \text{ by linearity,} \\ &\text{Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)} \\ &= \frac{1}{p} \frac{1}{\alpha} \alpha + \frac{1}{q} \frac{1}{\beta} \beta = \frac{1}{p} + \frac{1}{q} = 1, \end{aligned}$$

or $\int_X |fg| d\mu = ||fg||_1 \le \alpha^{1/P} \beta^{1/q} = ||f||_p ||g||_q$, as claimed. So Hölder's Inequality holds for $1 \le p < \infty$.

(ii) We commented above that if $f, g \in L^p(X, \mu)$ then $f + g \in L^p(X, \mu)$. So, by Hölder's Inequality (the "Moreover" part), $(f + g)^* \in L^q(X, \mu)$.

Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

$$\begin{aligned} \frac{1}{\alpha^{1/p}\beta^{1/q}} \int_X |fg| \, d\mu &\leq \frac{1}{p} \frac{1}{\alpha} \int_X |f|^p + \frac{1}{q} \frac{1}{\beta} \int_X |g|^q \, d\mu \text{ by linearity,} \\ &\text{Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)} \\ &= \frac{1}{p} \frac{1}{\alpha} \alpha + \frac{1}{q} \frac{1}{\beta} \beta = \frac{1}{p} + \frac{1}{q} = 1, \end{aligned}$$

or $\int_X |fg| d\mu = ||fg||_1 \le \alpha^{1/P} \beta^{1/q} = ||f||_p ||g||_q$, as claimed. So Hölder's Inequality holds for $1 \le p < \infty$.

(ii) We commented above that if $f, g \in L^{p}(X, \mu)$ then $f + g \in L^{p}(X, \mu)$. So, by Hölder's Inequality (the "Moreover" part), $(f + g)^{*} \in L^{q}(X, \mu)$.

Proposition 19.1 (continued 4)

Proof (continued). Therefore,

$$\begin{split} \|f + g\|_{p} &= \int_{X} (f + g)(f + g)^{*} d\mu \text{ by Hölder's Inequality ("Moreover")} \\ &= \int + Xf(f + g)^{*} d\mu + \int_{X} g(f + g)^{*} d\mu \text{ by linearity, Proposition} \end{split}$$

Now $\int_X |f(f+g)^*| d\mu \le ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \le |f(f+g)^*$ on X, so by the Integral Comparison Test,

$$\int_X f(f+g)^* \, d\mu \le \left| \int_X f(f+g)^* \, d\mu \right| \le \int_X |f(f+g)^*| \, d\mu \le \|f\|_p \|(f+g)^*\|_q.$$

Similarly $\int_X g(f+g)^* d\mu \leq \|g\|_p \|(f+g)^*\|_q$.

Proposition 19.1 (continued 4)

Proof (continued). Therefore,

$$\begin{split} \|f + g\|_{p} &= \int_{X} (f + g)(f + g)^{*} d\mu \text{ by Hölder's Inequality ("Moreover")} \\ &= \int + Xf(f + g)^{*} d\mu + \int_{X} g(f + g)^{*} d\mu \text{ by linearity, Proposition} \end{split}$$

Now $\int_X |f(f+g)^*| d\mu \le ||f||_p ||(f+g)^*||_q$ by Hölder's Inequality and $f(f+g)^* \le |f(f+g)^*$ on X, so by the Integral Comparison Test,

$$\int_X f(f+g)^* \, d\mu \le \left| \int_X f(f+g)^* \, d\mu \right| \le \int_X |f(f+g)^*| \, d\mu \le \|f\|_p \|(f+g)^*\|_q.$$

Similarly $\int_X g(f+g)^* \, d\mu \leq \|g\|_p \|(f+g)^*\|_q.$

Proposition 19.1 (continued 5)

Proof (continued). Hence

$$\begin{split} \|f + g\|_{p} &= \int_{X} f(f + g)^{*} d\mu + \int_{X} f(f + g)^{*} d\mu \\ &\leq \|f\|_{p} \|(f + g)^{*}\|_{q} + \|g\|_{p} \|(f + g)^{*}\|_{q} \\ &= \|f\|_{p} + \|g\|_{q} \text{ since } \|(f + g)^{*}\|_{q} = 1 \text{ by Hölder's Inequality} \\ &\quad \text{the "Moreover" part).} \end{split}$$

So Minkowski's Inequality holds, as claimed.

(iii) With p = q = 2 in Hölder's Inequality, we get the Cauchy-Schwarz Inequality.

Proposition 19.1 (continued 5)

Proof (continued). Hence

$$\begin{split} \|f + g\|_{p} &= \int_{X} f(f + g)^{*} \, d\mu + \int_{X} f(f + g)^{*} \, d\mu \\ &\leq \|f\|_{p} \|(f + g)^{*}\|_{q} + \|g\|_{p} \|(f + g)^{*}\|_{q} \\ &= \|f\|_{p} + \|g\|_{q} \text{ since } \|(f + g)^{*}\|_{q} = 1 \text{ by Hölder's Inequality} \\ &\quad \text{the "Moreover" part).} \end{split}$$

So Minkowski's Inequality holds, as claimed.

(iii) With p = q = 2 in Hölder's Inequality, we get the Cauchy-Schwarz Inequality.

Corollary 19.3

Corollary 19.3. Let (X, \mathcal{M}, μ) be a measure space and $1 . If <math>\{f_n\}$ is a bounded sequence of functions in $L^p(X, \mu)$, then $\{f_n\}$ is uniformly integrable over X.

Proof. Let M > 0 be such that $||f||_p \le M$ for $n \in \mathbb{N}$. Define $\gamma = 1$ if $p = \infty$ and $\gamma = (p-1)/p$ if $1 . By Corollary 19.2, with <math>p_1 = 1$, $p_2 = p$, and X of Corollary 19.2 replaced with any set E of finite measure in \mathcal{M} , we have

$$\|f\|_{p_1} = \|p\|_1 = \int_E |f| \, d\mu \le c \|f\|_{p_2} \le Mc = M(\mu(E))^{\gamma}. \tag{(*)}$$

Corollary 19.3

Corollary 19.3. Let (X, \mathcal{M}, μ) be a measure space and $1 . If <math>\{f_n\}$ is a bounded sequence of functions in $L^p(X, \mu)$, then $\{f_n\}$ is uniformly integrable over X.

Proof. Let M > 0 be such that $||f||_p \le M$ for $n \in \mathbb{N}$. Define $\gamma = 1$ if $p = \infty$ and $\gamma = (p-1)/p$ if $1 . By Corollary 19.2, with <math>p_1 = 1$, $p_2 = p$, and X of Corollary 19.2 replaced with any set E of finite measure in \mathcal{M} , we have

$$\|f\|_{p_1} = \|p\|_1 = \int_E |f| \, d\mu \le c \|f\|_{p_2} \le Mc = M(\mu(E))^{\gamma}.$$
 (*)

Let $\varepsilon > 0$. Let $\delta = (\varepsilon/M)^{1/\gamma}$. If $A \subset X$ is μ -measurable with $\mu(A) < \delta$ then from (*) with E = A,

$$\int_{A} |f| \, d\mu \leq M(\mu(A))^{\gamma} < M((\varepsilon/M))^{1/\gamma})^{\gamma} = \varepsilon.$$

So $\{f_n\}$ is uniformly integrable over X (by definition), as claimed.

Corollary 19.3

Corollary 19.3. Let (X, \mathcal{M}, μ) be a measure space and $1 . If <math>\{f_n\}$ is a bounded sequence of functions in $L^p(X, \mu)$, then $\{f_n\}$ is uniformly integrable over X.

Proof. Let M > 0 be such that $||f||_p \le M$ for $n \in \mathbb{N}$. Define $\gamma = 1$ if $p = \infty$ and $\gamma = (p-1)/p$ if $1 . By Corollary 19.2, with <math>p_1 = 1$, $p_2 = p$, and X of Corollary 19.2 replaced with any set E of finite measure in \mathcal{M} , we have

$$\|f\|_{p_1} = \|p\|_1 = \int_E |f| \, d\mu \le c \|f\|_{p_2} \le Mc = M(\mu(E))^{\gamma}.$$
 (*)

Let $\varepsilon > 0$. Let $\delta = (\varepsilon/M)^{1/\gamma}$. If $A \subset X$ is μ -measurable with $\mu(A) < \delta$ then from (*) with E = A,

$$\int_{\mathcal{A}} |f| \, d\mu \leq M(\mu(\mathcal{A}))^{\gamma} < M((\varepsilon/M))^{1/\gamma})^{\gamma} = \varepsilon.$$

So $\{f_n\}$ is uniformly integrable over X (by definition), as claimed.

Lemma 19.4. Let (X, \mathcal{M}, μ) be a measure space and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(X, \mu)$ converges to a function in $L^p(X, \mu)$, both with respect to the $L^p(X, \mu)$ norm and pointwise a.e. in X. **Proof.** **Lemma 19.4.** Let (X, \mathcal{M}, μ) be a measure space and $1 \le p \le \infty$. Then every rapidly Cauchy sequence in $L^p(X, \mu)$ converges to a function in $L^p(X, \mu)$, both with respect to the $L^p(X, \mu)$ norm and pointwise a.e. in X. **Proof.**

The Reisz-Fischer Theorem

The Reisz-Fischer Theorem.

Let (X, \mathcal{M}, μ) be a measure space and $1 \le p \le \infty$. Then $L^p(X, \mu)$ is a Banach space. Moreover, if a sequence in $L^p(X, \mu)$ converges in $L^p(X, \mu)$ to $f \in L^p(X, \mu)$, then a subsequence converges pointwise a.e. on X to f. **Proof.**

The Reisz-Fischer Theorem

The Reisz-Fischer Theorem.

Let (X, \mathcal{M}, μ) be a measure space and $1 \le p \le \infty$. Then $L^p(X, \mu)$ is a Banach space. Moreover, if a sequence in $L^p(X, \mu)$ converges in $L^p(X, \mu)$ to $f \in L^p(X, \mu)$, then a subsequence converges pointwise a.e. on X to f.

Proof.

Theorem 19.5. Let (X, \mathcal{M}, μ) be a measure space and $1 \le p < \infty$. Then the subspace of simple functions on X that vanish outside a set of finite measure is dense in $L^p(X, \mu)$.

Proof.

Theorem 19.5. Let (X, \mathcal{M}, μ) be a measure space and $1 \le p < \infty$. Then the subspace of simple functions on X that vanish outside a set of finite measure is dense in $L^p(X, \mu)$.

Proof.