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Chapter 19. General Lp Spaces: Completeness, Duality, and Weak
Convergence

19.1. The Completeness of Lp(X , µ), 1 ≤ p ≤ ∞—Proofs of Theorems
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Theorem 19.1

Theorem 19.1

Theorem 19.1. Let (X ,M, µ) be a measure space, 1 ≤ p ≤ ∞, and q
the conjugate of p (that is, 1

p + 1
q = 1). If f ∈ Lp(X , µ) and g ∈ Lq(X , µ),

then the product fg ∈ L1(X , µ) and:

(i) Hölder’s Inequality.
∫
X |fg | dµ = ‖fg‖1 ≤ ‖f ‖p‖g‖q.

Moreover, if f 6= 0, the function
f ∗ = ‖f ‖1−p

p sgn(f )|F |p−1 ∈ Lq(X , µ),
∫
X ff ∗ dµ = ‖f ‖p and

‖f ∗‖q = 1.

(ii) Minkowski’s Inequality. For 1 ≤ p ≤ ∞ and f , g ∈ Lp(X , µ),
‖f + g‖p ≤ ‖f ‖p + ‖g‖p. Therefore Lp(X , µ) is a normed
linear space.

(iii) The Cauchy-Schwarz Inequality. Let f and g be measurable
functions on X for which f 2 and g2 are integrable over X .
Then their product fg also is integrable over X and∫
E |fg | dµ ≤

√∫
X f 2 dµ

√∫
X g2 dµ.
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Theorem 19.1

Proposition 19.1 (continued 1)

Proof (continued). Once we establish Hólder’s Inequality, the claim that
f ∈ Lp(X , µ) and g ∈ L1(X , µ) implu fg ∈ L1(X , µ) will then follow.
(i) If p = 1 and q = ∞ then∫

X
|fg | dµ ≤

∫
X
‖g‖∞|f ‖ dµ by monotonicity, Lemma 18.2.A

= ‖g‖∞
∫

X
|f | dµ by linearity, Lemma 18.2.A

= ‖f ‖1‖g‖∞.

Also, for p = 1 and q = ∞, if f 6= 0 then

|f ∗| = |‖f ‖p−1
p sgn(f )|f |p−1| = ‖f ‖0

1|f 0| = 1,

so ‖f ∗‖∞ = 1 and f ∗ ∈ Lq(X , µ). In addition,
∫
X ff ∗ dµ =∫

X f ‖f ‖1−p
p sgn(f )|f |p−1 dµ=

∫
X |f |‖f ‖

0
1|f |0 dµ =

∫
X |f | dµ = ‖f ‖1, so

that Hölder’s Inequality holds for p = 1.
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Theorem 19.1

Proposition 19.1 (continued 2)

Proof (continued). Now consider p > 1. Young’s Inequality gives for

a, b ∈ R, ab ≤ 1

p
ap +

1

q
bq. Define α =

∫
X |f |

p dµ and β =
∫
X |g |

q dµ. If

either α = 0 or β = 0 then either ‖f ‖p = 0 or ‖g‖q = 0 (respectively) and
so either f = 0 a.e. or g = 0 a.e. In either case,

∫
X |fg | dµ = 0 and

Hölder’s Inequality holds. So we can without loss of generality assume α
and β are both positive. Since f ∈ Lp(X , µ) and g ∈ Lq(X , µ) then f and
g are both finite µ-a.e. by Proposition 18.9. If f (x) and g(x) are finite,
substitute |f (x)|/α1/p for a and |g(x)|/β1/q for b in Young’s Inequality to
conclude that

ab =
1

α1/pβ1/q
|f (x)g(x)| ≤ 1

p
ap +

1

q
βq =

1

p

1

α
|f (x)|p +

1

q

1

β
|g(x)|q

for almost all x ∈ X .
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Theorem 19.1

Proposition 19.1 (continued 3)

Proof (continued). Integrating over X gives

1

α1/pβ1/q

∫
X
|fg | dµ ≤ 1

p

1

α

∫
X
|f |p +

1

q

1

β

∫
X
|g |q dµ by linearity,

Prop. 18.11, and monotonicity, Lemma 18.2.A(ii)

=
1

p

1

α
α +

1

q

1

β
β =

1

p
+

1

q
= 1,

or
∫
X |fg | dµ = ‖fg‖1 ≤ α1/Pβ1/q = ‖f ‖p‖g‖q, as claimed. So Hölder’s

Inequality holds for 1 ≤ p < ∞.

(ii) We commented above that if f , g ∈ Lp(X , µ) then f + g ∈ Lp(X , µ).
So, by Hölder’s Inequality (the “Moreover” part), (f + g)∗ ∈ Lq(X , µ).
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Theorem 19.1

Proposition 19.1 (continued 4)

Proof (continued). Therefore,

‖f + g‖p =

∫
X
(f + g)(f + g)∗ dµ by Hölder’s Inequality (“Moreover”)

=

∫
+Xf (f + g)∗ dµ +

∫
X

g(f + g)∗ dµ by linearity, Proposition 18.11.

Now
∫
X |f (f + g)∗| dµ ≤ ‖f ‖p‖(f + g)∗‖q by Hölder’s Inequality and

f (f + g)∗ ≤ |f (f + g)∗ on X , so by the Integral Comparison Test,∫
X

f (f +g)∗ dµ ≤
∣∣∣∣∫

X
f (f + g)∗ dµ

∣∣∣∣ ≤ ∫
X
|f (f +g)∗| dµ ≤ ‖f ‖p‖(f +g)∗‖q.

Similarly
∫
X g(f + g)∗ dµ ≤ ‖g‖p‖(f + g)∗‖q.
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Theorem 19.1

Proposition 19.1 (continued 5)

Proof (continued). Hence

‖f + g‖p =

∫
X

f (f + g)∗ dµ +

∫
X

f (f + g)∗ dµ

≤ ‖f ‖p‖(f + g)∗‖q + ‖g‖p‖(f + g)∗‖q

= ‖f ‖p + ‖g‖q since ‖(f + g)∗‖q = 1 by Hölder’s Inequality

the “Moreover” part).

So Minkowski’s Inequality holds, as claimed.

(iii) With p = q = 2 in Hölder’s Inequality, we get the Cauchy-Schwarz
Inequality.
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Corollary 19.3

Corollary 19.3

Corollary 19.3. Let (X ,M, µ) be a measure space and 1 < p ≤ ∞. If
{fn} is a bounded sequence of functions in Lp(X , µ), then {fn} is
uniformly integrable over X .

Proof. Let M > 0 be such that ‖f ‖p ≤ M for n ∈ N. Define γ = 1 if
p = ∞ and γ = (p − 1)/p if 1 < p < ∞. By Corollary 19.2, with p1 = 1,
p2 = p, and X of Corollary 19.2 replaced with any set E of finite measure
in M, we have

‖f ‖p1 = ‖p‖1 =

∫
E
|f | dµ ≤ c‖f ‖p2 ≤ Mc = M(µ(E ))γ . (∗)

Let ε > 0. Let δ = (ε/M)1/γ . If A ⊂ X is µ-measurable with µ(A) < δ
then from (∗) with E = A,∫

A
|f | dµ ≤ M(µ(A))γ < M((ε/M))1/γ)γ = ε.

So {fn} is uniformly integrable over X (by definition), as claimed.

() Real Analysis January 27, 2019 9 / 12



Corollary 19.3

Corollary 19.3

Corollary 19.3. Let (X ,M, µ) be a measure space and 1 < p ≤ ∞. If
{fn} is a bounded sequence of functions in Lp(X , µ), then {fn} is
uniformly integrable over X .

Proof. Let M > 0 be such that ‖f ‖p ≤ M for n ∈ N. Define γ = 1 if
p = ∞ and γ = (p − 1)/p if 1 < p < ∞. By Corollary 19.2, with p1 = 1,
p2 = p, and X of Corollary 19.2 replaced with any set E of finite measure
in M, we have

‖f ‖p1 = ‖p‖1 =

∫
E
|f | dµ ≤ c‖f ‖p2 ≤ Mc = M(µ(E ))γ . (∗)

Let ε > 0. Let δ = (ε/M)1/γ . If A ⊂ X is µ-measurable with µ(A) < δ
then from (∗) with E = A,∫

A
|f | dµ ≤ M(µ(A))γ < M((ε/M))1/γ)γ = ε.

So {fn} is uniformly integrable over X (by definition), as claimed.
() Real Analysis January 27, 2019 9 / 12



Corollary 19.3

Corollary 19.3

Corollary 19.3. Let (X ,M, µ) be a measure space and 1 < p ≤ ∞. If
{fn} is a bounded sequence of functions in Lp(X , µ), then {fn} is
uniformly integrable over X .

Proof. Let M > 0 be such that ‖f ‖p ≤ M for n ∈ N. Define γ = 1 if
p = ∞ and γ = (p − 1)/p if 1 < p < ∞. By Corollary 19.2, with p1 = 1,
p2 = p, and X of Corollary 19.2 replaced with any set E of finite measure
in M, we have

‖f ‖p1 = ‖p‖1 =

∫
E
|f | dµ ≤ c‖f ‖p2 ≤ Mc = M(µ(E ))γ . (∗)

Let ε > 0. Let δ = (ε/M)1/γ . If A ⊂ X is µ-measurable with µ(A) < δ
then from (∗) with E = A,∫

A
|f | dµ ≤ M(µ(A))γ < M((ε/M))1/γ)γ = ε.

So {fn} is uniformly integrable over X (by definition), as claimed.
() Real Analysis January 27, 2019 9 / 12



Lemma 19.4

Lemma 19.4

Lemma 19.4. Let (X ,M, µ) be a measure space and 1 ≤ p ≤ ∞. Then
every rapidly Cauchy sequence in Lp(X , µ) converges to a function in
Lp(X , µ), both with respect to the Lp(X , µ) norm and pointwise a.e. in X .

Proof.
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The Reisz-Fischer Theorem

The Reisz-Fischer Theorem

The Reisz-Fischer Theorem.
Let (X ,M, µ) be a measure space and 1 ≤ p ≤ ∞. Then Lp(X , µ) is a
Banach space. Moreover, if a sequence in Lp(X , µ) converges in Lp(X , µ)
to f ∈ Lp(X , µ), then a subsequence converges pointwise a.e. on X to f .

Proof.
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Theorem 19.5

Theorem 19.5

Theorem 19.5. Let (X ,M, µ) be a measure space and 1 ≤ p < ∞. Then
the subspace of simple functions on X that vanish outside a set of finite
measure is dense in Lp(X , µ).

Proof.
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