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Real Analysis Lemma 19.6. Let (X, M, 1) be a o-finite measure space and let
- 1 < p < . For f an integrable function over X, suppose there is M <0
Chapter 19. General L Sp?:ces. Completeness, Duality, and Weak such that for every simple function g on X that vanishes outside a set of
onvergence finite measure, we have fgdu| <M . Then f € L9(X, 11) where
19.2. The Reisz Representation Theorem for the Dual of LP(X, u), is the conjugate of p M‘c;[)éoferudfﬂ <“‘i/1’,|p (X.1) I
1 < p < co—Proofs of Theorems ' ’ ="

Proof. First, suppose p > 1. Since |f| is a nonnegative function and the
measure space is o-finite, then by the Simple Approximation Theorem
(Section 18.1) there is a sequence of simple functions {¢,}, each of which
vanishes outside a set of finite measure, that converges pointwise on X to
|f| and 0 < , < |f| on E for all n € N. Since {¢7} converges pointwise
to |f|9 Fatou's lemma [, |f|dp < liminf [, ¢ dpi. So to show that |f] is
integrable and ||f||g < M, it suffices to show that
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/ eddp < M9 for n € N. (10)
Jx
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Lemma 19.6 (continued 1) Lemma 19.6 (continued 2)

Proof (continued). Since p and g are conjugates then p(g — 1) = g and

Proof (continued). Fix n € N We have therefore

Po=tpun S [fhen =vagn{f)en on X. /X|¢‘§n|p dp = /x(iﬁg_l)p dy since g, = sgn(f)pd !

Define the simple function g, by g, = sgn(i‘)pﬁ_I on X. Then /“ T g
Yp di,

so from (12) we have

(Theorem 18.12) Ve
pndp < Mg :(/ tpqdp:) .

‘/ Ifle?~ du| since |flpd 1 >0 /x n &nllp P

X

‘/ fsgn(f)ed " dp /fgn du
JX Jx
M)||gnl|p by the hypothesis of the lemma. (12)

j eddu < €x |fled! du by monotonicity of the integral
X

Now for each n € N, pﬁ is a simple function that vanishes outside a set of
finite measure and so is integrable (that is, [} f dp < 00). So the last
inequality implies ( [} ¢7 d,u)”q < M and [y ¢fdp < M9. So, as
described above, this is (1) and n € N is arbitrary, so the claim holds in

the case p > 1.
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Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p = 1 (so that g = o0). ASSUME
M given in the hypotheses is not an essential upper bound of ||f||;. Then
there is some € > 0 for which the set X. = {x € X | |f(x)| > M + ¢} has
positive measure. Since X is o-finite there is a subset A C X, with finite
positive measure (eliminating the case that X. has infinite measure and all
its measurable subsets have either measure 0 or c0). With g = x4 (a
simple function on X that vanishes outside a set of finite measure) we have

/fgd;;. = /fx,qd,u:/fdu
Jx Jx JA

> /(M+s)du.sincef>M+€ on A
A

= (M+e)m(A) = (m+¢)|gll1 since [|g1]l = [Ixalls = m(A)

> Mg,
CONTRADICTING the hypotheses of the lemma, showing the assumption
is false and [, fg dp < M||g||1, as claimed. O
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The Riesz Representation Theorem (continued 1)

Proof (continued). First, for {Ex}}2, a countable disjoint collection of
measurable sets and £ = U2 | £ we have by the countable additivity of u

(E) = p (Wi Ex) = D p(Ek) < oo.
k=1

So limp oo (D ke py1 #(Ek)) = 0 since the tail of a summable series must

go to 0. Consequently
P 1/p
= lim (/ d,u.)
n—00 JX

(£ )

k=n+1

OO
Z XE

k=n+1

n
XE _ZXEk

k=1

lim
n—ong

o0
since Z Xg, =0orlon X...

k=n+1
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The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of LP(X, ).

Let (X, M, 11) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, i) define Tr € (LP(X,pu))* as

Tr(g) = [x fedp. Then T : L9(X, ) — (LP(X, jr))*, defined as

T(f) = Ty, is an isometric isomorphism.

Proof. The case p =1 is to be given in Exercise 19.6.

Suppose p > 1. We first consider the case u(X) < co. Let

S LP(X, ) — R be a bounded linear functional. Define set function v on
the collection of measurable sets M by setting v(E) = S(xg) for E € M.
Sine (X) < oo, then each characteristic function of each measurable set

is integrable and in LP(X, u), so that v(E) is “properly defined.” We claim
that v is a signed measure.

Real Analysis

The Riesz Representation Theorem (continued 2)

o (3 (fxam))”

k=n+1 ™

Proof (continued).

XE— ) _XE
k=1

lim
p
by the Monotone Convergence Theorem

o0 1/p
= lim (Z ;L(Ek)) =0.
R k=n+1

Since S is linear and continuous on LP(X, /1) (every bounded linear
functional is continuous; see Section 8.1) and hence

S(xe) = S(xuwe) =5 (Z 'XE;() = Z S(XE):

k=1 k=1

so V(E) = > 72, v(Ex) and v is countable additive.
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The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional S does not take on the values o0
and S maps the 0 function (namely, xz) to 0, then to show that v is a
signed measure, we just need to show that /7, v(E) above converges

absolutely )see Section 17.2). For each k € N, set ¢, = sgn(S(xg,))
(notice S(xg,) € R), then we have
o0 o0 o0 o0
> Slaxe) =Y aSkxe) =D I1S(xe)l =D v(E)l
k=1 k=1 k=1 k=1
since v(E) = S(xg) for E € M. Also, for all x € E we have

Z CkXEk(X

o0 o0
<> laxe () =D xe = xe(x),
k=1 k=1

and since xg € LP(X, i) then >°;7, ckXE, (x) € LP(X. ).
0 |
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The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on LP(X, 1) then

) (Z CkXEk) ZS CkXE,)
- Z ckS(xg) = Z IS(xe,)| = Z v (Ex)|
k=1 k=1 k=1

and since S : LP(X, ) — R then Y 02, [v(Ek)| € R, so > oo, v(Ek)
converges absolutely and v is in fact a signed measure.

Next, we claim that v is absolutely continuous with respect to pu. If

E € M satisfies ju(E) = 0 then g is in the equivalence class containing
the zero function, [0] € LP(X, ). Since S is linear then it maps

0€ LP(X,u) to 0 € R and so v(E) = S(xe) =0, so that v is, by
definition (see Section 18.4, “The Radon-Nikodym Theorem™) absolutely
continuous with respect to .
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The Riesz Representation Theorem (continued 4)

Proof (continued). As above,

o0 n
Z CkXE, — Z Ck X Ey
O
k=1 k=1 p

lim
n—.

o0 oo P 1/p
= limpe | 3 coxg| = lim, (/ > e “’“‘)
k=n+1 Xk=n+1

P

1/p
= lim (/ Z |ckXEk|pd,u) since the Ej are disjoint
n—oo X

k=n+1
1/p
= lim (/ Z XE, du) since ¢k xg, € {—1,0,1}
e X'k n+1
= 0 as shown above.
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The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by
Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is
integrable function f such that

S(XE)=V(E)=/ ffuforall E € M.
E

Now each simple function ¢ = Y] _, axxg, is in LP(X, i) (since each
characteristic function on a measurable set in LP(X, 1)), then

=S (i akXEk) = iaksua) = i akv(Ex)
k=1 k=1 k=1

k k=1

Since S is a bounded linear functional on LP(X, 1), |S(g)| < [|S|||lgllp for
each g € LP(X, p).

0 |
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The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore | [, fo du| = |S(¢)| < ||S]||l¢l|p for each
simple function . So by Lemma 19.6 (with M = ||S||), we have
f € L9(X, p). Now the functional Ty = [, fgdy is a bounded linear
functional (see the first definition in this section) and so is continuous. So
the functional g — S(g) — T¢(g) for all g € LP(X, 1) is continuous. But,
since S(¢) = Tr(¢) = [ fodpu by (+), bounded linear functional S — Ty
vanishes on the linear space of simple functions. By Theorem 19.5 (since
i(E) < oo in this case), the linear space of simple functions is dense in
LP(X, pt), so S — Ty vanishes on all of LP(X, i) (since S — Ty is
continuous) and S = T¢. That is every element S € (LP(X, 1)) is the
image under T of some f € L9(X, j1) so that T is onto. As argued at the
beginning of this section, Holder's Inequality shows that T is an isometry.
Next,
T(aSl+b52) = 135,4+b5, :j(351+b52)- d,u: 3/ S5 d,uf+b/ S,- d,u
X X X

=aTs, + bTs, = aT(51) + bT(S2),. ..
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The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider Y, {x € X, | fo(x) > f1(x)},
Yo ={xeX,| fulx) < f’(x)} g+ = Xv,. &~ = Xy_., and we have
Jx(fo = foxv, du = [y, (f; — fa) dpp =0 and

Jx(fa = faxy_ dp = jy_(f f Ydp=— [, (fy—f,)dpu =0 so that by
Exercise 18.19, f, — f; =0 a.e. on Y, andf, — f, =0 a.e. on Y_; that is,
p(Yy) = pu(Y-) =0 an df, = f; a.e. on X, (and on X when extended).
So we must have f,; restrlcted to X, equal to f, on X,. We define f on
X pointwise for x € U2, X, as f(x) = f,(x) if x € X,. Then f is
well-defined since x € X; N X implies fi(x) = fj(x). The sequence {f,}
converges pointwise a.e. to f on X, so {|f|9} converges pointwise a.e. to
|f|9. So by Fatou's Lemma

/ If|9du = / lim |f|9dp < Iiminf/ [fal T dp < ||S]|9.
Jx Jx Jx

So f € L9(X, ). Let g € LP(X, ). For each n € N, define g, = g on X,
and gop =0 for x € X'\ X,,.
0 |
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The Riesz Representation Theorem (continued 8)

Proof (continued). ...so that T is an isometric isomorphism between
linear spaces L9(X, ) and (LP(X, pt))*, in the case of X that o-finite.

Now suppose X is o-finite. Then X is a countable union of finite measure
sets Y1, Y2,.... Define X, = Uj_, Yk so that {X,} is an ascending
sequence of measurable sets of finite measure whose union is X. Fix
n € N. Since each X, is finite in measure, then by the case u(E) < oo, we
know that we can find f, € L'(X,, u1) for which S(g) = [y fag dp for all
g € LP(Xp, 1) and [y |9 dpu = |3 < [|S]9 by Lemma 19.6 with
M = |[|S||. Now we extend f, from X, to X be defining f,(x) = 0 for
x € X\ X,. Then for each g € LP(X, pu) with g =0 on X\ X, we have
g) =[x fagdu= [y fag and
Jx Ifal9du = [ |fal9xedp = [¢ |fa]9dp < ||S||9 for all such f,. Now f,
is unique up to a set of measure zero since if f, an df; satisfy
g) =[x fagdp= [y fagdp for all g € LP(X, u1) with g =0on X\ X,
then [, (f, — f1)g dpu =0.
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The Riesz Representation Theorem (continued 10)

Proof (continued). By Holder's Inequality (Theorem 19.1(i)) |fg| is
integrable on X and |fg,| < |fg| a.e. on X. So, by the Lebesgue
Dominated Convergence Theorem (Section 18.3)

lim /fg,, d,u:/ lim (fgn)dp.:/ fg dy. (14)
n—oo X Xﬂ—‘OC X

On the other hand, {|g — g,|P} — 0 pointwise a.e. on X and
|gn — g|P < |g|P a.e. on X (since g, = g on X, and g, = 0 for x € X\ X,)
for all n € N. Again by the Lebesgue Dominated Convergence Theorem,

lim [|go—g||5 = lim / Ign—gl"dﬂ:/ lim |g,—gl” dﬂ=/ lg—gldu-
n—oo n—od X Xﬂ—'OO X

and so {gn|| — g in LP(X, ). Since bounded linear functional S is
continuous on LP(X, 1), then Ilm,,_.,x, S(gn) = S(limp—xc gn) = S(g).
However, for each n € N, S(gn) = [x fogndp = [x fgndp, so by (14),
S(g) = limp—oo S(gn) = limp—o [y f@gndp = [y fgdp.
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The Riesz Representation Theorem (continued 11)

The Riesz Representation Theorem for the Dual of LP(X, ).

Let (X, M, 1) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, i) define T € (LP(X, pn))* as

Tr(g) = [x fg dp. Then T : L9(X, p) — (LP(X, p))*, defined as

T(f) = Ty, is an isometric isomorphism.

Proof (continued). Again, we have S(g) = [, fg du. So, as explained at

the end of the case where p(E) < oo, we have that
T : L9(X,pu) — (LP(X, p))* is an isometric isomorphism. ]
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