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Lemma 19.6

Lemma 19.6

Lemma 19.6. Let (X, M, 1) be a o-finite measure space and let
1 < p < oo. For f an integrable function over X, suppose there is M <0
such that for every simple function g on X that vanishes outside a set of

finite measure, we have UX fg d,u‘ < M|gl|lp- Then f € L9(X, 1) where q
is the conjugate of p. Moreover, ||f|q < M.
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Lemma 19.6

Lemma 19.6. Let (X, M, 1) be a o-finite measure space and let

1 < p < oo. For f an integrable function over X, suppose there is M <0
such that for every simple function g on X that vanishes outside a set of
finite measure, we have UX fg d,u‘ < M|gl|lp- Then f € L9(X, 1) where q
is the conjugate of p. Moreover, ||f|q < M.

Proof. First, suppose p > 1. Since |f] is a nonnegative function and the
measure space is o-finite, then by the Simple Approximation Theorem
(Section 18.1) there is a sequence of simple functions {¢,}, each of which
vanishes outside a set of finite measure, that converges pointwise on X to
|f| and 0 < ¢, < |f| on E for all n € N.
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Lemma 19.6

Lemma 19.6. Let (X, M, 1) be a o-finite measure space and let

1 < p < oo. For f an integrable function over X, suppose there is M <0
such that for every simple function g on X that vanishes outside a set of
finite measure, we have UX fg d,u‘ < M|gl|lp- Then f € L9(X, 1) where q
is the conjugate of p. Moreover, ||f|q < M.

Proof. First, suppose p > 1. Since |f] is a nonnegative function and the
measure space is o-finite, then by the Simple Approximation Theorem
(Section 18.1) there is a sequence of simple functions {¢,}, each of which
vanishes outside a set of finite measure, that converges pointwise on X to
|f] and 0 < ¢, < |f| on E for all n € N. Since {¢n} converges pointwise
to |f|9 Fatou's lemma [, |f|dp < liminf [, o7 dp. So to show that |f] is
integrable and ||f]q < M, it suffices to show that

/ el dp < M9 for n e N. (10)
X
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Lemma 19.6 (continued 1)
Proof (continued). Fix n € N We have
P = onpi T < |flog ! = fsgn(f)pl " on X.
Define the simple function g, by g, = sgn(f)goﬂ_l on X. Then
/ ©ldy < €x |flp9~t du by monotonicity of the integral
X
(Theorem 18.12)

= '/ |flpd™ du since |f|pd~ 1>

= '/ Fsgn(f)ef " dp| = /fgndu
X X

< M]|gnllp by the hypothesis of the lemma.

(12)
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Lemma 19.6 (continued 2)

Proof (continued). Since p and q are conjugates then p(g — 1) = q and
therefore

[l di = [ (o371 dusince g, = sgn(f)eg
X X

= / ¥ di,
X
so from (12) we have

1/p
/ﬁwswmuzgﬁw@ .
X X
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Lemma 19.6 (continued 2)

Proof (continued). Since p and q are conjugates then p(g — 1) = q and
therefore

[l di = [ (o371 dusince g, = sgn(f)eg
X X

= / ¥ di,
X
so from (12) we have

1/p
/ﬁwswmuzgﬁw@ .
X X

Now for each n € N, 7 is a simple function that vanishes outside a set of
finite measure and so is integrable (that is, [y @7 du < 00). So the last
inequality implies (fXgo du)l/q < M and [, ¢fdu < M9. So, as
described above, this is (1) and n € N is arbitrary, so the claim holds in
the case p > 1.
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Lemma 19.6

Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p =1 (so that g = c0). ASSUME
M given in the hypotheses is not an essential upper bound of ||f||. Then
there is some € > 0 for which the set X. = {x € X | |f(x)| > M + ¢} has
positive measure. Since X is o-finite there is a subset A C X, with finite

positive measure (eliminating the case that X. has infinite measure and all
its measurable subsets have either measure 0 or co).
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Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p =1 (so that g = c0). ASSUME
M given in the hypotheses is not an essential upper bound of ||f||. Then
there is some € > 0 for which the set X. = {x € X | |f(x)| > M + ¢} has
positive measure. Since X is o-finite there is a subset A C X, with finite
positive measure (eliminating the case that X. has infinite measure and all
its measurable subsets have either measure 0 or c0). With g = xa (a
simple function on X that vanishes outside a set of finite measure) we have

/fgdu = /fXAduz/fdu
X X A

> /(M+5)dusincef>M+sonA
A

= (M+e)m(A) = (m +¢)llgll1 since [lg1ll = lIxalls = m(A)

> Mgl
CONTRADICTING the hypotheses of the lemma, showing the assumption
is false and [, fg dp < M||g||1, as claimed. O
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of LP(X, p).

Let (X, M, 1) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, u) define Tr € (LP(X,p))* as

Te(g) = [y fe dp. Then T : L9(X, p) — (LP(X, 1t))*, defined as

T(f) = Ty, is an isometric isomorphism.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of LP(X, p).

Let (X, M, 1) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, u) define Tr € (LP(X,p))* as

Te(g) = [y fe dp. Then T : L9(X, p) — (LP(X, 1t))*, defined as

T(f) = Ty, is an isometric isomorphism.

Proof. The case p =1 is to be given in Exercise 19.6.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of LP(X, p).

Let (X, M, 1) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, u) define Tr € (LP(X,p))* as

Te(g) = [y fe dp. Then T : L9(X, p) — (LP(X, 1t))*, defined as

T(f) = Ty, is an isometric isomorphism.

Proof. The case p =1 is to be given in Exercise 19.6.

Suppose p > 1. We first consider the case p(X) < co. Let

S :LP(X, ) — R be a bounded linear functional. Define set function v on
the collection of measurable sets M by setting v(E) = S(xg) for E € M.
Sine p(X) < oo, then each characteristic function of each measurable set
is integrable and in LP(X, 1), so that v(E) is “properly defined.” We claim
that v is a signed measure.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 1)

Proof (continued). First, for {E,}7° ; a countable disjoint collection of
measurable sets and E = U2 | E, we have by the countable additivity of u

WE) = p(UpaEx) = > p(Ex) < 00
k=1

So limp—oo (D% pi1 #(Ex)) = O since the tail of a summable series must
go to 0.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 1)

Proof (continued). First, for {E,}7° ; a countable disjoint collection of
measurable sets and E = U2 | E, we have by the countable additivity of u

W(E) = p (U3, Ex) = Zu E) <

So limp—oo (D% pi1 #(Ex)) = O since the tail of a summable series must
> e

go to 0. Consequently
1/p
= lim (/ du)
TNIX kS

n
o XE_ZXE;(
k=1 p
o0 1/p
= Jom </x ( ) XEk) d“)

lim
n—
k=n+1

oo
since Z Xg, =0orlonX...
k=n+1
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 2)

- n (5 (frea)

k=n+1

Proof (continued).

n
XE — Z XEx
k=1

lim
n—oo

P
by the Monotone Convergence Theorem

e8] 1/p
= n[moo< > M(Ek)> =0.

k=n+1
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 2)

- (£ (foes))”

k=n+1

Proof (continued).

n
0o XE_;XE;(

lim
n—

by the Monotone Convergence Theorem
[ee] 1/p
- n||—>moo< Z M(Ek)> =0.
k=n+1

Since S is linear and continuous on LP(X, i) (every bounded linear
functional is continuous; see Section 8.1) and hence

S(xe) = S (xue) (Z XEk> => S(xg.),
k=1

so v(E) = > ;2 v(Ek) and v is countable additive.
Real Analysis February 21, 2019
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional S does not take on the values oo
and S maps the 0 function (namely, xg) to 0, then to show that v is a
signed measure, we just need to show that Y . ; v(Ex) above converges
absolutely )see Section 17.2).
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional S does not take on the values oo
and S maps the 0 function (namely, xg) to 0, then to show that v is a
signed measure, we just need to show that Y . ; v(Ex) above converges
absolutely )see Section 17.2). For each k € N, set ¢, = sgn(S(xEg,))
(notice S(xg,) € R), then we have

> Slexe) =Y aS(xe) = > I1S(xe)l = > Iv(Ex)
k=1 k=1 k=1 k=1

since v(E) = S(xg) for E € M. Also, for all x € E we have

e} o
Z ckXE (X Z ckXg (X)) = ZXEk = xe(x)
k=1 k=1 k=1

and since xg € LP(X, u) then >"72 ; ckxe, (x) € LP(X, p).
Real Analysis February 21,2019 10/ 18




The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 4)

Proof (continued). As above,

oo n
E CkXE, — E CkXE
k=1 k=1

p 1/p
= lim </ du)
n—oo X
P

o0 1/p
= lim </ Z lckxe |P dM) since the Ej are disjoint
e X k=n+1

lim
n—oo

p

(o]
> axe

k=n+1

[o.¢]
> axe

k=n+1

= //mn—>oo

0o 1/p
= lim (/ Z XE, d,u) since ckxg, € {—1,0,1}
n—oo X

k=n+1
= 0 as shown above.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on LP(X, i) then

S <Z CkXEk> = S(ckxs,)
k=1 k=1

=3 aS(xe) = Y IS(e)l = > Iv(E)
k=1 k=1 k=1

and since S : LP(X, ) — R then >"77, [v(Ek)| € R, so > oo ; v(Ek)
converges absolutely and v is in fact a signed measure.
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The Riesz Representation Theorem for the Dual of LP(X, )
The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on LP(X, i) then

S (Z CkXEk> = S(ckxs,)
k=1 k=1

=3 aS(xe) = Y IS(e)l = > Iv(E)
k=1 k=1 k=1

and since S : LP(X, ) — R then >"77, [v(Ek)| € R, so > oo ; v(Ek)
converges absolutely and v is in fact a signed measure.

Next, we claim that v is absolutely continuous with respect to p. If

E € M satisfies u(E) = 0 then xg is in the equivalence class containing
the zero function, [0] € LP(X, ). Since S is linear then it maps

0€ LP(X,u) to 0 € R and so v(E) = S(xe) =0, so that v is, by
definition (see Section 18.4, “The Radon-Nikodym Theorem") absolutely
continuous with respect to u.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by
Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is
integrable function f such that

S(XE):I/(E):/ ffuforall E € M.
E
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by
Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is
integrable function f such that

S(XE):I/(E):/ ffuforall E € M.
E

Now each simple function ¢ = "} _; akxg, is in LP(X, i) (since each
characteristic function on a measurable set in L”(X, 1)), then

S(p) = (Z akXEk> => aS(xg) =Y av(Ex)
k=1 k=1

n n
=> a (/ fdu>:z</ fakxEkd,u>:/f<pdu. (%)
k=1 Ex k=1 \E X
Since S is a bounded linear functional on LP(X, 1), |S(g)| < ||IS||llgllp for
each g € LP(X, p).
Real Analysis February 21,2019 13/ 18



The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore | [, fo dul =|S(¢)| < ||S]|||¢llp for each
simple function ¢. So by Lemma 19.6 (with M = ||S]|), we have

f e L9(X, ). Now the functional Ty = [, fg dp is a bounded linear
functional (see the first definition in this section) and so is continuous. So

the functional g — S(g) — T¢(g) for all g € LP(X, u) is continuous.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore | [, fo dul =|S(¢)| < ||S]|||¢llp for each
simple function ¢. So by Lemma 19.6 (with M = ||S]|), we have

f e L9(X, ). Now the functional Ty = [, fg dp is a bounded linear
functional (see the first definition in this section) and so is continuous. So
the functional g — S(g) Tr(g) for all g € LP(X, p) is continuous. But,
since S(p) = T¢(p) = [ fodu by (x), bounded linear functional S — T
vanishes on the Ilnear space of simple functions. By Theorem 19.5 (since
w(E) < oo in this case), the linear space of simple functions is dense in
LP(X, i), so S — T¢ vanishes on all of LP(X, u) (since S — Ty is
continuous) and S = T¢. That is every element S € (LP(X, p))* is the
image under T of some f € L9(X, i) so that T is onto. As argued at the
beginning of this section, Holder's Inequality shows that Ty is an isometry.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore | [, fo dul =|S(¢)| < ||S]|||¢llp for each
simple function ¢. So by Lemma 19.6 (with M = ||S]|), we have

f e L9(X, ). Now the functional Ty = [, fg dp is a bounded linear
functional (see the first definition in this section) and so is continuous. So
the functional g — S(g) Tr(g) for all g € LP(X, p) is continuous. But,
since S(p) = T¢(p) = [ fodu by (x), bounded linear functional S — T
vanishes on the Ilnear space of simple functions. By Theorem 19.5 (since
w(E) < oo in this case), the linear space of simple functions is dense in
LP(X, i), so S — T¢ vanishes on all of LP(X, u) (since S — Ty is
continuous) and S = T¢. That is every element S € (LP(X, p))* is the
image under T of some f € L9(X, i) so that T is onto. As argued at the
beginning of this section, Holder's Inequality shows that Ty is an isometry.
Next,

(851+b52) 351+b52 = / (851+b52)- du = a/ 5 du+b/ So-dp
X X X
=aTls, + bTs, =aT(51)+ bT(S2),...
Real Analysis February 21,2010 14 / 18



The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 8)

Proof (continued). ...so that T is an isometric isomorphism between
linear spaces L9(X, ) and (LP(X, u))*, in the case of X that o-finite.

Now suppose X is o-finite. Then X is a countable union of finite measure
sets Y1, Y2,.... Define X, = UJ_; Yk so that {X,} is an ascending
sequence of measurable sets of finite measure whose union is X. Fix

n € N. Since each X, is finite in measure, then by the case u(E) < oo, we
know that we can find f, € L}(X,, i) for which S(g =[x, fng du for all
g € LP(Xy, 1) and [y [fal7dpu = |[fallg < 1S9 by Lemma 19.6 with
M=|s].
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 8)

Proof (continued). ...so that T is an isometric isomorphism between
linear spaces L9(X, ) and (LP(X, u))*, in the case of X that o-finite.

Now suppose X is o-finite. Then X is a countable union of finite measure
sets Y1, Y2,.... Define X, = UJ_; Yk so that {X,} is an ascending
sequence of measurable sets of finite measure whose union is X. Fix

n € N. Since each X, is finite in measure, then by the case u(E) < oo, we
know that we can find f, € L}(X,, i) for which S(g =[x, fng du for all
g € LP(Xy, 1) and [y [fal7dpu = |[fallg < 1S9 by Lemma 19.6 with

M = ||S||. Now we extend f, from X, to X be defining f,(x) = 0 for

x € X\ X,. Then for each g € LP(X, ) with g =0 on X \ X, we have
S(g) = er, fng dp = fx fng and

Sx Ifal9dp = [ fal9Eedp = [¢|fa|9dp < ||S||9 for all such f,. Now f,
is unique up to a set of measure zero since if f, an df, satisfy

S5(8) =[x fagdp= [y frgdp for all g € LP(X, p) with g =0 on X\ X,
then [, (f, — f1)g du = 0.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider Y, {x € X, | fo(x) > f)(x)},
Yo ={x € Xy | falx) <f(x)} g+ = Xv,. &~ = xv_, and we have

Jx(fa = foxy, du= [y (f; = fs) du =0 and

fX(fn — flxy_du= fY,(fr; —f)du=— fy,(fn — f1)du = 0 so that by
Exercise 18.19, f, — f, =0 a.e. on Y} an df, — f, =0 a.e. on Y_; that is,
u(Yy) =p(Y-)=0andf, ="f] a.e. on X, (and on X when extended).
So we must have f,,1 restricted to X, equal to 7, on X,,.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider Y, {x € X, | fo(x) > f)(x)},
Yo ={x€ Xy | falx) < fi(x)}, &+ = xv,, & = xv_, and we have
Jx(fa = foxy, du= [y (f; = fs) du =0 and

fX(fn — flxy_du= fY,(fr; —f)du=— fy,(fn — f1)du = 0 so that by
Exercise 18.19, f, — f, =0 a.e. on Y} an df, — f, =0 a.e. on Y_; that is,
u(Yy) =p(Y-)=0andf, ="f] a.e. on X, (and on X when extended).
So we must have f,,1 restricted to X, equal to f, on X,,. We define f on
X pointwise for x € U ; X,, as f(x) = f,(x) if x € X,. Then f is
well-defined since x € X; N X; implies f;(x) = fi(x). The sequence {f,}
converges pointwise a.e. to f on X, so {|f|9} converges pointwise a.e. to
|£19.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider Y, {x € X, | fo(x) > f)(x)},
Yo ={x€ Xy | falx) < fi(x)}, &+ = xv,, & = xv_, and we have
Jx(fa = foxy, du= [y (f; = fs) du =0 and

fX(fn — flxy_du= fY,(fr; —f)du=— fy,(fn — f1)du = 0 so that by
Exercise 18.19, f, — f, =0 a.e. on Y} an df, — f, =0 a.e. on Y_; that is,
u(Yy) =p(Y-)=0andf, ="f] a.e. on X, (and on X when extended).
So we must have f,,1 restricted to X, equal to f, on X,,. We define f on
X pointwise for x € U ; X,, as f(x) = f,(x) if x € X,. Then f is
well-defined since x € X; N X; implies f;(x) = fi(x). The sequence {f,}
converges pointwise a.e. to f on X, so {|f|9} converges pointwise a.e. to
|f|9. So by Fatou's Lemma

/|f|qdu:/ Iim]f,,|°’d;¢§|iminf/ o9 dpe < ||S]9.
X X X

So f € L9(X,u). Let g € LP(X, ). For each n € N, define g, = g on X,
and go =0 for x € X\ X,.
Real Analysis February 21,2019 16 / 18



The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 10)

Proof (continued). By Holder's Inequality (Theorem 19.1(i)) |fg] is
integrable on X and |fg,| < |fg| a.e. on X. So, by the Lebesgue
Dominated Convergence Theorem (Section 18.3)

lim / fg,,d,u:/ lim (fg,,)dp:/ fg d. (14)
n—oo X Xn—>OO X

Real Analysis February 21, 2019
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 10)

Proof (continued). By Holder's Inequality (Theorem 19.1(i)) |fg] is
integrable on X and |fg,| < |fg| a.e. on X. So, by the Lebesgue
Dominated Convergence Theorem (Section 18.3)

lim / fg,,d,u:/ lim (fg,,)dp:/ fg d. (14)
n—oo X Xn—>OO X

On the other hand, {|g — g,|P} — 0 pointwise a.e. on X and
lgn — g|P < |g|P a.e. on X (since g, = g on X, and g, = 0 for x € X'\ Xp,)
for all n € N. Again by the Lebesgue Dominated Convergence Theorem,

lim |g,—gll5 = lim / Ign—gl”duz/ lim Ign—g”du=/ lg—gldu:
n—oo n—oo X Xn—>oo X

and so {gn|| — g in LP(X, p).

Real Analysis February 21,2019 17 / 18



The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 10)

Proof (continued). By Holder's Inequality (Theorem 19.1(i)) |fg] is
integrable on X and |fg,| < |fg| a.e. on X. So, by the Lebesgue
Dominated Convergence Theorem (Section 18.3)

lim / fg,,d,u:/ lim (fg,,)dp:/ fg d. (14)
n—oo X Xn—>OO X

On the other hand, {|g — g,|P} — 0 pointwise a.e. on X and
lgn — g|P < |g|P a.e. on X (since g, = g on X, and g, = 0 for x € X'\ Xp,)
for all n € N. Again by the Lebesgue Dominated Convergence Theorem,

lim |g,—gll5 = lim / Ign—gl”du:/ lim Ign—g”du=/ lg—gldu:
n—oo n—oo X Xn—>oo X

and so {gn|| — g in LP(X, p). Since bounded linear functional S is
continuous on LP(X, i), then Iim,HOO S(gn) = S(limp—oo gn) = S(g).
However, for each n € N, S(gn) = [ fagndp = [ fgn du, so by (14),
S(g) =lim, S(gn) = limp_0 fX fgndp = fx fg dp.
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The Riesz Representation Theorem for the Dual of LP(X, )

The Riesz Representation Theorem (continued 11)

The Riesz Representation Theorem for the Dual of LP(X, 11).

Let (X, M, 1) be a o-finite measure space, let 1 < p < oo, and let g be
the conjugate of p. For f € L9(X, ) define T € (LP(X, pn))* as

Te(g) = [y fe dp. Then T : L9(X, u) — (LP(X, p))*, defined as
T(f) Tr, is an isometric isomorphism.

Proof (continued). Again, we have S(g) = [, fg dpu. So, as explained at
the end of the case where p(E) < oo, we have that
T :L9(X,pn) — (LP(X,p))* is an isometric isomorphism. O
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