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Lemma 19.6

Lemma 19.6

Lemma 19.6. Let (X ,M, µ) be a σ-finite measure space and let
1 ≤ p < ∞. For f an integrable function over X , suppose there is M ≤ 0
such that for every simple function g on X that vanishes outside a set of
finite measure, we have

∣∣∫
X fg dµ

∣∣ ≤ M‖g‖p. Then f ∈ Lq(X , µ) where q
is the conjugate of p. Moreover, ‖f ‖q ≤ M.

Proof. First, suppose p > 1. Since |f | is a nonnegative function and the
measure space is σ-finite, then by the Simple Approximation Theorem
(Section 18.1) there is a sequence of simple functions {ϕn}, each of which
vanishes outside a set of finite measure, that converges pointwise on X to
|f | and 0 ≤ ϕn ≤ |f | on E for all n ∈ N.

Since {ϕq
n} converges pointwise

to |f |q Fatou’s lemma
∫
X |f | dµ ≤ lim inf

∫
X ϕq

n dµ. So to show that |f | is
integrable and ‖f ‖q ≤ M, it suffices to show that∫

X
ϕq

n dµ ≤ Mq for n ∈ N. (10)
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Lemma 19.6

Lemma 19.6 (continued 1)

Proof (continued). Fix n ∈ N We have

ϕq
n = ϕnϕ

q−1
n ≤ |f |ϕq−1

n = f sgn(f )ϕq−1
n on X .

Define the simple function gn by gn = sgn(f )ϕq−1
n on X . Then∫

X
ϕq

n dµ ≤ ∈X |f |ϕq−1
n dµ by monotonicity of the integral

(Theorem 18.12)

=

∣∣∣∣∫
X
|f |ϕq−1

n dµ

∣∣∣∣ since |f |ϕq−1
n ≥ 0

=

∣∣∣∣∫
X

f sgn(f )ϕq−1
n dµ

∣∣∣∣ = ∣∣∣∣∫
x
fgn dµ

∣∣∣∣
≤ M‖gn‖p by the hypothesis of the lemma. (12)
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Lemma 19.6

Lemma 19.6 (continued 2)

Proof (continued). Since p and q are conjugates then p(q − 1) = q and
therefore ∫

X
|gn|p dµ =

∫
X
(ϕq−1

n )p dµ since gn = sgn(f )ϕq−1
n

=

∫
X

ϕq
n dµ,

so from (12) we have∫
X

ϕq
n dµ ≤ M‖gn‖p =

(∫
X

ϕq
n dµ

)1/p

.

Now for each n ∈ N, ϕq
n is a simple function that vanishes outside a set of

finite measure and so is integrable (that is,
∫
X ϕq

n dµ < ∞). So the last

inequality implies
(∫

X ϕq
n dµ

)1/q ≤ M and
∫
X ϕq

n dµ ≤ Mq. So, as
described above, this is (1) and n ∈ N is arbitrary, so the claim holds in
the case p > 1.
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Lemma 19.6

Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p = 1 (so that q = ∞). ASSUME
M given in the hypotheses is not an essential upper bound of ‖f ‖q. Then
there is some ε > 0 for which the set Xε = {x ∈ X | |f (x)| > M + ε} has
positive measure. Since X is σ-finite there is a subset A ⊂ Xε with finite
positive measure (eliminating the case that Xε has infinite measure and all
its measurable subsets have either measure 0 or ∞). With g = χA (a
simple function on X that vanishes outside a set of finite measure) we have∫

X
fg dµ =

∫
X

f χA dµ =

∫
A

f dµ

≥
∫

A
(M + ε) dµ since f > M + ε on A

= (M + ε)m(A) = (m + ε)‖g‖1 since ‖g1‖ = ‖χA‖1 = m(A)

> M‖g‖1,

CONTRADICTING the hypotheses of the lemma, showing the assumption
is false and

∫
X fg dµ ≤ M‖g‖1, as claimed.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of Lp(X , µ).
Let (X ,M, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let q be
the conjugate of p. For f ∈ Lq(X , µ) define Tf ∈ (Lp(X , µ))∗ as
Tf (g) =

∫
X fg dµ. Then T : Lq(X , µ) → (Lp(X , µ))∗, defined as

T (f ) = Tf , is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6.

Suppose p > 1. We first consider the case µ(X ) < ∞. Let
S : Lp(X , µ) → R be a bounded linear functional. Define set function ν on
the collection of measurable sets M by setting ν(E ) = S(χE ) for E ∈M.
Sine µ(X ) < ∞, then each characteristic function of each measurable set
is integrable and in Lp(X , µ), so that ν(E ) is “properly defined.” We claim
that ν is a signed measure.

() Real Analysis February 21, 2019 7 / 18



The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of Lp(X , µ).
Let (X ,M, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let q be
the conjugate of p. For f ∈ Lq(X , µ) define Tf ∈ (Lp(X , µ))∗ as
Tf (g) =

∫
X fg dµ. Then T : Lq(X , µ) → (Lp(X , µ))∗, defined as

T (f ) = Tf , is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6.
Suppose p > 1. We first consider the case µ(X ) < ∞. Let
S : Lp(X , µ) → R be a bounded linear functional. Define set function ν on
the collection of measurable sets M by setting ν(E ) = S(χE ) for E ∈M.
Sine µ(X ) < ∞, then each characteristic function of each measurable set
is integrable and in Lp(X , µ), so that ν(E ) is “properly defined.” We claim
that ν is a signed measure.

() Real Analysis February 21, 2019 7 / 18



The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of Lp(X , µ).
Let (X ,M, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let q be
the conjugate of p. For f ∈ Lq(X , µ) define Tf ∈ (Lp(X , µ))∗ as
Tf (g) =

∫
X fg dµ. Then T : Lq(X , µ) → (Lp(X , µ))∗, defined as

T (f ) = Tf , is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6.
Suppose p > 1. We first consider the case µ(X ) < ∞. Let
S : Lp(X , µ) → R be a bounded linear functional. Define set function ν on
the collection of measurable sets M by setting ν(E ) = S(χE ) for E ∈M.
Sine µ(X ) < ∞, then each characteristic function of each measurable set
is integrable and in Lp(X , µ), so that ν(E ) is “properly defined.” We claim
that ν is a signed measure.

() Real Analysis February 21, 2019 7 / 18



The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 1)

Proof (continued). First, for {Ek}∞k=1 a countable disjoint collection of
measurable sets and E = ∪·∞k=1Ek we have by the countable additivity of µ

µ(E ) = µ (∪·∞k=1Ek) =
∞∑

k=1

µ(Ek) < ∞.

So limn→∞
(∑∞

k=n+1 µ(Ek)
)

= 0 since the tail of a summable series must
go to 0. Consequently

lim
n→∞

∥∥∥∥∥χE −
n∑

k=1

χEk

∥∥∥∥∥
p

= lim
n→∞

(∫
X

∣∣∣∣∣
∞∑

k=n+1

χEk

∣∣∣∣∣
p

dµ

)1/p

= lim
k→∞

(∫
X

( ∞∑
k=n+1

χEk

)
dµ

)1/p

since
∞∑

k=n+1

χEk
= 0 or 1 on X . . .
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 2)

Proof (continued).

lim
n→∞

∥∥∥∥∥χE −
n∑

k=1

χEk

∥∥∥∥∥
p

= lim
n→∞

( ∞∑
k=n+1

(∫
X

χEk
dµ

))1/p

by the Monotone Convergence Theorem

= lim
n→∞

( ∞∑
k=n+1

µ(Ek)

)1/p

= 0.

Since S is linear and continuous on Lp(X , µ) (every bounded linear
functional is continuous; see Section 8.1) and hence

S(χE ) = S (χ∪· Ek
) = S

( ∞∑
k=1

χEk

)
=

∞∑
k=1

S(χEk
),

so ν(E ) =
∑∞

k=1 ν(Ek) and ν is countable additive.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional S does not take on the values ±∞
and S maps the 0 function (namely, χ∅) to 0, then to show that ν is a
signed measure, we just need to show that

∑∞
k=1 ν(Ek) above converges

absolutely )see Section 17.2). For each k ∈ N, set ck = sgn(S(χEk
))

(notice S(χEk
) ∈ R), then we have

∞∑
k=1

S(ckχEk
) =

∞∑
k=1

ckS(χEk
) =

∞∑
k=1

|S(χEk
)| =

∞∑
k=1

|ν(Ek)|

since ν(E ) = S(χE ) for E ∈M. Also, for all x ∈ E we have∣∣∣∣∣
∞∑

k=1

ckχEk
(x)

∣∣∣∣∣ ≤
∞∑

k=1

|ckχEk
(x)| =

∞∑
k=1

χEk
= χE (x),

and since χE ∈ Lp(X , µ) then
∑∞

k=1 ckχEk
(x) ∈ Lp(X , µ).
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 4)

Proof (continued). As above,

lim
n→∞

∥∥∥∥∥
∞∑

k=1

ckχEk
−

n∑
k=1

ckχEk

∥∥∥∥∥
p

= limn→∞

∥∥∥∥∥
∞∑

k=n+1

ckχEk

∥∥∥∥∥
p

= lim
n→∞

(∫
X

∣∣∣∣∣
∞∑

k=n+1

ckχEk

∣∣∣∣∣
p

dµ

)1/p

= lim
n→∞

(∫
X

∞∑
k=n+1

|ckχEk
|p dµ

)1/p

since the Ek are disjoint

= lim
n→∞

(∫
X

∞∑
k=n+1

χEk
dµ

)1/p

since ckχEk
∈ {−1, 0, 1}

= 0 as shown above.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on Lp(X , µ) then

S

( ∞∑
k=1

ckχEk

)
=

∞∑
k=1

S(ckχEk
)

=
∞∑

k=1

ckS(χEk
) =

∞∑
k=1

|S(χEk
)| =

∞∑
k=1

|ν(Ek)|

and since S : Lp(X , µ) → R then
∑∞

k=1 |ν(Ek)| ∈ R, so
∑∞

k=1 ν(Ek)
converges absolutely and ν is in fact a signed measure.

Next, we claim that ν is absolutely continuous with respect to µ. If
E ∈M satisfies µ(E ) = 0 then χE is in the equivalence class containing
the zero function, [0] ∈ Lp(X , µ). Since S is linear then it maps
0 ∈ Lp(X , µ) to 0 ∈ R and so ν(E ) = S(χE ) = 0, so that ν is, by
definition (see Section 18.4, “The Radon-Nikodym Theorem”) absolutely
continuous with respect to µ.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by
Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is
integrable function f such that

S(χE ) = ν(E ) =

∫
E

f f µ for all E ∈M.

Now each simple function ϕ =
∑n

k=1 akχEk
is in Lp(X , µ) (since each

characteristic function on a measurable set in LP(X , µ)), then

S(ϕ) = S

(
n∑

k=1

akχEk

)
=

n∑
k=1

akS(χEk
) =

n∑
k=1

akν(Ek)

=
n∑

k=1

ak

(∫
Ek

f dµ

)
=

n∑
k=1

(∫
E

fakχEk
dµ

)
=

∫
X

f ϕ dµ. (∗)

Since S is a bounded linear functional on Lp(X , µ), |S(g)| ≤ ‖S‖‖g‖p for
each g ∈ Lp(X , µ).
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore |
∫
X f ϕ dµ| = |S(ϕ)| ≤ ‖S‖‖ϕ‖p for each

simple function ϕ. So by Lemma 19.6 (with M = ‖S‖), we have
f ∈ Lq(X , µ). Now the functional Tf =

∫
X fg dµ is a bounded linear

functional (see the first definition in this section) and so is continuous. So
the functional g 7→ S(g)− Tf (g) for all g ∈ Lp(X , µ) is continuous. But,
since S(ϕ) = Tf (ϕ) =

∫
X f ϕ dµ by (∗), bounded linear functional S − Tf

vanishes on the linear space of simple functions. By Theorem 19.5 (since
µ(E ) < ∞ in this case), the linear space of simple functions is dense in
Lp(X , µ), so S − Tf vanishes on all of Lp(X , µ) (since S − Tf is
continuous) and S = Tf . That is every element S ∈ (Lp(X , µ))∗ is the
image under T of some f ∈ Lq(X , µ) so that T is onto. As argued at the
beginning of this section, Hölder’s Inequality shows that Tf is an isometry.

Next,
T (aS1+bS2) = TaS1+bS2 =

∫
X
(aS1+bS2)· dµ = a

∫
X

S1 · dµ+b

∫
X

S2 · dµ

= aTS1 + bTS2 = aT (S1) + bT (S2), . . .
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 8)

Proof (continued). . . . so that T is an isometric isomorphism between
linear spaces Lq(X , µ) and (Lp(X , µ))∗, in the case of X that σ-finite.

Now suppose X is σ-finite. Then X is a countable union of finite measure
sets Y1,Y2, . . .. Define Xn = ∪n

k=1Yk so that {Xn} is an ascending
sequence of measurable sets of finite measure whose union is X . Fix
n ∈ N. Since each Xn is finite in measure, then by the case µ(E ) < ∞, we
know that we can find fn ∈ L1(Xn, µ) for which S(g) =

∫
Xn

fng dµ for all

g ∈ Lp(Xn, µ) and
∫
Xn
|fn|q dµ = ‖fn‖q

q ≤ ‖S‖q by Lemma 19.6 with
M = ‖S‖. Now we extend fn from Xn to X be defining fn(x) = 0 for
x ∈ X \ Xn. Then for each g ∈ Lp(X , µ) with g = 0 on X \ Xn we have
S(g) =

∫
Xn

fng dµ =
∫
X fng and∫

X |fn|
q dµ =

∫
X |fn|

qχE dµ =
∫
E |fn|

q dµ ≤ ‖S‖q for all such fn. Now fn
is unique up to a set of measure zero since if fn an df ′n satisfy
S(g) =

∫
X fng dµ =

∫
X f ′ng dµ for all g ∈ Lp(X , µ) with g = 0 on X \ Xn

then
∫
X (fn − f ′n)g dµ = 0.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider Y+{x ∈ Xn | fn(x) > f ′n(x)},
Y− = {x ∈ Xn | fn(x) < f ′n(x)}, g+ = χY+ , g− = χY− , and we have∫
X (fn − f ′nχY+ dµ =

∫
Y+

(f ′n − fn) dµ = 0 and∫
X (fn − f ′nχY− dµ =

∫
Y−

(f ′n − fn) dµ = −
∫
Y−

(fn − f ′n) dµ = 0 so that by

Exercise 18.19, fn − f ′n = 0 a.e. on Y+ an df ′n − fn = 0 a.e. on Y−; that is,
µ(Y+) = µ(Y−) = 0 an dfn = f ′n a.e. on Xn (and on X when extended).
So we must have fn+1 restricted to Xn equal to fn on Xn. We define f on
X pointwise for x ∈ ∪∞n=1Xn as f (x) = fn(x) if x ∈ Xn. Then f is
well-defined since x ∈ Xi ∩ Xj implies fi (x) = fj(x). The sequence {fn}
converges pointwise a.e. to f on X , so {|f |q} converges pointwise a.e. to
|f |q.

So by Fatou’s Lemma∫
X
|f |q dµ =

∫
X

lim |fn|q dµ ≤ lim inf

∫
X
|fn|q dµ ≤ ‖S‖q.

So f ∈ Lq(X , µ). Let g ∈ Lp(X , µ). For each n ∈ N, define gn = g on Xn

and g0 = 0 for x ∈ X \ Xn.
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The Riesz Representation Theorem for the Dual of Lp(X , µ)

The Riesz Representation Theorem (continued 10)

Proof (continued). By Hölder’s Inequality (Theorem 19.1(i)) |fg | is
integrable on X and |fgn| ≤ |fg | a.e. on X . So, by the Lebesgue
Dominated Convergence Theorem (Section 18.3)

lim
n→∞

∫
X

fgn dµ =

∫
X

lim
n→∞

(fgn) dµ =

∫
X

fg dµ. (14)

On the other hand, {|g − gn|p} → 0 pointwise a.e. on X and
|gn − g |p ≤ |g |p a.e. on X (since gn = g on Xn and gn = 0 for x ∈ X \Xn)
for all n ∈ N. Again by the Lebesgue Dominated Convergence Theorem,

lim
n→∞

‖gn−g‖p
p = lim

n→∞

∫
X
|gn−g |p dµ =

∫
X

lim
n→∞

|gn−g |p dµ =

∫
X
|g−g | dµ = 0

and so {gn‖ → g in Lp(X , µ).

Since bounded linear functional S is
continuous on Lp(X , µ), then limn→∞ S(gn) = S (limn→∞ gn) = S(g).
However, for each n ∈ N, S(gn) =

∫
Xn

fngn dµ =
∫
X fgn dµ, so by (14),

S(g) = limn→∞ S(gn) = limn→∞
∫
X fgn dµ =

∫
X fg dµ.
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The Riesz Representation Theorem (continued 11)

The Riesz Representation Theorem for the Dual of Lp(X , µ).
Let (X ,M, µ) be a σ-finite measure space, let 1 ≤ p < ∞, and let q be
the conjugate of p. For f ∈ Lq(X , µ) define Tf ∈ (Lp(X , µ))∗ as
Tf (g) =

∫
X fg dµ. Then T : Lq(X , µ) → (Lp(X , µ))∗, defined as

T (f ) = Tf , is an isometric isomorphism.

Proof (continued). Again, we have S(g) =
∫
X fg dµ. So, as explained at

the end of the case where µ(E ) < ∞, we have that
T : Lq(X , µ) → (Lp(X , µ))∗ is an isometric isomorphism.
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