Real Analysis

Chapter 19. General *L^p* Spaces: Completeness, Duality, and Weak Convergence

19.2. The Reisz Representation Theorem for the Dual of $L^p(X, \mu)$,

 $1 \le p < \infty$ —Proofs of Theorems

REAL ANALYSIS	
H.L. Royden • P.M. Fitzpatrick	Fourth Edition

Real Analysis

2 The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$

Lemma 19.6

Lemma 19.6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $1 \leq p < \infty$. For f an integrable function over X, suppose there is $M \leq 0$ such that for every simple function g on X that vanishes outside a set of finite measure, we have $|\int_X fg d\mu| \leq M ||g||_p$. Then $f \in L^q(X, \mu)$ where q is the conjugate of p. Moreover, $||f||_q \leq M$.

Proof. First, suppose p > 1. Since |f| is a nonnegative function and the measure space is σ -finite, then by the Simple Approximation Theorem (Section 18.1) there is a sequence of simple functions $\{\varphi_n\}$, each of which vanishes outside a set of finite measure, that converges pointwise on X to |f| and $0 \le \varphi_n \le |f|$ on E for all $n \in \mathbb{N}$.

Real Analysis

Lemma 19.6

Lemma 19.6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $1 \leq p < \infty$. For f an integrable function over X, suppose there is $M \leq 0$ such that for every simple function g on X that vanishes outside a set of finite measure, we have $|\int_X fg d\mu| \leq M ||g||_p$. Then $f \in L^q(X, \mu)$ where q is the conjugate of p. Moreover, $||f||_q \leq M$.

Proof. First, suppose p > 1. Since |f| is a nonnegative function and the measure space is σ -finite, then by the Simple Approximation Theorem (Section 18.1) there is a sequence of simple functions $\{\varphi_n\}$, each of which vanishes outside a set of finite measure, that converges pointwise on X to |f| and $0 \le \varphi_n \le |f|$ on E for all $n \in \mathbb{N}$. Since $\{\varphi_n^q\}$ converges pointwise to $|f|^q$ Fatou's lemma $\int_X |f| d\mu \le \liminf \int_X \varphi_n^q d\mu$. So to show that |f| is integrable and $||f||_q \le M$, it suffices to show that

$$\int_{X} \varphi_n^q \, d\mu \le M^q \text{ for } n \in \mathbb{N}.$$
(10)

Lemma 19.6

Lemma 19.6. Let (X, \mathcal{M}, μ) be a σ -finite measure space and let $1 \leq p < \infty$. For f an integrable function over X, suppose there is $M \leq 0$ such that for every simple function g on X that vanishes outside a set of finite measure, we have $|\int_X fg d\mu| \leq M ||g||_p$. Then $f \in L^q(X, \mu)$ where q is the conjugate of p. Moreover, $||f||_q \leq M$.

Proof. First, suppose p > 1. Since |f| is a nonnegative function and the measure space is σ -finite, then by the Simple Approximation Theorem (Section 18.1) there is a sequence of simple functions $\{\varphi_n\}$, each of which vanishes outside a set of finite measure, that converges pointwise on X to |f| and $0 \le \varphi_n \le |f|$ on E for all $n \in \mathbb{N}$. Since $\{\varphi_n^q\}$ converges pointwise to $|f|^q$ Fatou's lemma $\int_X |f| d\mu \le \liminf \int_X \varphi_n^q d\mu$. So to show that |f| is integrable and $||f||_q \le M$, it suffices to show that

$$\int_X \varphi_n^q \, d\mu \le M^q \text{ for } n \in \mathbb{N}. \tag{10}$$

Lemma 19.6 (continued 1)

Proof (continued). Fix $n \in \mathbb{N}$ We have

$$\varphi_n^q = \varphi_n \varphi_n^{q-1} \le |f| \varphi_n^{q-1} = f \operatorname{sgn}(f) \varphi_n^{q-1}$$
 on X.

Define the simple function g_n by $g_n = \operatorname{sgn}(f)\varphi_n^{q-1}$ on X. Then

$$\begin{split} \int_{X} \varphi_{n}^{q} d\mu &\leq \in_{X} |f| \varphi_{n}^{q-1} d\mu \text{ by monotonicity of the integral} \\ & \text{(Theorem 18.12)} \\ &= \left| \int_{X} |f| \varphi_{n}^{q-1} d\mu \right| \text{ since } |f| \varphi_{n}^{q-1} \geq 0 \\ &= \left| \int_{X} f \operatorname{sgn}(f) \varphi_{n}^{q-1} d\mu \right| = \left| \int_{X} f g_{n} d\mu \right| \\ &\leq M \|g_{n}\|_{p} \text{ by the hypothesis of the lemma.} \end{split}$$
(12)

Lemma 19.6 (continued 2)

Proof (continued). Since p and q are conjugates then p(q-1) = q and therefore

$$\int_X |g_n|^p d\mu = \int_X (\varphi_n^{q-1})^p d\mu \text{ since } g_n = \operatorname{sgn}(f) \varphi_n^{q-1}$$
$$= \int_X \varphi_n^q d\mu,$$

so from (12) we have

$$\int_X \varphi_n^q \, d\mu \leq M \|g_n\|_p = \left(\int_X \varphi_n^q \, d\mu\right)^{1/p}$$

Now for each $n \in \mathbb{N}$, φ_n^q is a simple function that vanishes outside a set of finite measure and so is integrable (that is, $\int_X \varphi_n^q d\mu < \infty$). So the last inequality implies $(\int_X \varphi_n^q d\mu)^{1/q} \leq M$ and $\int_X \varphi_n^q d\mu \leq M^q$. So, as described above, this is (1) and $n \in \mathbb{N}$ is arbitrary, so the claim holds in the case p > 1.

()

Lemma 19.6 (continued 2)

Proof (continued). Since p and q are conjugates then p(q-1) = q and therefore

$$\int_X |g_n|^p d\mu = \int_X (\varphi_n^{q-1})^p d\mu \text{ since } g_n = \operatorname{sgn}(f) \varphi_n^{q-1}$$
$$= \int_X \varphi_n^q d\mu,$$

so from (12) we have

$$\int_X \varphi_n^q \, d\mu \leq M \|g_n\|_p = \left(\int_X \varphi_n^q \, d\mu\right)^{1/p}$$

Now for each $n \in \mathbb{N}$, φ_n^q is a simple function that vanishes outside a set of finite measure and so is integrable (that is, $\int_X \varphi_n^q d\mu < \infty$). So the last inequality implies $(\int_X \varphi_n^q d\mu)^{1/q} \leq M$ and $\int_X \varphi_n^q d\mu \leq M^q$. So, as described above, this is (1) and $n \in \mathbb{N}$ is arbitrary, so the claim holds in the case p > 1.

C

Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p = 1 (so that $q = \infty$). ASSUME M given in the hypotheses is not an essential upper bound of $||f||_q$. Then there is some $\varepsilon > 0$ for which the set $X_{\varepsilon} = \{x \in X \mid |f(x)| > M + \varepsilon\}$ has positive measure. Since X is σ -finite there is a subset $A \subset X_{\varepsilon}$ with finite positive measure (eliminating the case that X_{ε} has infinite measure and all its measurable subsets have either measure 0 or ∞). With $g = \chi_A$ (a simple function on X that vanishes outside a set of finite measure) we have

$$\int_X fg \, d\mu = \int_X f\chi_A \, d\mu = \int_A f \, d\mu$$

$$\geq \int_A (M + \varepsilon) \, d\mu \text{ since } f > M + \varepsilon \text{ on } A$$

$$= (M + \varepsilon)m(A) = (m + \varepsilon)||g||_1 \text{ since } ||g_1|| = ||\chi_A||_1 = m(A)$$

$$\geq M||g||_1,$$

CONTRADICTING the hypotheses of the lemma, showing the assumption is false and $\int_X fg \, d\mu \leq M \|g\|_1$, as claimed.

()

Lemma 19.6 (continued 3)

Proof (continued). Second, suppose p = 1 (so that $q = \infty$). ASSUME M given in the hypotheses is not an essential upper bound of $||f||_q$. Then there is some $\varepsilon > 0$ for which the set $X_{\varepsilon} = \{x \in X \mid |f(x)| > M + \varepsilon\}$ has positive measure. Since X is σ -finite there is a subset $A \subset X_{\varepsilon}$ with finite positive measure (eliminating the case that X_{ε} has infinite measure and all its measurable subsets have either measure 0 or ∞). With $g = \chi_A$ (a simple function on X that vanishes outside a set of finite measure) we have

$$\begin{aligned} \int_X fg \, d\mu &= \int_X f\chi_A \, d\mu = \int_A f \, d\mu \\ &\geq \int_A (M+\varepsilon) \, d\mu \text{ since } f > M+\varepsilon \text{ on } A \\ &= (M+\varepsilon)m(A) = (m+\varepsilon) \|g\|_1 \text{ since } \|g_1\| = \|\chi_A\|_1 = m(A) \\ &> M\|g\|_1, \end{aligned}$$

CONTRADICTING the hypotheses of the lemma, showing the assumption is false and $\int_X fg \ d\mu \le M \|g\|_1$, as claimed.

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$. Let (X, \mathcal{M}, μ) be a σ -finite measure space, let $1 \le p < \infty$, and let q be the conjugate of p. For $f \in L^q(X, \mu)$ define $T_f \in (L^p(X, \mu))^*$ as $T_f(g) = \int_X fg \, d\mu$. Then $T : L^q(X, \mu) \to (L^p(X, \mu))^*$, defined as $T(f) = T_f$, is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6.

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$. Let (X, \mathcal{M}, μ) be a σ -finite measure space, let $1 \le p < \infty$, and let q be the conjugate of p. For $f \in L^q(X, \mu)$ define $T_f \in (L^p(X, \mu))^*$ as $T_f(g) = \int_X fg \, d\mu$. Then $T : L^q(X, \mu) \to (L^p(X, \mu))^*$, defined as $T(f) = T_f$, is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6.

Suppose p > 1. We first consider the case $\mu(X) < \infty$. Let $S : L^p(X, \mu) \to \mathbb{R}$ be a bounded linear functional. Define set function ν on the collection of measurable sets \mathcal{M} by setting $\nu(E) = S(\chi_E)$ for $E \in \mathcal{M}$. Sine $\mu(X) < \infty$, then each characteristic function of each measurable set is integrable and in $L^p(X, \mu)$, so that $\nu(E)$ is "properly defined." We claim that ν is a signed measure.

The Riesz Representation Theorem

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$. Let (X, \mathcal{M}, μ) be a σ -finite measure space, let $1 \le p < \infty$, and let q be the conjugate of p. For $f \in L^q(X, \mu)$ define $T_f \in (L^p(X, \mu))^*$ as $T_f(g) = \int_X fg \, d\mu$. Then $T : L^q(X, \mu) \to (L^p(X, \mu))^*$, defined as $T(f) = T_f$, is an isometric isomorphism.

Proof. The case p = 1 is to be given in Exercise 19.6. Suppose p > 1. We first consider the case $\mu(X) < \infty$. Let $S : L^p(X, \mu) \to \mathbb{R}$ be a bounded linear functional. Define set function ν on the collection of measurable sets \mathcal{M} by setting $\nu(E) = S(\chi_E)$ for $E \in \mathcal{M}$. Sine $\mu(X) < \infty$, then each characteristic function of each measurable set is integrable and in $L^p(X, \mu)$, so that $\nu(E)$ is "properly defined." We claim that ν is a signed measure.

The Riesz Representation Theorem (continued 1)

Proof (continued). First, for $\{E_k\}_{k=1}^{\infty}$ a countable disjoint collection of measurable sets and $E = \bigcup_{k=1}^{\infty} E_k$ we have by the countable additivity of μ

$$\mu(E) = \mu\left(\cup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k) < \infty.$$

So $\lim_{n\to\infty} \left(\sum_{k=n+1}^{\infty} \mu(E_k)\right) = 0$ since the tail of a summable series must go to 0. Consequently

$$\lim_{n \to \infty} \left\| \chi_E - \sum_{k=1}^n \chi_{E_k} \right\|_p = \lim_{n \to \infty} \left(\int_X \left| \sum_{k=n+1}^\infty \chi_{E_k} \right|^p d\mu \right)^{1/p}$$
$$= \lim_{k \to \infty} \left(\int_X \left(\sum_{k=n+1}^\infty \chi_{E_k} \right) d\mu \right)^{1/p}$$
since $\sum_{k=n+1}^\infty \chi_{E_k} = 0$ or 1 on $X \dots$

The Riesz Representation Theorem (continued 1)

Proof (continued). First, for $\{E_k\}_{k=1}^{\infty}$ a countable disjoint collection of measurable sets and $E = \bigcup_{k=1}^{\infty} E_k$ we have by the countable additivity of μ

$$\mu(E) = \mu\left(\cup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} \mu(E_k) < \infty.$$

So $\lim_{n\to\infty} \left(\sum_{k=n+1}^{\infty} \mu(E_k)\right) = 0$ since the tail of a summable series must go to 0. Consequently

$$\lim_{n \to \infty} \left\| \chi_E - \sum_{k=1}^n \chi_{E_k} \right\|_p = \lim_{n \to \infty} \left(\int_X \left| \sum_{k=n+1}^\infty \chi_{E_k} \right|^p d\mu \right)^{1/p}$$
$$= \lim_{k \to \infty} \left(\int_X \left(\sum_{k=n+1}^\infty \chi_{E_k} \right) d\mu \right)^{1/p}$$
since $\sum_{k=n+1}^\infty \chi_{E_k} = 0$ or 1 on $X \dots$

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$

The Riesz Representation Theorem (continued 2)

Proof (continued).

$$\lim_{n \to \infty} \left\| \chi_E - \sum_{k=1}^n \chi_{E_k} \right\|_p = \lim_{n \to \infty} \left(\sum_{k=n+1}^\infty \left(\int_X \chi_{E_k} \, d\mu \right) \right)^{1/p}$$

by the Monotone Convergence Theorem
$$= \lim_{n \to \infty} \left(\sum_{k=n+1}^\infty \mu(E_k) \right)^{1/p} = 0.$$

Since S is linear and continuous on $L^p(X, \mu)$ (every bounded linear functional is continuous; see Section 8.1) and hence

$$S(\chi_E) = S(\chi_{\cup E_k}) = S\left(\sum_{k=1}^{\infty} \chi_{E_k}\right) = \sum_{k=1}^{\infty} S(\chi_{E_k}),$$

so $\nu(E) = \sum_{k=1}^{\infty} \nu(E_k)$ and ν is countable additive.

The Riesz Representation Theorem for the Dual of $L^{p}(X, \mu)$

The Riesz Representation Theorem (continued 2)

Proof (continued).

$$\lim_{n\to\infty} \left\| \chi_E - \sum_{k=1}^n \chi_{E_k} \right\|_p = \lim_{n\to\infty} \left(\sum_{k=n+1}^\infty \left(\int_X \chi_{E_k} \, d\mu \right) \right)^{1/p}$$

by the Monotone Convergence Theorem

$$= \lim_{n\to\infty}\left(\sum_{k=n+1}^{\infty}\mu(E_k)\right)^{1/p}=0.$$

Since S is linear and continuous on $L^{p}(X, \mu)$ (every bounded linear functional is continuous; see Section 8.1) and hence

$$S(\chi_E) = S(\chi_{\cup E_k}) = S\left(\sum_{k=1}^{\infty} \chi_{E_k}\right) = \sum_{k=1}^{\infty} S(\chi_{E_k}),$$

so $\nu(E) = \sum_{k=1}^{\infty} \nu(E_k)$ and ν is countable additive.

The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional *S* does not take on the values $\pm \infty$ and *S* maps the 0 function (namely, χ_{\emptyset}) to 0, then to show that ν is a signed measure, we just need to show that $\sum_{k=1}^{\infty} \nu(E_k)$ above converges absolutely)see Section 17.2). For each $k \in \mathbb{N}$, set $c_k = \operatorname{sgn}(S(\chi_{E_k}))$ (notice $S(\chi_{E_k}) \in \mathbb{R}$), then we have

$$\sum_{k=1}^{\infty} S(c_k \chi_{E_k}) = \sum_{k=1}^{\infty} c_k S(\chi_{E_k}) = \sum_{k=1}^{\infty} |S(\chi_{E_k})| = \sum_{k=1}^{\infty} |\nu(E_k)|$$

since $\nu(E) = S(\chi_E)$ for $E \in \mathcal{M}$. Also, for all $x \in E$ we have

$$\left|\sum_{k=1}^{\infty} c_k \chi_{E_k}(x)\right| \leq \sum_{k=1}^{\infty} |c_k \chi_{E_k}(x)| = \sum_{k=1}^{\infty} \chi_{E_k} = \chi_E(x),$$

and since $\chi_E \in L^p(X,\mu)$ then $\sum_{k=1}^{\infty} c_k \chi_{E_k}(x) \in L^p(X,\mu)$.

The Riesz Representation Theorem (continued 3)

Proof (continued). Since functional *S* does not take on the values $\pm\infty$ and *S* maps the 0 function (namely, χ_{\varnothing}) to 0, then to show that ν is a signed measure, we just need to show that $\sum_{k=1}^{\infty} \nu(E_k)$ above converges absolutely)see Section 17.2). For each $k \in \mathbb{N}$, set $c_k = \operatorname{sgn}(S(\chi_{E_k}))$ (notice $S(\chi_{E_k}) \in \mathbb{R}$), then we have

$$\sum_{k=1}^{\infty} S(c_k \chi_{E_k}) = \sum_{k=1}^{\infty} c_k S(\chi_{E_k}) = \sum_{k=1}^{\infty} |S(\chi_{E_k})| = \sum_{k=1}^{\infty} |\nu(E_k)|$$

since $\nu(E) = S(\chi_E)$ for $E \in \mathcal{M}$. Also, for all $x \in E$ we have

$$\left|\sum_{k=1}^{\infty} c_k \chi_{E_k}(x)\right| \leq \sum_{k=1}^{\infty} |c_k \chi_{E_k}(x)| = \sum_{k=1}^{\infty} \chi_{E_k} = \chi_E(x),$$

and since $\chi_E \in L^p(X,\mu)$ then $\sum_{k=1}^{\infty} c_k \chi_{E_k}(x) \in L^p(X,\mu)$.

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$

The Riesz Representation Theorem (continued 4)

Proof (continued). As above,

$$\lim_{n\to\infty}\left\|\sum_{k=1}^{\infty}c_k\chi_{E_k}-\sum_{k=1}^{n}c_k\chi_{E_k}\right\|_p$$

$$= \lim_{n \to \infty} \left\| \sum_{k=n+1}^{\infty} c_k \chi_{E_k} \right\|_p = \lim_{n \to \infty} \left(\int_X \left| \sum_{k=n+1}^{\infty} c_k \chi_{E_k} \right|^p d\mu \right)^{1/p}$$
$$= \lim_{n \to \infty} \left(\int_X \sum_{k=n+1}^{\infty} |c_k \chi_{E_k}|^p d\mu \right)^{1/p} \text{ since the } E_k \text{ are disjoint}$$
$$= \lim_{n \to \infty} \left(\int_X \sum_{k=n+1}^{\infty} \chi_{E_k} d\mu \right)^{1/p} \text{ since } c_k \chi_{E_k} \in \{-1, 0, 1\}$$

= 0 as shown above.

The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on $L^p(X, \mu)$ then

$$S\left(\sum_{k=1}^{\infty}c_k\chi_{E_k}\right) = \sum_{k=1}^{\infty}S(c_k\chi_{E_k})$$

$$= \sum_{k=1}^{\infty} c_k S(\chi_{E_k}) = \sum_{k=1}^{\infty} |S(\chi_{E_k})| = \sum_{k=1}^{\infty} |\nu(E_k)|$$

and since $S : L^{p}(X, \mu) \to \mathbb{R}$ then $\sum_{k=1}^{\infty} |\nu(E_{k})| \in \mathbb{R}$, so $\sum_{k=1}^{\infty} \nu(E_{k})$ converges absolutely and ν is in fact a signed measure.

Next, we claim that ν is absolutely continuous with respect to μ . If $E \in \mathcal{M}$ satisfies $\mu(E) = 0$ then χ_E is in the equivalence class containing the zero function, $[0] \in L^p(X, \mu)$. Since S is linear then it maps $0 \in L^p(X, \mu)$ to $0 \in \mathbb{R}$ and so $\nu(E) = S(\chi_E) = 0$, so that ν is, by definition (see Section 18.4, "The Radon-Nikodym Theorem") absolutely continuous with respect to μ .

()

The Riesz Representation Theorem (continued 5)

Proof (continued). Since S is linear and continuous on $L^p(X, \mu)$ then

$$S\left(\sum_{k=1}^{\infty}c_k\chi_{E_k}\right) = \sum_{k=1}^{\infty}S(c_k\chi_{E_k})$$

$$=\sum_{k=1}^{\infty} c_k S(\chi_{E_k}) = \sum_{k=1}^{\infty} |S(\chi_{E_k})| = \sum_{k=1}^{\infty} |\nu(E_k)|$$

and since $S : L^{p}(X, \mu) \to \mathbb{R}$ then $\sum_{k=1}^{\infty} |\nu(E_{k})| \in \mathbb{R}$, so $\sum_{k=1}^{\infty} \nu(E_{k})$ converges absolutely and ν is in fact a signed measure.

Next, we claim that ν is absolutely continuous with respect to μ . If $E \in \mathcal{M}$ satisfies $\mu(E) = 0$ then χ_E is in the equivalence class containing the zero function, $[0] \in L^p(X, \mu)$. Since S is linear then it maps $0 \in L^p(X, \mu)$ to $0 \in \mathbb{R}$ and so $\nu(E) = S(\chi_E) = 0$, so that ν is, by definition (see Section 18.4, "The Radon-Nikodym Theorem") absolutely continuous with respect to μ .

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$

The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is integrable function f such that

$$S(\chi_E) = \nu(E) = \int_E f f \mu$$
 for all $E \in \mathcal{M}$.

Now each simple function $\varphi = \sum_{k=1}^{n} a_k \chi_{E_k}$ is in $L^p(X, \mu)$ (since each characteristic function on a measurable set in $L^P(X, \mu)$), then

$$S(\varphi) = S\left(\sum_{k=1}^{n} a_k \chi_{E_k}\right) = \sum_{k=1}^{n} a_k S(\chi_{E_k}) = \sum_{k=1}^{n} a_k \nu(E_k)$$
$$= \sum_{k=1}^{n} a_k \left(\int_{E_k} f \, d\mu\right) = \sum_{k=1}^{n} \left(\int_{E} f a_k \chi_{E_k} \, d\mu\right) = \int_{X} f \varphi \, d\mu. \tag{(*)}$$

Since S is a bounded linear functional on $L^{p}(X,\mu)$, $|S(g)| \leq ||S|| ||g||_{p}$ for each $g \in L^{p}(X,\mu)$.

The Riesz Representation Theorem (continued 6)

Proof (continued). So by the Radon-Nikodym Theorem (actually, by Corollary 18.20, a corollary to the Radon-Nikodym Theorem) there is integrable function f such that

$$S(\chi_E) = \nu(E) = \int_E f f \mu$$
 for all $E \in \mathcal{M}$.

Now each simple function $\varphi = \sum_{k=1}^{n} a_k \chi_{E_k}$ is in $L^p(X, \mu)$ (since each characteristic function on a measurable set in $L^P(X, \mu)$), then

$$S(\varphi) = S\left(\sum_{k=1}^{n} a_k \chi_{E_k}\right) = \sum_{k=1}^{n} a_k S(\chi_{E_k}) = \sum_{k=1}^{n} a_k \nu(E_k)$$
$$= \sum_{k=1}^{n} a_k \left(\int_{E_k} f \, d\mu\right) = \sum_{k=1}^{n} \left(\int_{E} f a_k \chi_{E_k} \, d\mu\right) = \int_{X} f \varphi \, d\mu. \tag{(*)}$$

Since S is a bounded linear functional on $L^{p}(X,\mu)$, $|S(g)| \leq ||S|| ||g||_{p}$ for each $g \in L^{p}(X,\mu)$.

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore $|\int_X f\varphi d\mu| = |S(\varphi)| \le ||S|| ||\varphi||_p$ for each simple function φ . So by Lemma 19.6 (with M = ||S||), we have $f \in L^q(X,\mu)$. Now the functional $T_f = \int_X fg \ d\mu$ is a bounded linear functional (see the first definition in this section) and so is continuous. So the functional $g \mapsto S(g) - T_f(g)$ for all $g \in L^p(X, \mu)$ is continuous. But, since $S(\varphi) = T_f(\varphi) = \int_X f\varphi \, d\mu$ by (*), bounded linear functional $S - T_f$ vanishes on the linear space of simple functions. By Theorem 19.5 (since $\mu(E) < \infty$ in this case), the linear space of simple functions is dense in $L^p(X,\mu)$, so $S-T_f$ vanishes on all of $L^p(X,\mu)$ (since $S-T_f$ is continuous) and $S = T_f$. That is every element $S \in (L^p(X, \mu))^*$ is the image under T of some $f \in L^q(X, \mu)$ so that T is onto. As argued at the beginning of this section, Hölder's Inequality shows that T_f is an isometry.

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore $|\int_X f\varphi d\mu| = |S(\varphi)| \le ||S|| ||\varphi||_p$ for each simple function φ . So by Lemma 19.6 (with M = ||S||), we have $f \in L^q(X,\mu)$. Now the functional $T_f = \int_X fg \, d\mu$ is a bounded linear functional (see the first definition in this section) and so is continuous. So the functional $g \mapsto S(g) - T_f(g)$ for all $g \in L^p(X, \mu)$ is continuous. But, since $S(\varphi) = T_f(\varphi) = \int_X f\varphi \, d\mu$ by (*), bounded linear functional $S - T_f$ vanishes on the linear space of simple functions. By Theorem 19.5 (since $\mu(E) < \infty$ in this case), the linear space of simple functions is dense in $L^{p}(X,\mu)$, so $S-T_{f}$ vanishes on all of $L^{p}(X,\mu)$ (since $S-T_{f}$ is continuous) and $S = T_f$. That is every element $S \in (L^p(X, \mu))^*$ is the image under T of some $f \in L^q(X, \mu)$ so that T is onto. As argued at the beginning of this section, Hölder's Inequality shows that T_f is an isometry. Next.

$$T(aS_1+bS_2) = T_{aS_1+bS_2} = \int_X (aS_1+bS_2) \cdot d\mu = a \int_X S_1 \cdot d\mu + b \int_X S_2 \cdot d\mu$$
$$= aT_{S_1} + bT_{S_2} = aT(S_1) + bT(S_2), \dots$$

The Riesz Representation Theorem (continued 7)

Proof (continued). Therefore $|\int_X f\varphi d\mu| = |S(\varphi)| \le ||S|| ||\varphi||_p$ for each simple function φ . So by Lemma 19.6 (with M = ||S||), we have $f \in L^q(X,\mu)$. Now the functional $T_f = \int_X fg \ d\mu$ is a bounded linear functional (see the first definition in this section) and so is continuous. So the functional $g \mapsto S(g) - T_f(g)$ for all $g \in L^p(X, \mu)$ is continuous. But, since $S(\varphi) = T_f(\varphi) = \int_X f\varphi \, d\mu$ by (*), bounded linear functional $S - T_f$ vanishes on the linear space of simple functions. By Theorem 19.5 (since $\mu(E) < \infty$ in this case), the linear space of simple functions is dense in $L^{p}(X,\mu)$, so $S-T_{f}$ vanishes on all of $L^{p}(X,\mu)$ (since $S-T_{f}$ is continuous) and $S = T_f$. That is every element $S \in (L^p(X, \mu))^*$ is the image under T of some $f \in L^q(X, \mu)$ so that T is onto. As argued at the beginning of this section, Hölder's Inequality shows that T_f is an isometry. Next

$$T(aS_1+bS_2) = T_{aS_1+bS_2} = \int_X (aS_1+bS_2) \cdot d\mu = a \int_X S_1 \cdot d\mu + b \int_X S_2 \cdot d\mu$$
$$= aT_{S_1} + bT_{S_2} = aT(S_1) + bT(S_2), \dots$$

The Riesz Representation Theorem (continued 8)

Proof (continued). ... so that T is an isometric isomorphism between linear spaces $L^q(X, \mu)$ and $(L^p(X, \mu))^*$, in the case of X that σ -finite.

Now suppose X is σ -finite. Then X is a countable union of finite measure sets Y_1, Y_2, \ldots Define $X_n = \bigcup_{k=1}^n Y_k$ so that $\{X_n\}$ is an ascending sequence of measurable sets of finite measure whose union is X. Fix $n \in \mathbb{N}$. Since each X_n is finite in measure, then by the case $\mu(E) < \infty$, we know that we can find $f_n \in L^1(X_n, \mu)$ for which $S(g) = \int_{X_n} f_n g \, d\mu$ for all $g \in L^p(X_n,\mu)$ and $\int_{X_n} |f_n|^q d\mu = ||f_n||_q^q \le ||S||^q$ by Lemma 19.6 with M = ||S||. Now we extend f_n from X_n to X be defining $f_n(x) = 0$ for $x \in X \setminus X_n$. Then for each $g \in L^p(X, \mu)$ with g = 0 on $X \setminus X_n$ we have $S(g) = \int_X f_n g d\mu = \int_X f_n g$ and $\int_{X} |f_n|^q d\mu = \int_{X} |f_n|^q \chi_E d\mu = \int_{E} |f_n|^q d\mu \leq ||S||^q$ for all such f_n . Now f_n is unique up to a set of measure zero since if f_n an df'_n satisfy $S(g) = \int_X f_n g \, d\mu = \int_X f'_n g \, d\mu$ for all $g \in L^p(X, \mu)$ with g = 0 on $X \setminus X_n$ then $\int_X (f_n - f'_n) g d\mu = 0.$

The Riesz Representation Theorem (continued 8)

Proof (continued). ... so that T is an isometric isomorphism between linear spaces $L^q(X, \mu)$ and $(L^p(X, \mu))^*$, in the case of X that σ -finite.

Now suppose X is σ -finite. Then X is a countable union of finite measure sets Y_1, Y_2, \ldots Define $X_n = \bigcup_{k=1}^n Y_k$ so that $\{X_n\}$ is an ascending sequence of measurable sets of finite measure whose union is X. Fix $n \in \mathbb{N}$. Since each X_n is finite in measure, then by the case $\mu(E) < \infty$, we know that we can find $f_n \in L^1(X_n, \mu)$ for which $S(g) = \int_{X_n} f_n g \, d\mu$ for all $g \in L^p(X_n,\mu)$ and $\int_{X_n} |f_n|^q d\mu = ||f_n||_q^q \le ||S||^q$ by Lemma 19.6 with M = ||S||. Now we extend f_n from X_n to X be defining $f_n(x) = 0$ for $x \in X \setminus X_n$. Then for each $g \in L^p(X, \mu)$ with g = 0 on $X \setminus X_n$ we have $S(g) = \int_X f_n g \, d\mu = \int_X f_n g$ and $\int_{X} |f_n|^q d\mu = \int_{X} |f_n|^q \chi_E d\mu = \int_{E} |f_n|^q d\mu \leq ||S||^q$ for all such f_n . Now f_n is unique up to a set of measure zero since if f_n an df'_n satisfy $S(g) = \int_X f_n g \, d\mu = \int_X f'_n g \, d\mu$ for all $g \in L^p(X, \mu)$ with g = 0 on $X \setminus X_n$ then $\int_{\mathbf{Y}} (f_n - f'_n) g \, d\mu = 0.$

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider $Y_+ \{x \in X_n \mid f_n(x) > f'_n(x)\}$, $Y_{-} = \{x \in X_n \mid f_n(x) < f'_n(x)\}, g_{+} = \chi_{Y_{+}}, g_{-} = \chi_{Y_{-}}, and we have$ $\int_{X} (f_n - f'_n \chi_{Y_+} d\mu = \int_{Y_+} (f'_n - f_n) d\mu = 0$ and $\int_{X} (f_n - f'_n \chi_{Y_-} d\mu) = \int_{Y_-} (f'_n - f_n) d\mu = - \int_{Y_-} (f_n - f'_n) d\mu = 0$ so that by Exercise 18.19, $f_n - f'_n = 0$ a.e. on Y_+ and $f'_n - f_n = 0$ a.e. on Y_- ; that is, $\mu(Y_+) = \mu(Y_-) = 0$ and $f_n = f'_n$ a.e. on X_n (and on X when extended). So we must have f_{n+1} restricted to X_n equal to f_n on X_n . We define f on X pointwise for $x \in \bigcup_{n=1}^{\infty} X_n$ as $f(x) = f_n(x)$ if $x \in X_n$. Then f is well-defined since $x \in X_i \cap X_i$ implies $f_i(x) = f_i(x)$. The sequence $\{f_n\}$ converges pointwise a.e. to f on X, so $\{|f|^q\}$ converges pointwise a.e. to $|f|^q$.

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider $Y_+ \{x \in X_n \mid f_n(x) > f'_n(x)\}$, $Y_{-} = \{x \in X_n \mid f_n(x) < f'_n(x)\}, g_{+} = \chi_{Y_{+}}, g_{-} = \chi_{Y_{-}}, \text{ and we have}$ $\int_{X} (f_n - f'_n \chi_{Y_+} d\mu = \int_{Y_+} (f'_n - f_n) d\mu = 0$ and $\int_{X} (f_n - f'_n \chi_{Y_-} d\mu) = \int_{Y_-} (f'_n - f_n) d\mu = - \int_{Y_-} (f_n - f'_n) d\mu = 0$ so that by Exercise 18.19, $f_n - f'_n = 0$ a.e. on Y_+ and $f'_n - f_n = 0$ a.e. on Y_- ; that is, $\mu(Y_+) = \mu(Y_-) = 0$ and $f_n = f'_n$ a.e. on X_n (and on X when extended). So we must have f_{n+1} restricted to X_n equal to f_n on X_n . We define f on X pointwise for $x \in \bigcup_{n=1}^{\infty} X_n$ as $f(x) = f_n(x)$ if $x \in X_n$. Then f is well-defined since $x \in X_i \cap X_i$ implies $f_i(x) = f_i(x)$. The sequence $\{f_n\}$ converges pointwise a.e. to f on X, so $\{|f|^q\}$ converges pointwise a.e. to |f|^q. So by Fatou's Lemma

$$\int_X |f|^q \, d\mu = \int_X \lim |f_n|^q \, d\mu \le \liminf \int_X |f_n|^q \, d\mu \le \|S\|^q.$$

So $f \in L^q(X,\mu)$. Let $g \in L^p(X,\mu)$. For each $n \in \mathbb{N}$, define $g_n = g$ on X_n and $g_0 = 0$ for $x \in X \setminus X_n$.

The Riesz Representation Theorem (continued 9)

Proof (continued). Since we can consider $Y_+ \{x \in X_n \mid f_n(x) > f'_n(x)\}$, $Y_{-} = \{x \in X_n \mid f_n(x) < f'_n(x)\}, g_{+} = \chi_{Y_{+}}, g_{-} = \chi_{Y_{-}}, \text{ and we have } \}$ $\int_{X} (f_n - f'_n \chi_{Y_+} d\mu = \int_{Y_+} (f'_n - f_n) d\mu = 0$ and $\int_{\mathbf{Y}} (f_n - f'_n \chi_{\mathbf{Y}_-} d\mu) = \int_{\mathbf{Y}_-} (f'_n - f_n) d\mu = - \int_{\mathbf{Y}_-} (f_n - f'_n) d\mu = 0$ so that by Exercise 18.19, $f_n - f'_n = 0$ a.e. on Y_{\perp} and $f'_n - f_n = 0$ a.e. on Y_{\perp} ; that is, $\mu(Y_+) = \mu(Y_-) = 0$ and $f_n = f'_n$ a.e. on X_n (and on X when extended). So we must have f_{n+1} restricted to X_n equal to f_n on X_n . We define f on X pointwise for $x \in \bigcup_{n=1}^{\infty} X_n$ as $f(x) = f_n(x)$ if $x \in X_n$. Then f is well-defined since $x \in X_i \cap X_i$ implies $f_i(x) = f_i(x)$. The sequence $\{f_n\}$ converges pointwise a.e. to f on X, so $\{|f|^q\}$ converges pointwise a.e. to $|f|^q$. So by Fatou's Lemma

$$\int_X |f|^q d\mu = \int_X \lim |f_n|^q d\mu \leq \liminf \int_X |f_n|^q d\mu \leq \|S\|^q.$$

So $f \in L^q(X,\mu)$. Let $g \in L^p(X,\mu)$. For each $n \in \mathbb{N}$, define $g_n = g$ on X_n and $g_0 = 0$ for $x \in X \setminus X_n$.

The Riesz Representation Theorem (continued 10)

Proof (continued). By Hölder's Inequality (Theorem 19.1(i)) |fg| is integrable on X and $|fg_n| \le |fg|$ a.e. on X. So, by the Lebesgue Dominated Convergence Theorem (Section 18.3)

$$\lim_{n\to\infty}\int_X fg_n\,d\mu = \int_X \lim_{n\to\infty}(fg_n)\,d\mu = \int_X fg\,d\mu. \tag{14}$$

On the other hand, $\{|g - g_n|^p\} \to 0$ pointwise a.e. on X and $|g_n - g|^p \le |g|^p$ a.e. on X (since $g_n = g$ on X_n and $g_n = 0$ for $x \in X \setminus X_n$) for all $n \in \mathbb{N}$. Again by the Lebesgue Dominated Convergence Theorem,

$$\lim_{n \to \infty} \|g_n - g\|_p^p = \lim_{n \to \infty} \int_X |g_n - g|^p \, d\mu = \int_X \lim_{n \to \infty} |g_n - g|^p \, d\mu = \int_X |g - g| \, d\mu = d\mu$$

and so $\{g_n\| \to g \text{ in } L^p(X, \mu).$

The Riesz Representation Theorem (continued 10)

Proof (continued). By Hölder's Inequality (Theorem 19.1(i)) |fg| is integrable on X and $|fg_n| \le |fg|$ a.e. on X. So, by the Lebesgue Dominated Convergence Theorem (Section 18.3)

$$\lim_{n\to\infty}\int_X fg_n\,d\mu = \int_X \lim_{n\to\infty}(fg_n)\,d\mu = \int_X fg\,d\mu.$$
 (14)

On the other hand, $\{|g - g_n|^p\} \to 0$ pointwise a.e. on X and $|g_n - g|^p \le |g|^p$ a.e. on X (since $g_n = g$ on X_n and $g_n = 0$ for $x \in X \setminus X_n$) for all $n \in \mathbb{N}$. Again by the Lebesgue Dominated Convergence Theorem,

$$\lim_{n\to\infty} \|g_n - g\|_p^p = \lim_{n\to\infty} \int_X |g_n - g|^p \, d\mu = \int_X \lim_{n\to\infty} |g_n - g|^p \, d\mu = \int_X |g - g| \, d\mu$$

and so $\{g_n \| \to g \text{ in } L^p(X, \mu)$. Since bounded linear functional S is continuous on $L^p(X, \mu)$, then $\lim_{n\to\infty} S(g_n) = S(\lim_{n\to\infty} g_n) = S(g)$. However, for each $n \in \mathbb{N}$, $S(g_n) = \int_{X_n} f_n g_n d\mu = \int_X fg_n d\mu$, so by (14), $S(g) = \lim_{n\to\infty} S(g_n) = \lim_{n\to\infty} \int_X fg_n d\mu = \int_X fg d\mu$.

The Riesz Representation Theorem (continued 10)

Proof (continued). By Hölder's Inequality (Theorem 19.1(i)) |fg| is integrable on X and $|fg_n| \le |fg|$ a.e. on X. So, by the Lebesgue Dominated Convergence Theorem (Section 18.3)

$$\lim_{n\to\infty}\int_X fg_n\,d\mu = \int_X \lim_{n\to\infty}(fg_n)\,d\mu = \int_X fg\,d\mu.$$
 (14)

On the other hand, $\{|g - g_n|^p\} \to 0$ pointwise a.e. on X and $|g_n - g|^p \le |g|^p$ a.e. on X (since $g_n = g$ on X_n and $g_n = 0$ for $x \in X \setminus X_n$) for all $n \in \mathbb{N}$. Again by the Lebesgue Dominated Convergence Theorem,

$$\lim_{n\to\infty} \|g_n - g\|_p^p = \lim_{n\to\infty} \int_X |g_n - g|^p \, d\mu = \int_X \lim_{n\to\infty} |g_n - g|^p \, d\mu = \int_X |g - g| \, d\mu = \int_X |g - g| \, d\mu$$

and so $\{g_n \| \to g \text{ in } L^p(X, \mu)$. Since bounded linear functional S is continuous on $L^p(X, \mu)$, then $\lim_{n\to\infty} S(g_n) = S(\lim_{n\to\infty} g_n) = S(g)$. However, for each $n \in \mathbb{N}$, $S(g_n) = \int_{X_n} f_n g_n d\mu = \int_X fg_n d\mu$, so by (14), $S(g) = \lim_{n\to\infty} S(g_n) = \lim_{n\to\infty} \int_X fg_n d\mu = \int_X fg d\mu$.

The Riesz Representation Theorem (continued 11)

The Riesz Representation Theorem for the Dual of $L^p(X, \mu)$. Let (X, \mathcal{M}, μ) be a σ -finite measure space, let $1 \le p < \infty$, and let q be the conjugate of p. For $f \in L^q(X, \mu)$ define $T_f \in (L^p(X, \mu))^*$ as $T_f(g) = \int_X fg \, d\mu$. Then $T : L^q(X, \mu) \to (L^p(X, \mu))^*$, defined as $T(f) = T_f$, is an isometric isomorphism.

Proof (continued). Again, we have $S(g) = \int_X fg \, d\mu$. So, as explained at the end of the case where $\mu(E) < \infty$, we have that $T : L^q(X, \mu) \to (L^p(X, \mu))^*$ is an isometric isomorphism. \Box