Real Analysis

Chapter 19. General *L^p* Spaces: Completeness, Duality, and Weak Convergence

19.3. The Kantorovitch Representation Theorem—Proofs of Theorems

Real Analysis

Theorem 19.7. The Kantorovitch Representation Theorem

Theorem 19.7. The Kantorovitch Representation Theorem. let (X, \mathcal{M}, μ) be a measure space. For signed measure $\nu \in \mathcal{BFA}(X, \mathcal{M}, \mu)$ define $T_{\nu} : L^{\infty}(X, \mu) \to \mathbb{R}$ by

$$T_
u(f) = \int_X f \, d
u$$
 for all $r \in L^\infty(X,\mu)$.

Then $T : \mathcal{BFA}(X, \mathcal{M}, \mu) \to L^{\infty}(X, \mu)^*$, which maps ν to T_{ν} , is an isometric isomorphism of the normed linear space $\mathcal{BFA}(X, \mathcal{M}, \mu)$ onto the dual of $L^{\infty}(X, \mu)$.

Proof. We first show that *T* is an isometry. We saw above that for all $f \in L^{\infty}(X,\mu)$ and $\nu \in \mathcal{BFA}(X,\mathcal{M},\mu)$ we have $|T_{\nu}(f)| = |\int_{X} f \, d\nu| \le ||\nu||_{\text{var}} ||f||_{\infty}$. Now the norm of a bounded linear functional *T* is

$$||T|| = \inf ||M| ||T(f)| \le M ||f||_{\infty}$$
 for all f },

so we already have $||T_{\nu}|| \leq ||\nu||_{\text{var}}$.

Theorem 19.7. The Kantorovitch Representation Theorem

Theorem 19.7. The Kantorovitch Representation Theorem. let (X, \mathcal{M}, μ) be a measure space. For signed measure $\nu \in \mathcal{BFA}(X, \mathcal{M}, \mu)$ define $T_{\nu} : L^{\infty}(X, \mu) \to \mathbb{R}$ by

$$T_
u(f) = \int_X f \, d
u$$
 for all $r \in L^\infty(X,\mu)$.

Then $T : \mathcal{BFA}(X, \mathcal{M}, \mu) \to L^{\infty}(X, \mu)^*$, which maps ν to T_{ν} , is an isometric isomorphism of the normed linear space $\mathcal{BFA}(X, \mathcal{M}, \mu)$ onto the dual of $L^{\infty}(X, \mu)$.

Proof. We first show that *T* is an isometry. We saw above that for all $f \in L^{\infty}(X, \mu)$ and $\nu \in \mathcal{BFA}(X, \mathcal{M}, \mu)$ we have $|T_{\nu}(f)| = |\int_{X} f \, d\nu| \le \|\nu\|_{\text{var}} \|f\|_{\infty}$. Now the norm of a bounded linear functional *T* is

$$||T|| = \inf ||M| ||T(f)| \le M ||f||_{\infty}$$
 for all f ,

so we already have $\|T_{\nu}\| \leq \|\nu\|_{\text{var}}$.

Proof (continued). So we need to show $\|\nu\|_{\text{var}} \le \|T\nu\|$. Let $\{E_k\}_{k=1}^n$ be a disjoint collection of sets in \mathcal{M} . For $1 \le k \le n$ define $c_k = \text{sgn}(\nu(E_k))$ and if $\varphi = \sum_{k=1}^n c_k \chi_{E_k}$. Then $\|\varphi\|_{\infty} = 1$ and

$$\sum_{k=1}^n |\nu(E_k)| = \int_X \varphi \, d\nu = T_\nu(\varphi) \le ||T_\nu|| ||\varphi||_\infty = ||T_\nu||.$$

Therefore letting $\{E_k\}_{k=1}^n$ range over all finite disjoint collections in \mathcal{M} and taking a supremum of the left hand side we get (since ν is a bounded finitely additive signed measure) $\|\nu\|_{\text{var}} \leq \|T_{\nu}\}$. Hence $\|T_{\nu}\| = \|\nu\|_{\text{var}}$ and so T is an isometry.

Proof (continued). So we need to show $\|\nu\|_{\text{var}} \le \|T\nu\|$. Let $\{E_k\}_{k=1}^n$ be a disjoint collection of sets in \mathcal{M} . For $1 \le k \le n$ define $c_k = \text{sgn}(\nu(E_k))$ and if $\varphi = \sum_{k=1}^n c_k \chi_{E_k}$. Then $\|\varphi\|_{\infty} = 1$ and

$$\sum_{k=1}^{n} |\nu(E_k)| = \int_X \varphi \, d\nu = T_\nu(\varphi) \le ||T_\nu|| ||\varphi||_\infty = ||T_\nu||.$$

Therefore letting $\{E_k\}_{k=1}^n$ range over all finite disjoint collections in \mathcal{M} and taking a supremum of the left hand side we get (since ν is a bounded finitely additive signed measure) $\|\nu\|_{var} \leq \|T_{\nu}\}$. Hence $\|T_{\nu}\| = \|\nu\|_{var}$ and so T is an isometry.

In Exercise 19.3.B it is to be shown that $T : \mathcal{BFA}(X, \mathcal{M}, \mu) \to L^{\infty}(X, \mu)^*$ is linear (and so the homomorphism properties). If $\nu_1, \nu_2 \in \mathcal{BFA}(X, \mathcal{M}, \mu)$ with $\nu_1 \neq \nu_2$ then there is some $E \in \mathcal{M}$ where $\nu_1(E) \neq \nu_2(E)$.

Proof (continued). So we need to show $\|\nu\|_{\text{var}} \leq \|T\nu\|$. Let $\{E_k\}_{k=1}^n$ be a disjoint collection of sets in \mathcal{M} . For $1 \leq k \leq n$ define $c_k = \text{sgn}(\nu(E_k))$ and if $\varphi = \sum_{k=1}^n c_k \chi_{E_k}$. Then $\|\varphi\|_{\infty} = 1$ and

$$\sum_{k=1}^{n} |\nu(E_k)| = \int_X \varphi \, d\nu = T_\nu(\varphi) \le ||T_\nu|| ||\varphi||_\infty = ||T_\nu||.$$

Therefore letting $\{E_k\}_{k=1}^n$ range over all finite disjoint collections in \mathcal{M} and taking a supremum of the left hand side we get (since ν is a bounded finitely additive signed measure) $\|\nu\|_{var} \leq \|T_{\nu}\}$. Hence $\|T_{\nu}\| = \|\nu\|_{var}$ and so T is an isometry.

In Exercise 19.3.B it is to be shown that $T : \mathcal{BFA}(X, \mathcal{M}, \mu) \to L^{\infty}(X, \mu)^*$ is linear (and so the homomorphism properties). If $\nu_1, \nu_2 \in \mathcal{BFA}(X, \mathcal{M}, \mu)$ with $\nu_1 \neq \nu_2$ then there is some $E \in \mathcal{M}$ where $\nu_1(E) \neq \nu_2(E)$.

Proof (continued). Then with $f = \chi_E \in L^{\infty}(X, \mu)$ we have

$$T_{\nu_1}(f) = \int_X \chi_E \, d\nu_1 = \int_E 1 \, d\nu_1 = \nu_1(E)$$

$$\neq \nu_2(E) = \int_E 1 \, d\nu_2 = \int_X \chi_E \, d\nu_2 = T_{\nu_2}(f)$$

and so $T_{\nu_1} \neq T_{\nu_2}$. That is, $T(\nu_1) = T_{\nu_1} \neq T_{\nu_2} = T(\nu_2)$. So *T* is one to one. It remains to show that *T* is onto. Let $S \in L^{\infty}(X, \nu)^*$. Define $\nu : \mathcal{M} \to \mathbb{R}$ by $\nu(E) = S(\chi_E)$ for all $E \in \mathcal{M}$. Since $\chi_E \in L^{\infty}(X, \nu)$ then ν is "properly defined."

Proof (continued). Then with $f = \chi_E \in L^{\infty}(X, \mu)$ we have

$$T_{\nu_1}(f) = \int_X \chi_E \, d\nu_1 = \int_E 1 \, d\nu_1 = \nu_1(E)$$

$$\neq \nu_2(E) = \int_E 1 \, d\nu_2 = \int_X \chi_E \, d\nu_2 = T_{\nu_2}(f)$$

and so $T_{\nu_1} \neq T_{\nu_2}$. That is, $T(\nu_1) = T_{\nu_1} \neq T_{\nu_2} = T(\nu_2)$. So *T* is one to one. It remains to show that *T* is onto. Let $S \in L^{\infty}(X, \nu)^*$. Define $\nu : \mathcal{M} \to \mathbb{R}$ by $\nu(E) = S(\chi_E)$ for all $E \in \mathcal{M}$. Since $\chi_E \in L^{\infty}(X, \nu)$ then ν is "properly defined." For $\{E_k\}_{k=1}^n$ a finite collection of disjoint sets in \mathcal{M} ,

$$\nu(\bigcup_{k=1}^{n} E_{k}) = S(\bigcup_{k=1}^{n} E_{k}) = S(\chi_{E_{1}} + \chi_{E_{2}} + \dots + \chi_{E_{n}})$$

$$= S(\chi_{E_1}) + S(\chi_{E_2}) + \dots + S(\chi_{E_n}) = \nu(E_1) + \nu(E_2) + \dots + \nu(E_n),$$

and so ν is finitely additive.

Proof (continued). Then with $f = \chi_E \in L^{\infty}(X, \mu)$ we have

$$T_{\nu_1}(f) = \int_X \chi_E \, d\nu_1 = \int_E 1 \, d\nu_1 = \nu_1(E)$$

$$\neq \nu_2(E) = \int_E 1 \, d\nu_2 = \int_X \chi_E \, d\nu_2 = T_{\nu_2}(f)$$

and so $T_{\nu_1} \neq T_{\nu_2}$. That is, $T(\nu_1) = T_{\nu_1} \neq T_{\nu_2} = T(\nu_2)$. So T is one to one. It remains to show that T is onto. Let $S \in L^{\infty}(X, \nu)^*$. Define $\nu : \mathcal{M} \to \mathbb{R}$ by $\nu(E) = S(\chi_E)$ for all $E \in \mathcal{M}$. Since $\chi_E \in L^{\infty}(X, \nu)$ then ν is "properly defined." For $\{E_k\}_{k=1}^n$ a finite collection of disjoint sets in \mathcal{M} ,

$$\nu(\bigcup_{k=1}^{n} E_{k}) = S(\bigcup_{k=1}^{n} E_{k}) = S(\chi_{E_{1}} + \chi_{E_{2}} + \dots + \chi_{E_{n}})$$

= $S(\chi_{E_{1}}) + S(\chi_{E_{2}}) + \dots + S(\chi_{E_{n}}) = \nu(E_{1}) + \nu(E_{2}) + \dots + \nu(E_{n}),$

and so ν is finitely additive. If $E \in \mathcal{M}$ and $\mu(E) = 0$ then $\chi_E = 0$ a.e. on X and $\nu(E) = S(\chi_E) = S(0) = 0$. So ν is absolutely continuous with respect to μ .

(

Proof (continued). Then with $f = \chi_E \in L^{\infty}(X, \mu)$ we have

$$T_{\nu_1}(f) = \int_X \chi_E \, d\nu_1 = \int_E 1 \, d\nu_1 = \nu_1(E)$$

$$\neq \nu_2(E) = \int_E 1 \, d\nu_2 = \int_X \chi_E \, d\nu_2 = T_{\nu_2}(f)$$

and so $T_{\nu_1} \neq T_{\nu_2}$. That is, $T(\nu_1) = T_{\nu_1} \neq T_{\nu_2} = T(\nu_2)$. So T is one to one. It remains to show that T is onto. Let $S \in L^{\infty}(X, \nu)^*$. Define $\nu : \mathcal{M} \to \mathbb{R}$ by $\nu(E) = S(\chi_E)$ for all $E \in \mathcal{M}$. Since $\chi_E \in L^{\infty}(X, \nu)$ then ν is "properly defined." For $\{E_k\}_{k=1}^n$ a finite collection of disjoint sets in \mathcal{M} ,

$$\nu(\bigcup_{k=1}^{n} E_{k}) = S(\bigcup_{k=1}^{n} E_{k}) = S(\chi_{E_{1}} + \chi_{E_{2}} + \dots + \chi_{E_{n}})$$

= $S(\chi_{E_{1}}) + S(\chi_{E_{2}}) + \dots + S(\chi_{E_{n}}) = \nu(E_{1}) + \nu(E_{2}) + \dots + \nu(E_{n}),$

and so ν is finitely additive. If $E \in \mathcal{M}$ and $\mu(E) = 0$ then $\chi_E = 0$ a.e. on X and $\nu(E) = S(\chi_E) = S(0) = 0$. So ν is absolutely continuous with respect to μ .

()

Proof (continued). Therefore $\nu \in \mathcal{BFA}(X, \mathcal{M}, \mu)$. For $\varphi = \sum_{k=1}^{n} c_k \chi_{E_k}$ (where $E_k = \{x \in X \mid \varphi(x) = c_k\}$) then

$$\int_X \varphi \, d\nu = \int_X \left(\sum k = 1^n c_k \chi_{E_k} \right) \, d\nu = \sum_{k=1}^n c_k \nu(E_k)$$

$$=\sum_{k=1}^n c_k S(E_k) = \sum_{k=1}^n S(c_k \chi_{E_k}) = S\left(\sum_{k=1}^n c_k \chi_{E_k}\right) = S(\varphi).$$

That is, $\int_X \varphi \, d\nu = S(\varphi)$ for all simple functions in $L^{\infty}(X, \mu)$. So $T_{\nu} = S$ on the set of all simple functions in $L^{\infty}(X, \mu)$. By the Simple Approximation Lemma (Section 18.1) the simple functions are dense in $L^{\infty}(X, \mu)$. So for any $f \in L^{\infty}(X, \mu)$ there is a sequence of simple functions $\{\varphi_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \varphi_n = f$ (with respect to the $L^{\infty}(X, \mu)$ norm; that is, $\varphi_n \to f$ uniformly μ -a.e.). Let g = f + 1 on X. Since f is essentially bounded and $\nu(X)$ is finite, then g is essentially bounded and integrable on X with respect to ν .

()

Proof (continued). Therefore $\nu \in \mathcal{BFA}(X, \mathcal{M}, \mu)$. For $\varphi = \sum_{k=1}^{n} c_k \chi_{E_k}$ (where $E_k = \{x \in X \mid \varphi(x) = c_k\}$) then

$$\int_X \varphi \, d\nu = \int_X \left(\sum k = 1^n c_k \chi_{E_k} \right) \, d\nu = \sum_{k=1}^n c_k \nu(E_k)$$

$$=\sum_{k=1}^n c_k S(E_k) = \sum_{k=1}^n S(c_k \chi_{E_k}) = S\left(\sum_{k=1}^n c_k \chi_{E_k}\right) = S(\varphi)$$

That is, $\int_X \varphi \, d\nu = S(\varphi)$ for all simple functions in $L^{\infty}(X, \mu)$. So $T_{\nu} = S$ on the set of all simple functions in $L^{\infty}(X, \mu)$. By the Simple Approximation Lemma (Section 18.1) the simple functions are dense in $L^{\infty}(X, \mu)$. So for any $f \in L^{\infty}(X, \mu)$ there is a sequence of simple functions $\{\varphi_n\}_{n=1}^{\infty}$ such that $\lim_{n\to\infty} \varphi_n = f$ (with respect to the $L^{\infty}(X, \mu)$ norm; that is, $\varphi_n \to f$ uniformly μ -a.e.). Let g = f + 1 on X. Since f is essentially bounded and $\nu(X)$ is finite, then g is essentially bounded and integrable on X with respect to ν .

(

Proof (continued). "Eventually," $|\varphi_n| \leq g$ on X (i.e., there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|\varphi_n| \leq g$), so by the Lebesgue Dominated Convergence Theorem (Section 18.3), $\lim_{n\to\infty} \int_X \varphi_n \, d\nu = \int_X f \, d\nu$. Now every bounded linear functional S is continuous (use the ε/δ definition of continuity for metric spaces with $\delta = \varepsilon/||S||$), so

$$\lim_{n\to\infty}\int_X \varphi_n\,d\nu = \lim_{n\to\infty} S(\varphi_n) = S\left(\lim_{n\to\infty}\varphi_n\right) = S(f).$$

That is, $S(f) = \int_X f \, d\nu$. So arbitrary element S of $L^{\infty}(X, \mu)^*$ is the image under T of signed measure ν . That is, T is onto. So T is a isometric isomorphism, as claimed.

Proof (continued). "Eventually," $|\varphi_n| \leq g$ on X (i.e., there exists $N \in \mathbb{N}$ such that for all $n \geq N$, $|\varphi_n| \leq g$), so by the Lebesgue Dominated Convergence Theorem (Section 18.3), $\lim_{n\to\infty} \int_X \varphi_n \, d\nu = \int_X f \, d\nu$. Now every bounded linear functional S is continuous (use the ε/δ definition of continuity for metric spaces with $\delta = \varepsilon/||S||$), so

$$\lim_{n\to\infty}\int_X \varphi_n\,d\nu = \lim_{n\to\infty} S(\varphi_n) = S\left(\lim_{n\to\infty}\varphi_n\right) = S(f).$$

That is, $S(f) = \int_X f \, d\nu$. So arbitrary element S of $L^{\infty}(X, \mu)^*$ is the image under T of signed measure ν . That is, T is onto. So T is a isometric isomorphism, as claimed.