Real Analysis

Chapter 19. General L^p Spaces: Completeness, Duality, and Weak Convergence

19.4. Weak Sequential Compactness in $L^p(X, \mu)$, 1 —Proofs

Real Analysis

January 30, 2019 1 /

Real Analysis

January 30, 2019 3 / 7

Theorem 10.0

Theorem 19.8 (continued 1)

Proof (continued). But for $T_q:L^q\to\mathbb{R}$ we have $S\circ T_q:L^q\to\mathbb{R}$ is the composition of continuous linear operators and so is a continuous linear functional on normed linear space L^q and so is bounded by Exercise 8.3. Therefore $S\circ T_q\in (L^q)^*$. By the proof of the Riesz Representation Theorem, mapping T_p defined above maps L^q onto $(L^q)^*$ and so there is $f\in L^q$ such that $T_p(f)=S\circ T_q$. So for all $g\in L^q$ we have $(S\circ T_q)(g)=T_p(f)(g)$ (and notice these are real numbers). Thus

$$S(T_q(g)) = T_p(f)(g) = \int_X gf$$
 where $g \in L^q$ and $f \in L^p$, by the definition of T_p
$$= \int_X fg = T_q(g)(f)$$
 by the definition of T_q
$$= J(f)(T_q(g))$$
 since $f \in L^p$ and $g \in (L^p)^* = L^q$ (by the Riesz Representation Theorem.

Since T_q maps L^q onto $(L^p)^*$, then S = J(f) on $(L^p)^*$.

Theorem 19.8

Theorem 19.8

Theorem 19.8. Let (X, \mathcal{M}, μ) be a σ -finite measure space and $1 . Then <math>L^p(X, \mu)$ is a reflexive Banach space.

Proof. We saw in the proof of the Riesz Representation Theorem (Section 19.2) that for conjugates $r,s\in(1,\infty)$, the operator $T_r:L^r\to(L^s)^*$ defined by

$$(T_r(h))(g)=\int_X gh\,d\mu$$
 for all $h\in L^r$ and $g\in L^2$

is an isometric isomorphism from L^r onto $(L^s)^*$.

For reflexivity of L^p , let $S:(L^p)^*\to\mathbb{R}$ be an arbitrary (continuous) linear functional (all bounded linear functionals are continuous; consider the ε/δ definition of continuity for mappings between metric spaces and let $\delta=\varepsilon/\|T\|$ for nonzero linear functional T). We seek $f\in L^p$ for which S=J(f) where $J:L^p\to(L^p)^{**}$ is the natural embedding (showing this will show that J is onto; here $S:L^p\to(L^p)^{**}$ also).

Theorem 19.

Theorem 19.8 (continued 2)

Theorem 19.8. Let (X, \mathcal{M}, μ) be a σ -finite measure space and $1 . Then <math>L^p(X, \mu)$ is a reflexive Banach space.

Proof (continued). Since S is an arbitrary mapping of $(L^p)^* \to \mathbb{R}$ (that is, S is an arbitrary element of L^{p**}), then $J: L^p \to L^{p**}$ is onto and $J(L^p) = L^{p**}$. That is (by definition), L^p is reflexive, as claimed. q

Real Analysis January 30, 2019 5 /

The Riesz Weak Compactness Theorem

The Riesz Weak Compactness Theorem.

Let (X, \mathcal{M}, μ) be a σ -finite measure space and $1 . Then every bounded sequence in <math>L^p(X, \mu)$ has a weakly convergent subsequence; that is. if $\{f_n\}$ is a bounded sequence in $L^p(X, \mu)$, then there is a subsequence $\{f_{n_k}\}$ of $\{f_n\}$ and a function $f \in L^p(X, \mu)$ for which

$$\lim_{k\to\infty}\int_X f_{n_k}g\ d\mu=\int_X fg\ d\mu \ ext{for all}\ g\in L^q(X,\mu),$$

where 1/p + 1/q = 1.

Proof. By Theorem 19.8, $L^p(X,\mu)$ is reflexive. By Theorem 14.17, every bounded sequence $\{f_n\}$ in a reflexive Banach space has a weakly convergent subsequence $\{f_{n_k}\}$ which converges, say, to $f \in L^p(X,\mu)$. That is, for every $\psi \in (L^p)^*$ we have $\lim_{n\to\infty} \psi(f_{n_k}) = \psi(f)$.

The Riesz Weak Compactness Theorem (continued)

Proof (continued). But by the Reisz Representation Theorem, every $\psi \in (L^p)^*$ is of the form

$$\psi(f)=\int_X fg\ d\mu$$
 for all $f\in L^p(X,\mu)$ where $g\in L^q(X,\mu)$

(and conversely each $g \in L^q(X, \mu)$ determines some bounded linear functional in $(L^p)^*$). So for all $g \in L^q(X, \mu)$, we have

$$\lim_{n\to\infty}\int_X f_{n_k}g\ d\mu=\int_X fg\ d\mu,$$

as claimed.

Real Analysis January 30, 2019 6 / 7 () Real Analysis January 30, 2019 7 / 7