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Chapter 19. General Lp Spaces: Completeness, Duality, and Weak
Convergence

19.4. Weak Sequential Compactness in Lp(X , µ), 1 < p <∞—Proofs
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Theorem 19.8

Theorem 19.8

Theorem 19.8. Let (X ,M, µ) be a σ-finite measure space and
1 < p <∞. Then Lp(X , µ) is a reflexive Banach space.

Proof. We saw in the proof of the Riesz Representation Theorem (Section
19.2) that for conjugates r , s ∈ (1,∞), the operator Tr : Lr → (Ls)∗

defined by

(Tr (h))(g) =

∫
X

gh dµ for all h ∈ Lr and g ∈ L2

is an isometric isomorphism from Lr onto (Ls)∗.

For reflexivity of Lp, let S : (Lp)∗ → R be an arbitrary (continuous) linear
functional (all bounded linear functionals are continuous; consider the ε/δ
definition of continuity for mappings between metric spaces and let
δ = ε/‖T‖ for nonzero linear functional T ). We seek f ∈ Lp for which
S = J(f ) where J : Lp → (Lp)∗∗ is the natural embedding (showing this
will show that J is onto; here S : Lp → (Lp)∗∗ also).
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Theorem 19.8

Theorem 19.8 (continued 1)

Proof (continued). But for Tq : Lq → R we have S ◦ Tq : Lq → R is the
composition of continuous linear operators and so is a continuous linear
functional on normed linear space Lq and so is bounded by Exercise 8.3.
Therefore S ◦ Tq ∈ (Lq)∗. By the proof of the Riesz Representation
Theorem, mapping Tp defined above maps Lq onto (Lq)∗ and so there is
f ∈ Lq such that Tp(f ) = S ◦ Tq. So for all g ∈ Lq we have
(S ◦ Tq)(g) = Tp(f )(g) (and notice these are real numbers). Thus

S(Tq(g)) = Tp(f )(g) =

∫
X

gf where g ∈ Lq and f ∈ Lp,

by the definition of Tp

=

∫
X

fg = Tq(g)(f ) by the definition of Tq

= J(f )(Tq(g)) since f ∈ Lp and g ∈ (Lp)∗ = Lq

(by the Riesz Representation Theorem.

Since Tq maps Lq onto (Lp)∗, then S = J(f ) on (Lp)∗.
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Theorem 19.8

Theorem 19.8 (continued 2)

Theorem 19.8. Let (X ,M, µ) be a σ-finite measure space and
1 < p <∞. Then Lp(X , µ) is a reflexive Banach space.

Proof (continued). Since S is an arbitrary mapping of (Lp)∗ → R (that
is, S is an arbitrary element of Lp∗∗), then J : Lp → Lp∗∗ is onto and
J(Lp) = Lp∗∗. That is (by definition), Lp is reflexive, as claimed. q
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The Riesz Weak Compactness Theorem

The Riesz Weak Compactness Theorem.
Let (X ,M, µ) be a σ-finite measure space and 1 < p <∞. Then every
bounded sequence in Lp(X , µ) has a weakly convergent subsequence; that
is. if {fn} is a bounded sequence in Lp(X , µ), then there is a subsequence
{fnk

} of {fn} and a function f ∈ Lp(X , µ) for which

lim
k→∞

∫
X

fnk
g dµ =

∫
X

fg dµ for all g ∈ Lq(X , µ),

where 1/p + 1/q = 1.

Proof. By Theorem 19.8, Lp(X , µ) is reflexive. By Theorem 14.17, every
bounded sequence {fn} in a reflexive Banach space has a weakly
convergent subsequence {fnk

} which converges, say, to f ∈ Lp(X , µ). That
is, for every ψ ∈ (Lp)∗ we have limn→∞ ψ(fnk

) = ψ(f ).
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The Riesz Weak Compactness Theorem

The Riesz Weak Compactness Theorem (continued)

Proof (continued). But by the Reisz Representation Theorem, every
ψ ∈ (Lp)∗ is of the form

ψ(f ) =

∫
X

fg dµ for all f ∈ Lp(X , µ) where g ∈ Lq(X , µ)

(and conversely each g ∈ Lq(X , µ) determines some bounded linear
functional in (Lp)∗). So for all g ∈ Lq(X , µ), we have

lim
n→∞

∫
X

fnk
g dµ =

∫
X

fg dµ,

as claimed.

() Real Analysis January 30, 2019 7 / 7


	Theorem 19.8
	The Riesz Weak Compactness Theorem

