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Proposition 19.10

Proposition 19.10. for a finite measure space (X, M, i) and bounded
sequence {f,} in LY(X, 1), the following two properties are equivalent:
(i) {fa} is uniformly integrable over X.
(ii) For each £ > 0, there is M > 0 such that

/ |fa] die < € for all n € N.
{xeX||fa(x)|= M}

Proof. Since {f,} is bounded, there is C > 0 such that ||f,||1 < C for all
ne N.

Suppose {f,} is uniformly integrable over X. Let £ > 0. Then by the
definition of “uniformly integrable,” there is § > 0 such that if E C X is
measurable and

if p(E) < 6 then /|fn|d,u<sfor all n € N.
JE
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Proposition 19.10 (continued 1)

Proof (continued). By Chebychev's Inequality (Section 18.2) for any
positive M > 0

p(fxe X 10| = M) < o [ 16ldn < 4

- - M Jx - M

for all ne N So if M > C/§ (and so C/M < §) then
p({x € X | |fa(x)] = M} < § and so by (%), -r{XEXIIFn(X]]ZM} |fa] dp < & for
all n € N, and (i) implies (ii) as claimed.
Suppose (ii) holds. Let ¢ > 0. Choose M > 0 such that
f{xexllﬂ.(x]l‘zM} |fo| dpp < £/2 for all n € N. Define § = ¢/(2M). Then if
E C X is measurable with p(E) < 4 and is n € N we have

[inldn= [ fldn+ [ ol di
E {xeX||fa(x)|=M} {xeX|[fa(x)| <M}

Mul(EY < Exms =S4 £
2+ ,u()<2+ 0 2+

2
since 0 = ¢/(2M) and so Mo = /2.
0 |

< =g,
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Proposition 19.10 (continued 2)

Proposition 19.10. for a finite measure space (X, M, i) and bounded
sequence {f,} in L1(X, 1), the following two properties are equivalent:

(i) {fa} is uniformly integrable over X.
(ii) For each £ > 0, there is M > 0 such that

/ |fa] dpp < € for all n € N.
{xeX|[fa(x)|= M}

Proof (continued). Therefore {f,} is uniformly integrable over X and (i)
holds, as claimed. .
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. Lemma19il |
Lemma 19.11

. lenmatoil]
Lemma 19.11 (continued 1)

Proof (continued). Since ;(X) < oo, integration over a fixed measurable
subset of X is a bounded linear functional on L?(X, ) (by Holder's
Inequality; see Section 19.2, “The Riesz Representation Theorem for the
Dual of LP(X,p), 1 < p < o"; we take g = 1 to get integration over set
E as the bounded linear functional on L?(X, 1),

T(f) = [ fedp = [¢ fdp. Therefore for each measurable subset E of X,

the sequence {fE glel d,u} = {T(glNY is a convergent sequence of real
numbers and so is a Cauchy sequence of real numbers. We use this
“observation” below.

Lemma 19.11. For a finite measure space (X, .M, j) and bounded
uniformly integrable sequence {f,} in L}(X, i), there is a subsequence
{fa. } such that for each measurable subset E of X, the sequence of real
numbers { [ f,, du} is Cauchy.

Proof. First, if {g,} is any bounded sequence in L!(X, ;1) and @ > 0, then
the truncated sequence {g\"1} is bounded in L2(X, 1) since j(X) < oo
(since then g,[f"] is a bounded function on a set of finite measure for all

n € N). By the Riesz Compactness Theorem (Section 19.4; this requires

1 < p < o0, which is why we have moved to L?(X, ;1) where there is a
Now let {f,} be a bounded uniformly integrable sequence in L*(X, ;). We
use a diagonalization argument to find the desired subsequence {f,, }. By
the “observation” above, there is a subsequence {f,}} of {f,} which at the
truncation level & = 1 converges weakly in L%(X, ).

subsequence {g,[,'f]} that converses weakly; that is,
limpoe T(@) = T (Iim,,_,oc. g,[,j]) for all T € (L2(X, u))*; see Section
8.2, “Weak Sequential Convergence in LP").
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Lemma 19.11 (continued 2)

Proof (continued). Since {f}} is also a bounded uniformly integrable
sequence in L1(X, 1), then by the “observation” there is a subsequence
{f2} of {f!} which at the truncation level o = 2 converges weakly in
L2(X, i). We continue inductively to find a sequence of sequences, each
of which is a subsequence of its predecessor and the kth subsequence {f}
at the truncation level o = k converges weakly in L2(X, it). Define the
subsequence {h,} of {fp} as j, = for n € N ({h,} is the “diagonal
sequence”). Then {h,} is a subsequence of {f,} and for each kK € N and

for each measurable E C X, {] hlk d,u} is Cauchy, (26)
E n=1

by the “observation” above. Let E C X be measurable. We claim that

{ [z hndu} is a Cauchy sequence of real numbers. Let ¢ > 0. For

k,n,m e N we have

b — i = (A — ) (R8T — ) + (B — 2.
I
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Lemma 19.11 (continued 3)

Proof (continued). Therefore by (24) (in the Note before the statement
of this lemma)

/E(h,, — hm) dpt

/ (hn — 8y dp
JE

< +

/ (b — Y dp
E

f (H9 _ h)
E

+ [hm| dp

/ (h) — plEh d;_.f_.| +
JE

-/{erllhm(x)|>k}

+ / || dt. (28)
J{xEE||ha(x)|=k}

Since {f,} is uniformly integrable by hypothesis (and so subsequence {h,}
is uniformly integrable), then by Proposition 19.10 there is kg € N such
that

|hp| dp < €/3 for all n € N. (29)
JIx€EE||hn(x)|>ko}
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Lemma 19.11 (continued 4)

Proof (continued). From (26) with k = ko, there is N € N such that for
all n,m > N we have

/ Aol dyy — / A dp| = ‘ / (hOl — Aoy dy
JE JE JE

So for all n,m > N we have from (28), (29) (applied to h, and hp,), and

(30) that
JE JE

That is, sequence { [z hmdpu} - is a Cauchy sequence of real numbers.
So the claim holds where we take {f,, }72; = {hx}72 ;. O

<¢/3. (30)

< E.

./E(h,, — hm) dp
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 1)
Proof (continued).

lim T(f,,) = lim T(f —f,)

= lim (T(f}) — T(f, )) since T is linear
(=00 ¢ ke
= lim T(fkj)—limfﬁooT(fk:)

EI—’ o0

= T (Flim fkt) - T ({lngo fk;) since {f,'} and {f,}

=00

both converge weakly

= T/ lim f; — lim f,_ ) since T is linear
l—oo " f—oo

- T (f@;(@ - fk;)) -7 (ﬁliﬂ;.o ﬁ(r) :

So without loss of generality we may assume {f,} is nonnegative.

(I RIS
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem.
For a finite measure space (X, M, ) and bounded sequence {f,} in
LY(X, p), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X.

(ii) Every subsequence of {f,} has a further subsequence that
converges weakly in L1(X, p1).

Proof. Suppose {f,} is uniformly integrable. Since every subsequence of
{fa} is bounded, to show (ii) it suffices to show that bounded sequence
{f,} has a subsequence that converges weakly in L*(X, ). If we how that
every nonnegative sequence {f,} has a weakly convergent subsequence,
then the general result holds since we can apply this result to {f,"} to find
subsequence {f,"} that converges weakly and then find a weakly
convergent subsequence of {f, }, say {fn; }- Then {fy } is a weakly
convergent subsequence of {f,} since for any bounded linear function T

we have. ..
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 2)

Proof (continued). By Lemma 19.11, there is a subsequence of {f,}
which we denote {h,} such that for each measurable E C X we have

{/ hn d,u} is a Cauchy sequence of real numbers. (31)
JE

For each n € N, define set function v, on M by v,(E) = _[E h, du for all
E € M. Since h, is nonnegative then v,(E) is a measure absolutely
continuous with respect to j (see the first Note in Section 18.4, “The
Radon-Nikodym Theorem™). Moreover, by (31) for each measurable

E C X, {v,(E)} is a Cauchy sequence of real numbers. Define v on M as
V(E) = limp_. V(E) for E € M (so {v,} converges setwise to /). Since
{f,} is bounded in L}(X, 1) by hypothesis then {h,} C {f,} is bounded in
LY(X, ) so from [|hn|ly = [y |hn| dp = [y hn dp = vp(X) we see that
{vn(X)} is a bounded sequence of real numbers. Therefore, the
Vitali-Hahn-Saks Theorem (the “moreover” part) implies that v is a
measure on (X, M) that is absolutely continuous with respect to fi.
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Theorem 19.12 (continued 3)

Proof (continued). By the Radon-Nikodym Theorem, there is
nonnegative f on X such that v(E) = [ f dpu for all E € M (since

V(E) < oo then f € L}(X,p)). Since

liMp—o0 Un(E) = liMp—oo [ hndp = [ f dpp = v(E) for all E € M, then
for simple ¢ = >} ;| ckX£g, we have

lim (/ h,,gpd,u.) = lim (/ hn (Z ckxgk) d,u.)
n—oo JE n—oo JE =1

m ch (/ h,,d,u-)
=1 Ex

m
-t (32 [ v ) =

_ i Ck n“_)moo ([5 hn d,u-) = i Ck (/Ek f d,u.) = Z Ck (/E fXE, d,u.)

k=1 k k=1 k=1

) d,u-/fpd,u (32)
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Theorem 19.12

Theorem 19.12 (continued 5)

Proof (continued). ...
= }/ ho(g — @) du| + /hn:pd,u—/ fodu
Jx Jx Jx
5/ hn|lg — | dp+ /hnwdu—/ fodu
X X X
5“3_99”:)0/ |hn| dpp + /hnwdu—j fodu
X X X

+‘/f(s9—g)du
JX
+/ IFlle — gl dp
X
+I|ap—glle |fldp
X

= llg = ellclnll + | [ oo - ] fo | + I - glllIFll
<gM+35+ 5l =
3M 3||f|| 1=
Therefore
lim (/ hng d;;.) = / fg dp for all g € L™(X, p). (33)
oo \Jx JX
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Theorem 19.12 (continued 4)

Proof (continued). Since all elements of L>(X, j1) are essentially
bounded, then be the Simple Approximation Lemma (Section 18.1) the set
of simple functions is dense in L°(X, uu). By hypothesis {f,} is bounded in
LY(X, p) and so {h,} C {f,} is bounded in L}(X,u), say by M. Let ¢ > 0.
For any g € L(X, 1) we have simple ¢ € L*°(X, u) with

o — &lloo < min{e/(3M),c/(3||f|l1}. From (32), there is N € N such
hapdp — [y fodu| <e/3. So forn> N

‘/ hng dp — /.h,,wd,u /hnydu

/Fyd;1+/f,9du— {gd;f| |/ hngd;z—/ hpe di
+‘/ hnpd;x—j fodu +‘f fg.sd,u—/ fgdu...
X X X X

h,,g dp — / fgdu| =
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Theorem 19.12 (continued 6)

Proof (continued). By the Riesz Representation Theorem (Section 19.2),
every bounded linear functional on L*(X, ) is of the form tg = [, -g du
for some g € L°°(X, p), so (33) implies limn — ocoT(h,) = T(f) for all

T € (LY(X,p))*; that is, {h,} converges weakly in LY(X, 1) to f, as
claimed.

We now show that (ii) implies (i) by contradiction. ASSUME bounded
{f,} satisfies (ii) but is not uniformly integrable. Then there is g9 > 0, a
subsequence {h,} of {f,}, and a sequence {E,} of measurable sets for
which

lim pn(E,) =0 but / |hp| dp > g for all n € N (34)

n—00
n

(see Exercise 19.5.A). Since we assume (ii) in this case, subsequence {h,}
has a further subsequence that converges weakly in L1(X, p).
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Theorem 19.12 (continued 7)

Proof (continued). But any subsequence of {h,} will also satisfy (34), so
we can assume without loss of generality that {h,} itself converges weakly
in LY(X, 1) (or equivalently replace {h,} with the weakly convergent
subsequence) to, say, h. For each n € N define the signed measure v, on
M by vs(E) = [¢ hadp for E € M (if you like, we can first define the
measures v, (E) = [ h} dp and v, (E) = [ h, dp [see the introduction
to Section 18.4, “The Radon-Nikodym Theorem”] and then define signed
measure v, = v — ;). Then each signed measure v, is absolutely
continuous with respect to p (since p(E) = 0 implies

v (E) =v,(E)=v(E)=0). Since {h,} converges weakly in L}(X, ;1) to
h then for T\, = [ cxe dju a bounded linear functional on L*(X, 1) (by
Holder's Inequality, since xg € L™(X, it); see Section 19.2) we have

limp—oc Tae(hn) = limn_oo [ haXE dpp = limp_.oo ([ hndpn)
=lim,_o Vp(E) = Ty (h) = [chxedp = [ hdpu.

(I RIS
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Corollary 19.13

Corollary 19.13. Let (X, M, ;1) be a finite measure space and {f,} a
sequence in LY(X, i) that is dominated by the function g € LY(X, 1) in
the sense that

|fa| < g a.e. on E for all n € N.

Then {f,} has a subsequence that converges weakly in L1(X, ).

Proof. The sequence {f,} is bounded in L*(X, 1) since

Sy |fal die < [y |g| dp = ||gll1. By Proposition 18.17, since g is integrable,
for all € > 0 there is § > 0 such that for any measurable E C X, if

i(E) < & then [ |g|dp < e. So forall n € N we have p(E) < 4 implies
Jefaldp < [g gl dp < e; that'is, {f,} is uniformly integrable. So, by the
Dunford-Pettis Theorem, {f,} has a subsequence that converges weakly in
LY(X, ), as claimed. O

(I RIS
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Theorem 19.12. The

Theorem 19.12 (continued 8)

Proof (continued). So sequence {v,(E)} of real numbers is convergent
to [z h,dp and hence is a Cauchy sequence of real numbers for all

E € M, that is, {v,} converges setwise to M to signed measure v defines
as V(E) = [z hdyu for E € M. So by the Vitali-Han-Saks Theorem
extended to signed measures (see Exercise 19.22 in the 2019 “Updated
Printing” of Royden and Fitzpatrick), sequence {v,(E)} is uniformly
absolutely continuous with respect to p (that is, for each £ > 0 there is

d > 0 such that for any measurable E C X and any n € N, if u(E) < ¢
then v,(E) < €). But this is a CONTRADICTION to (34). Therefore the
assumption that {f,} is not uniformly integrable is false and, in fact, (i)
holds, as claimed. ]
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