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Proposition 19.10

Proposition 19.10. for a finite measure space (X, M, 1) and bounded
sequence {f,} in L}(X, ), the following two properties are equivalent:

(i) {fa} is uniformly integrable over X.
(ii) For each € > 0, there is M > 0 such that

/ |fo| dpp < e forall n e N.
{xeX||fa(x)| =M}
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Proposition 19.10

Proposition 19.10

Proposition 19.10. for a finite measure space (X, M, 1) and bounded
sequence {f,} in L}(X, ), the following two properties are equivalent:
(i) {fa} is uniformly integrable over X.
(ii) For each € > 0, there is M > 0 such that

/ |fo| dpp < e forall n e N.
{xeX||fa(x)| =M}

Proof. Since {f,} is bounded, there is C > 0 such that ||f,||1 < C for all
neN.
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Proposition 19.10

Proposition 19.10. for a finite measure space (X, M, 1) and bounded
sequence {f,} in L}(X, ), the following two properties are equivalent:
(i) {fa} is uniformly integrable over X.
(ii) For each € > 0, there is M > 0 such that

/ |fo| dpp < e forall n e N.
{xeX||fa(x)| =M}

Proof. Since {f,} is bounded, there is C > 0 such that ||f,||1 < C for all
neN.

Suppose {f,} is uniformly integrable over X. Let € > 0. Then by the
definition of “uniformly integrable,” there is § > 0 such that if E C X is
measurable and

if w(E) < then /|f,,|du<5fora|lnEN.
E
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Proposition 19.10

Proposition 19.10 (continued 1)

Proof (continued). By Chebychev's Inequality (Section 18.2) for any
positive M > 0

1
u(lx e X 16001 = M) < o7 [ 1fildn <
X

forall ne N Soif M > C/§ (and so C/M < §) then
p({x € X | |fa(x)] = M} < 6 and so by (%), f{xex|\fn(x)|2M} |fa] du < € for
all n € N, and (i) implies (ii) as claimed.

<
M
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Proposition 19.10 (continued 1)

Proof (continued). By Chebychev's Inequality (Section 18.2) for any
positive M > 0

1
u(lx e X 16001 = M) < o7 [ 1fildn <
X

forall ne N Soif M > C/§ (and so C/M < §) then

p({x € X | |fa(x)] = M} < 6 and so by (%), f{X€Xan(X)|2M} |fa] du < € for
all n € N, and (i) implies (ii) as claimed.

Suppose (ii) holds. Let ¢ > 0. Choose M > 0 such that

f{xEXIIfn(x)\ZM} |fal dpp < €/2 for all n € N. Define § = &/(2M). Then if

E C X is measurable with y(E) < § and is n € N we have

/|fndu=/ \fn|du+/ ol du
E {xeX||fa(x)|>M} {xeX||fa(x)|<M}

IS £ IS IS

since 6 = ¢/(2M) and so Mo = ¢/2.
Real Analysis February 23,2019 4 /20
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Proposition 19.10 (continued 2)

Proposition 19.10. for a finite measure space (X, M, 1) and bounded
sequence {f,} in L}(X, 1), the following two properties are equivalent:

(i) {f} is uniformly integrable over X.
(ii) For each € > 0, there is M > 0 such that

/ |fa| dp < € for all n € N.
{xeX||fa(x)|>M}

Proof (continued). Therefore {f,} is uniformly integrable over X and
holds, as claimed.
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Lemma 19.11

Lemma 19.11

Lemma 19.11. For a finite measure space (X, M, u) and bounded
uniformly integrable sequence {f,} in L}(X, 1), there is a subsequence
{fn, } such that for each measurable subset E of X, the sequence of real
numbers { [ f,, du} is Cauchy.
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Lemma 19.11

Lemma 19.11. For a finite measure space (X, M, u) and bounded
uniformly integrable sequence {f,} in L}(X, 1), there is a subsequence
{fn, } such that for each measurable subset E of X, the sequence of real
numbers { [ f,, du} is Cauchy.

Proof. First, if {g,} is any bounded sequence in L}(X, 1) and > 0, then
the truncated sequence {g,[,a]} is bounded in L?(X, ) since u(X) < oo

(since then g,[,a] is a bounded function on a set of finite measure for all
n € N).

Real Analysis Rl G 2



Lemma 19.11

Lemma 19.11. For a finite measure space (X, M, u) and bounded
uniformly integrable sequence {f,} in L}(X, 1), there is a subsequence
{fn, } such that for each measurable subset E of X, the sequence of real
numbers { [ f,, du} is Cauchy.

Proof. First, if {g,} is any bounded sequence in L}(X, 1) and > 0, then
the truncated sequence {g,[,a]} is bounded in L?(X, ) since u(X) < oo
(since then g,[,a] is a bounded function on a set of finite measure for all

n € N). By the Riesz Compactness Theorem (Section 19.4; this requires
1 < p < oo, which is why we have moved to L?(X, ;1) where there is a

subsequence {g,[,f]} that converses weakly; that is,
limne T(gl) = T (nmnﬁoo gL‘;‘]) for all T € (L2(X, u))*; see Section
8.2, “Weak Sequential Convergence in LP").
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Lemma 19.11

Lemma 19.11 (continued 1)

Proof (continued). Since ;(X) < oo, integration over a fixed measurable
subset of X is a bounded linear functional on L2(X, 1) (by Holder's
Inequality; see Section 19.2, “The Riesz Representation Theorem for the

Dual of LP(X,p), 1 < p < o”; we take g = 1 to get integration over set
E as the bounded linear functional on L?(X, ),

T(f)= [efedu= [fdpu.
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Lemma 19.11 (continued 1)

Proof (continued). Since ;(X) < oo, integration over a fixed measurable
subset of X is a bounded linear functional on L2(X, 1) (by Holder's
Inequality; see Section 19.2, “The Riesz Representation Theorem for the
Dual of LP(X,p), 1 < p < o”; we take g = 1 to get integration over set
E as the bounded linear functional on L?(X, ),

T(f) = [gfedp = [ f du. Therefore for each measurable subset E of X,

the sequence {fE g,[,f] du} = {T(g,[,f]} is a convergent sequence of real

numbers and so is a Cauchy sequence of real numbers. We use this
“observation” below.
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Lemma 19.11 (continued 1)

Proof (continued). Since ;(X) < oo, integration over a fixed measurable
subset of X is a bounded linear functional on L2(X, 1) (by Holder's
Inequality; see Section 19.2, “The Riesz Representation Theorem for the
Dual of LP(X,p), 1 < p < o”; we take g = 1 to get integration over set
E as the bounded linear functional on L?(X, ),

T(f) = [gfedp = [ f du. Therefore for each measurable subset E of X,

the sequence {fE g,[,f] du} = {T(g,[,f]} is a convergent sequence of real

numbers and so is a Cauchy sequence of real numbers. We use this
“observation” below.

Now let {f,} be a bounded uniformly integrable sequence in L(X, ). We
use a diagonalization argument to find the desired subsequence {f,, }. By

the “observation” above, there is a subsequence {f!} of {f,} which at the
truncation level o = 1 converges weakly in L2(X, ).
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Lemma 19.11 (continued 2)

Proof (continued). Since {f!} is also a bounded uniformly integrable
sequence in Ll(X,u), then by the “observation” there is a subsequence
{2} of {f1} which at the truncation level o = 2 converges weakly in
L?(X, ). We continue inductively to find a sequence of sequences, each
of which is a subsequence of its predecessor and the kth subsequence {f*}
at the truncation level o = k converges weakly in L2(X, ;). Define the
subsequence {h,} of {f,} as j, = £} for n € N ({h,} is the “diagonal
sequence”).
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Lemma 19.11 (continued 2)

Proof (continued). Since {f!} is also a bounded uniformly integrable
sequence in Ll(X,u), then by the “observation” there is a subsequence
{2} of {f1} which at the truncation level o = 2 converges weakly in
L?(X, ). We continue inductively to find a sequence of sequences, each
of which is a subsequence of its predecessor and the kth subsequence {f*}
at the truncation level o = k converges weakly in L2(X, ;). Define the
subsequence {h,} of {f,} as j, = £} for n € N ({h,} is the “diagonal
sequence”). Then {h,} is a subsequence of {f,} and for each k € N and

for each measurable E C X, {/ hlk] d,u} is Cauchy, (26)
E

n=1
by the “observation” above. Let E C X be measurable. We claim that
{ /e hn dp} is a Cauchy sequence of real numbers.
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Lemma 19.11 (continued 2)

Proof (continued). Since {f!} is also a bounded uniformly integrable
sequence in Ll(X,u), then by the “observation” there is a subsequence
{2} of {f1} which at the truncation level o = 2 converges weakly in
L?(X, ). We continue inductively to find a sequence of sequences, each
of which is a subsequence of its predecessor and the kth subsequence {f*}
at the truncation level o = k converges weakly in L2(X, ;). Define the
subsequence {h,} of {f,} as j, = £} for n € N ({h,} is the “diagonal
sequence”). Then {h,} is a subsequence of {f,} and for each k € N and

for each measurable E C X, {/ hlk] d,u} is Cauchy, (26)
E

n=1
by the “observation” above. Let E C X be measurable. We claim that
{ /e hn dp} is a Cauchy sequence of real numbers. Let € > 0. For
k,n,m € N we have

b — b = (B¥ = ALY - (R — o) + (B — B,
Real Analysis February 23,2019 8 /20



Lemma 19.11 (continued 3)

Proof (continued). Therefore by (24) (in the Note before the statement
of this lemma)

/E(hn — hpm) du’ < /E(hLﬁ] = hm)du'

Jcs h[n”)du] — | [k h[nﬁ])du' + [ |
E E {x€E||hm(x)|>k}

+ / | d . (28)
{x€E||ha(x)|>k}

/(h[nk] - hﬁﬁ])du’ +
E

+
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Lemma 19.11 (continued 3)

Proof (continued). Therefore by (24) (in the Note before the statement
of this lemma)

/E(hn — hpm) du’ < /E(hLﬁ] = hm)du'

Jcs h[n”)du] — | [k h[nﬁ])du' + [ |
E E {x€E||hm(x)|>k}

+ / | d . (28)
{x€E||ha(x)|>k}

Since {f,} is uniformly integrable by hypothesis (and so subsequence {h,}
is uniformly integrable), then by Proposition 19.10 there is kg € N such
that

/(h[nk] - hﬁﬁ])du’ +
E

+

|hn| dp < /3 for all n € N. (29)
{x€E|lhn(x)[>ko}
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Lemma 19.11 (continued 4)

Proof (continued). From (26) with k = ko, there is N € N such that for
all n,m > N we have

/ hhel gy — / hel du‘ -
E E

/ (hlfel — plkel du‘ <e/3. (30)
E
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Lemma 19.11 (continued 4)

Proof (continued). From (26) with k = ko, there is N € N such that for
all n,m > N we have

/ hhel gy — / hel du‘ -
E E

So for all n,m > N we have from (28), (29) (applied to h, and hy,), and

(30) that
/(hn—hm)du‘: /hndu—/hmd,u’<€.
E E E

That is, sequence { [z hmdu} - is a Cauchy sequence of real numbers.
So the claim holds where we take {f, }2°; = {h«}22;. O

/ (hlfel — plkel du‘ <e/3. (30)
E
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem.
For a finite measure space (X, M, 1) and bounded sequence {f,} in
L1(X, ), the following two properties are equivalent:

(i) {fa} is uniformly integrable over X.

(ii) Every subsequence of {f,} has a further subsequence that
converges weakly in L*(X, ).
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem.
For a finite measure space (X, M, 1) and bounded sequence {f,} in
L1(X, ), the following two properties are equivalent:

(i) {fa} is uniformly integrable over X.

(ii) Every subsequence of {f,} has a further subsequence that
converges weakly in L*(X, ).

Proof. Suppose {f,} is uniformly integrable. Since every subsequence of
{fs} is bounded, to show (ii) it suffices to show that bounded sequence
{f,} has a subsequence that converges weakly in L1(X, ). If we how that
every nonnegative sequence {f,} has a weakly convergent subsequence,
then the general result holds since we can apply this result to {f,} to find
subsequence {f,F} that converges weakly and then find a weakly
convergent subsequence of {f, }, say {fnzz}' Then {f,, } is a weakly
convergent subsequence of {f,} since for any bounded linear function T
we have. ..
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Theorem 19.12 (continued 1)

Proof (continued).

lim T(f,,) = lim T(f, —f,,ké)

l—o0 {—o0

= Jim (T(f+) - T(f,,

) since T is linear

= I|m T(f+) —lim{ — ooT(f, )

{—00

= (hm f+> (zan;O fk¢> since {fkj} and {f '}

f—00

both converge weakly

= T ( lim fk+ — lim ka> since T is linear

l—o0 " l—00

_ =
= T (elggo(fkf - fk£)> =T (ZIer;O fké> :
So without loss of generality we may assume {f,} is nonnegative.
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Theorem 19.12 (continued 2)

Proof (continued). By Lemma 19.11, there is a subsequence of {f,}
which we denote {h,} such that for each measurable E C X we have

{/ hn d,u} is a Cauchy sequence of real numbers. (31)
E

For each n € N, define set function v, on M by v,(E) = [ h, dp for all
E € M. Since h, is nonnegative then v,(E) is a measure absolutely
continuous with respect to p (see the first Note in Section 18.4, “The
Radon-Nikodym Theorem” ). Moreover, by (31) for each measurable

E C X, {vn(E)} is a Cauchy sequence of real numbers.
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Theorem 19.12 (continued 2)

Proof (continued). By Lemma 19.11, there is a subsequence of {f,}
which we denote {h,} such that for each measurable E C X we have

{/ hn d,u} is a Cauchy sequence of real numbers. (31)
E

For each n € N, define set function v, on M by v,(E) = [ h, dp for all
E € M. Since h, is nonnegative then v,(E) is a measure absolutely
continuous with respect to p (see the first Note in Section 18.4, “The
Radon-Nikodym Theorem” ). Moreover, by (31) for each measurable

E C X, {vn(E)} is a Cauchy sequence of real numbers. Define v on M as
V(E) = limp_oo v(E) for E € M (so {v,} converges setwise to v). Since
{f,} is bounded in L(X, ) by hypothesis then {h,} C {f,} is bounded in
LY(X, ) so from ||hy|ls = [y |Anl dp = [y hn dp = vp(X) we see that
{vn(X)} is a bounded sequence of real numbers. Therefore, the
Vitali-Hahn-Saks Theorem (the “moreover” part) implies that v is a
measure on (X, M) that is absolutely continuous with respect to p.

Real Analysis February 23,2019 13 /20



Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 3)

Proof (continued). By the Radon-Nikodym Theorem, there is

nonnegative f on X such that v(E) = [ f du for all E € M (since
v(E) < oo then f € LY(X, p)). Since

limp—oo ¥n(E) = limp—oo [ hndp = [ fdp = v(E) for all E € M, then

for simple ¢ = >~} | ckXE, we have

m
lim (/ h,,apdu> — lim (/ hn (ZCkXEk> du)
n—oo \JE T \JE k=1

= nll—>ng>o <Z ck/ hnXE, d,u> = n[mchk </ hn, d,u)
=1 E E,

k=1

:zm:ckn“_@o</ hnd,u>:ick (/kfdu>=zm:c;< </EfXEde>

k=1 =1 k=1

<Z CkXEk) dp = /E fodu. (32)

0 Real Analysis February 23, 2019 14 / 20



Theorem 19.12 (continued 4)

Proof (continued). Since all elements of L>°(X, 1) are essentially
bounded, then be the Simple Approximation Lemma (Section 18.1) the set
of simple functions is dense in L°>°(X, ). By hypothesis {f,} is bounded in
LY(X,p) and so {h,} C {f,} is bounded in L}(X, ), say by M. Let ¢ > 0.
For any g € L*°(X, 1) we have simple ¢ € L*°(X, ) with

ll — glloo < min{e/(3M),e/(3]|f||1}. From (32), there is N € N such
that for all n > N | [, hnpdp — [y fodu| <e/3.
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Theorem 19.12 (continued 4)

Proof (continued). Since all elements of L>°(X, 1) are essentially
bounded, then be the Simple Approximation Lemma (Section 18.1) the set
of simple functions is dense in L°>°(X, ). By hypothesis {f,} is bounded in
LY(X,p) and so {h,} C {f,} is bounded in L}(X, ), say by M. Let ¢ > 0.
For any g € L*°(X, 1) we have simple ¢ € L*°(X, ) with

ll — glloo < min{e/(3M),e/(3]|f||1}. From (32), there is N € N such
that for all n > N | [, hppdp — [, fodu| <e/3. Sofor n> N

’/ hngdu—/fgdu‘:‘/ hngdu—/hnsodwr/hn«pdu
X X X X X

—/fsodwr/ftpdu—/fgdu‘ﬁ’/ hngdu—/hnsodu’
X X X X X
/h,ﬁpdﬂ—/f@dﬂ‘—l—‘/ fgodu—/fgd,u,l...

X X X X

Real Analysis February 23,2019 15 /20
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Theorem 19.12 (continued 5)

Proof (continued). ...

:‘/th(g_w)dulJr /thcpdu—/xfsﬁdﬂ +‘/Xf(so—g)du'

S/Ihnllg—w\dwr /hnwdu—/fsodu +/\st0—g!du
X X X X

SHg—SOHm/ |hn| dpu + hncpdu—/ fodu +Hso—g!oo/ [fldp
X X X

= llg = @lloollhnllr +

o dpt — /X Fodu| + o - gllsolIFll

8M—|—

—||f

Therefore
lim </ hng du) = / fg du for all g € L>(X, u). (33)
n—oo X X

Real Analysis February 23,2019 16 / 20



Theorem 19.12 (continued 6)

Proof (continued). By the Riesz Representation Theorem (Section 19.2),
every bounded linear functional on L1(X, ) is of the form t; = Jx-gdu
for some g € L*°(X, p), so (33) implies limn — oo T (h,) = T(f) for all

T € (LY(X, u))*; thatis, {h,} converges weakly in L1(X, ) to f, as
claimed.
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Theorem 19.12 (continued 6)

Proof (continued). By the Riesz Representation Theorem (Section 19.2),
every bounded linear functional on L1(X, ) is of the form t; = Jx-gdu
for some g € L*°(X, p), so (33) implies limn — oo T (h,) = T(f) for all

T € (LY(X, u))*; thatis, {h,} converges weakly in L1(X, ) to f, as
claimed.

We now show that (ii) implies (i) by contradiction. ASSUME bounded
{fn} satisfies (ii) but is not uniformly integrable. Then there is g > 0, a
subsequence {h,} of {f,}, and a sequence {E,} of measurable sets for
which

lim pn(En) =0 but / |hn| dpp > go for all n € N (34)
En

n—oo

(see Exercise 19.5.A). Since we assume (ii) in this case, subsequence {h,}
has a further subsequence that converges weakly in L1(X, p).

Real Analysis February 23,2019 17 / 20



Theorem 19.12 (continued 7)

Proof (continued). But any subsequence of {h,} will also satisfy (34), so
we can assume without loss of generality that {h,} itself converges weakly
in LY(X, i) (or equivalently replace {h,} with the weakly convergent
subsequence) to, say, h. For each n € N define the signed measure v, on
M by vp(E) = [ hndp for E € M (if you like, we can first define the
measures v, (E) = [ hy dpand v, (E) = [¢ h, dpu [see the introduction
to Section 18.4, “The Radon-Nikodym Theorem”] and then define signed
measure v, = v — v, ). Then each signed measure v, is absolutely
continuous with respect to p (since u(E) = 0 implies
vi(E)=v,(E)=v(E)=0).

n

Real Analysis February 23,2019 18 / 20



Theorem 19.12 (continued 7)

Proof (continued). But any subsequence of {h,} will also satisfy (34), so
we can assume without loss of generality that {h,} itself converges weakly
in LY(X, i) (or equivalently replace {h,} with the weakly convergent
subsequence) to, say, h. For each n € N define the signed measure v, on
M by vp(E) = [ hndp for E € M (if you like, we can first define the
measures v, (E) = [ hy dpand v, (E) = [¢ h, dpu [see the introduction
to Section 18.4, “The Radon-Nikodym Theorem”] and then define signed
measure v, = v — v, ). Then each signed measure v, is absolutely
continuous with respect to p (since u(E) = 0 implies

v (E) =v, (E) =v(E) = 0). Since {h,} converges weakly in L}(X, 1) to
h then for T,, = [z cxe du a bounded linear functional on L*(X, 1) (by
Holder's Inequality, since xg € L°(X, u); see Section 19.2) we have

limp—oo Tye(hn) =limp_co [ hnxE dp = limp_oo (fE hn du)
=limpooo vp(E) = Ty (h) = [ hxedp = [ hdp.

Real Analysis February 23,2019 18 / 20



Theorem 19.12 (continued 8)

Proof (continued). So sequence {v,(E)} of real numbers is convergent
to fE h, du and hence is a Cauchy sequence of real numbers for all
E € M; that is, {v,} converges setwise to M to signed measure v defines

as v(E) = [ hdp for E € M.

Real Analysis February 23,2019 19 / 20



Theorem 19.12 (continued 8)

Proof (continued). So sequence {v,(E)} of real numbers is convergent
to fE h, du and hence is a Cauchy sequence of real numbers for all

E € M; that is, {v,} converges setwise to M to signed measure v defines
as V(E) = [z hdp for E € M. So by the Vitali-Han-Saks Theorem
extended to signed measures (see Exercise 19.22 in the 2019 “Updated
Printing” of Royden and Fitzpatrick), sequence {v,(E)} is uniformly
absolutely continuous with respect to p (that is, for each € > 0 there is

0 > 0 such that for any measurable E C X and any n € N, if u(E) <6
then v,(E) < €). But this is a CONTRADICTION to (34). Therefore the
assumption that {f,} is not uniformly integrable is false and, in fact, (i)
holds, as claimed. O
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Corollary 19.13

Corollary 19.13

Corollary 19.13. Let (X, M, i) be a finite measure space and {f,} a

sequence in L1(X, 1) that is dominated by the function g € LY(X, ) in
the sense that

|fa]| < g a.e. on E for all n € N.
Then {f,} has a subsequence that converges weakly in L*(X, ).
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Corollary 19.13

Corollary 19.13. Let (X, M, i) be a finite measure space and {f,} a
sequence in L1(X, 1) that is dominated by the function g € LY(X, ) in
the sense that

|fa]| < g a.e. on E for all n € N.

Then {f,} has a subsequence that converges weakly in L*(X, ).

Proof. The sequence {f,} is bounded in L}(X, 1) since

Jx Ifaldp < [y gl di = ||gll1. By Proposition 18.17, since g is integrable,
for all € > 0 there is § > 0 such that for any measurable E C X, if

p(E) < 6 then [ |g|du <e.
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Corollary 19.13

Corollary 19.13. Let (X, M, i) be a finite measure space and {f,} a
sequence in L1(X, 1) that is dominated by the function g € LY(X, ) in
the sense that

|fa]| < g a.e. on E for all n € N.
Then {f,} has a subsequence that converges weakly in L*(X, ).

Proof. The sequence {f,} is bounded in L1(X, ;1) since
Jx Ifaldp < [y gl di = ||gll1. By Proposition 18.17, since g is integrable,
for all € > 0 there is § > 0 such that for any measurable E C X, if

p(E) < 6 then [ |g|dp < e. So forall n € N we have p(E) < 6 implies
Jelfal di < [ |g| dp < €; that is, {f,} is uniformly integrable. So, by the
Dunford-Pettis Theorem, {f,} has a subsequence that converges weakly in
LY(X, i), as claimed. O
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