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Convergence

19.5. Weak Sequential Compactness in L1(X , µ): The Dunford-Pettis
Theorem—Proofs
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Proposition 19.10

Proposition 19.10

Proposition 19.10. for a finite measure space (X ,M, µ) and bounded
sequence {fn} in L1(X , µ), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X .

(ii) For each ε > 0, there is M > 0 such that∫
{x∈X ||fn(x)|≥M}

|fn| dµ < ε for all n ∈ N.

Proof. Since {fn} is bounded, there is C > 0 such that ‖fn‖1 ≤ C for all
n ∈ N.

Suppose {fn} is uniformly integrable over X . Let ε > 0. Then by the
definition of “uniformly integrable,” there is δ > 0 such that if E ⊂ X is
measurable and

if µ(E ) < δ then

∫
E
|fn| dµ < ε for all n ∈ N.
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Proposition 19.10

Proposition 19.10 (continued 1)

Proof (continued). By Chebychev’s Inequality (Section 18.2) for any
positive M > 0

µ({x ∈ X | |fn(x)| ≥ M} ≤ 1

M

∫
X
|fn| dµ ≤ C

M

for all n ∈ N So if M > C/δ (and so C/M < δ) then
µ({x ∈ X | |fn(x)| ≥ M} < δ and so by (∗),

∫
{x∈X ||fn(x)|≥M} |fn| dµ < ε for

all n ∈ N, and (i) implies (ii) as claimed.
Suppose (ii) holds. Let ε > 0. Choose M > 0 such that∫
{x∈X ||fn(x)|≥M} |fn| dµ < ε/2 for all n ∈ N. Define δ = ε/(2M). Then if

E ⊂ X is measurable with µ(E ) < δ and is n ∈ N we have∫
E
|fn| dµ =

∫
{x∈X ||fn(x)|≥M}

|fn| dµ +

∫
{x∈X ||fn(x)|<M}

|fn| dµ

<
ε

2
+ Mµ(E ) <

ε

2
+ Mδ =

ε

2
+

ε

2
= ε,

since δ = ε/(2M) and so Mδ = ε/2.
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Proposition 19.10

Proposition 19.10 (continued 2)

Proposition 19.10. for a finite measure space (X ,M, µ) and bounded
sequence {fn} in L1(X , µ), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X .

(ii) For each ε > 0, there is M > 0 such that∫
{x∈X ||fn(x)|≥M}

|fn| dµ < ε for all n ∈ N.

Proof (continued). Therefore {fn} is uniformly integrable over X and (i)
holds, as claimed.
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Lemma 19.11

Lemma 19.11

Lemma 19.11. For a finite measure space (X ,M, µ) and bounded
uniformly integrable sequence {fn} in L1(X , µ), there is a subsequence
{fnk

} such that for each measurable subset E of X , the sequence of real
numbers {

∫
E fnk

dµ} is Cauchy.

Proof. First, if {gn} is any bounded sequence in L1(X , µ) and α > 0, then

the truncated sequence {g [α]
n } is bounded in L2(X , µ) since µ(X ) < ∞

(since then g
[α]
n is a bounded function on a set of finite measure for all

n ∈ N).

By the Riesz Compactness Theorem (Section 19.4; this requires
1 < p < ∞, which is why we have moved to L2(X , µ) where there is a

subsequence {g [α]
nk } that converses weakly; that is,

limn→∞ T (g
[α]
nk ) = T

(
limn→∞ g

[α]
nk

)
for all T ∈ (L2(X , µ))∗; see Section

8.2, “Weak Sequential Convergence in Lp”).
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Lemma 19.11

Lemma 19.11 (continued 1)

Proof (continued). Since µ(X ) < ∞, integration over a fixed measurable
subset of X is a bounded linear functional on L2(X , µ) (by Hölder’s
Inequality; see Section 19.2, “The Riesz Representation Theorem for the
Dual of Lp(X , µ), 1 ≤ p < ∞”; we take g = 1 to get integration over set
E as the bounded linear functional on L2(X , µ),
T (f ) =

∫
E fg dµ =

∫
E f dµ. Therefore for each measurable subset E of X ,

the sequence
{∫

E g
[α]
nk dµ

}
= {T (g

[α]
nk } is a convergent sequence of real

numbers and so is a Cauchy sequence of real numbers. We use this
“observation” below.

Now let {fn} be a bounded uniformly integrable sequence in L1(X , µ). We
use a diagonalization argument to find the desired subsequence {fnk

}. By
the “observation” above, there is a subsequence {f 1

n } of {fn} which at the
truncation level α = 1 converges weakly in L2(X , µ).
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Inequality; see Section 19.2, “The Riesz Representation Theorem for the
Dual of Lp(X , µ), 1 ≤ p < ∞”; we take g = 1 to get integration over set
E as the bounded linear functional on L2(X , µ),
T (f ) =

∫
E fg dµ =

∫
E f dµ. Therefore for each measurable subset E of X ,

the sequence
{∫

E g
[α]
nk dµ

}
= {T (g

[α]
nk } is a convergent sequence of real

numbers and so is a Cauchy sequence of real numbers. We use this
“observation” below.

Now let {fn} be a bounded uniformly integrable sequence in L1(X , µ). We
use a diagonalization argument to find the desired subsequence {fnk

}. By
the “observation” above, there is a subsequence {f 1

n } of {fn} which at the
truncation level α = 1 converges weakly in L2(X , µ).

() Real Analysis February 23, 2019 7 / 20



Lemma 19.11

Lemma 19.11 (continued 1)

Proof (continued). Since µ(X ) < ∞, integration over a fixed measurable
subset of X is a bounded linear functional on L2(X , µ) (by Hölder’s
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Lemma 19.11

Lemma 19.11 (continued 2)

Proof (continued). Since {f 1
n } is also a bounded uniformly integrable

sequence in L1(X , µ), then by the “observation” there is a subsequence
{f 2

n } of {f 1
n } which at the truncation level α = 2 converges weakly in

L2(X , µ). We continue inductively to find a sequence of sequences, each
of which is a subsequence of its predecessor and the kth subsequence {f k

n }
at the truncation level α = k converges weakly in L2(X , µ). Define the
subsequence {hn} of {fn} as jn = f n

n for n ∈ N ({hn} is the “diagonal
sequence”). Then {hn} is a subsequence of {fn} and for each k ∈ N and

for each measurable E ⊂ X ,

{∫
E

h
[k]
n dµ

}∞
n=1

is Cauchy, (26)

by the “observation” above. Let E ⊂ X be measurable. We claim that
{
∫
E hn dµ} is a Cauchy sequence of real numbers.

Let ε > 0. For
k, n,m ∈ N we have

hn − hm = (h
[k]
n − h

[k]
m ) + (h

[k]
m − hm) + (hn − h

[k]
n ).
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Lemma 19.11

Lemma 19.11 (continued 3)

Proof (continued). Therefore by (24) (in the Note before the statement
of this lemma)∣∣∣∣∫

E
(hn − hm) dµ

∣∣∣∣ ≤ ∣∣∣∣∫
E
(h

[k]
n − h

[k]
m ) dµ

∣∣∣∣+ ∣∣∣∣∫
E
(h

[k]
m − hm) dµ

∣∣∣∣
+

∣∣∣∣∫
E
(hn − h

[k]
n ) dµ

∣∣∣∣ = ∣∣∣∣∫
E
(h

[k]
n − h

[k]
m ) dµ

∣∣∣∣+ ∫
{x∈E ||hm(x)|>k}

|hm| dµ

+

∫
{x∈E ||hn(x)|>k}

|hn| dµ. (28)

Since {fn} is uniformly integrable by hypothesis (and so subsequence {hn}
is uniformly integrable), then by Proposition 19.10 there is k0 ∈ N such
that ∫

{x∈E ||hn(x)|>k0}
|hn| dµ < ε/3 for all n ∈ N. (29)
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Lemma 19.11

Lemma 19.11 (continued 4)

Proof (continued). From (26) with k = k0, there is N ∈ N such that for
all n,m ≥ N we have∣∣∣∣∫

E
h

[k0]
n dµ−

∫
E

h
[k0]
m dµ

∣∣∣∣ = ∣∣∣∣∫
E
(h

[k0]
n − h

[k0]
m ) dµ

∣∣∣∣ < ε/3. (30)

So for all n,m ≥ N we have from (28), (29) (applied to hn and hm), and
(30) that ∣∣∣∣∫

E
(hn − hm) dµ

∣∣∣∣ = ∣∣∣∣∫
E

hn dµ−
∫

E
hm dµ

∣∣∣∣ < ε.

That is, sequence
{∫

E hm dµ
}∞

n=1
is a Cauchy sequence of real numbers.

So the claim holds where we take {fnk
}∞k=1 = {hk}∞k=1.
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12. The Dunford-Pettis Theorem.
For a finite measure space (X ,M, µ) and bounded sequence {fn} in
L1(X , µ), the following two properties are equivalent:

(i) {fn} is uniformly integrable over X .

(ii) Every subsequence of {fn} has a further subsequence that
converges weakly in L1(X , µ).

Proof. Suppose {fn} is uniformly integrable. Since every subsequence of
{fn} is bounded, to show (ii) it suffices to show that bounded sequence
{fn} has a subsequence that converges weakly in L1(X , µ). If we how that
every nonnegative sequence {fn} has a weakly convergent subsequence,
then the general result holds since we can apply this result to {f +

n } to find
subsequence {f +

nk
} that converges weakly and then find a weakly

convergent subsequence of {f −nk
}, say {f −nk`

}. Then {fnk`
} is a weakly

convergent subsequence of {fn} since for any bounded linear function T
we have. . .
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 1)

Proof (continued).

lim
`→∞

T (fnk`
) = lim

`→∞
T (f +

nk`
− fnk`

)

= lim
`→∞

(T (f +
k`

)− T (f −nk`
)) since T is linear

= lim
`→∞

T (f +
k`

)− lim ` →∞T (f −k`
)

= T

(
lim

`→∞
f +
k`

)
− T

(
lim

`→∞
f −k`

)
since {f +

k`
} and {f −k`

}

both converge weakly

= T

(
lim

`→∞
f +
k`
− lim

`→∞
f −k`

)
since T is linear

= T

(
lim

`→∞
(f +

k`
− f −k`

)

)
= T

(
lim

`→∞
fk`

)
.

So without loss of generality we may assume {fn} is nonnegative.
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 2)

Proof (continued). By Lemma 19.11, there is a subsequence of {fn}
which we denote {hn} such that for each measurable E ⊂ X we have{∫

E
hn dµ

}
is a Cauchy sequence of real numbers. (31)

For each n ∈ N, define set function νn on M by νn(E ) =
∫
E hn dµ for all

E ∈M. Since hn is nonnegative then νn(E ) is a measure absolutely
continuous with respect to µ (see the first Note in Section 18.4, “The
Radon-Nikodym Theorem”). Moreover, by (31) for each measurable
E ⊂ X , {νn(E )} is a Cauchy sequence of real numbers. Define ν on M as
ν(E ) = limn→∞ ν(E ) for E ∈M (so {νn} converges setwise to ν). Since
{fn} is bounded in L1(X , µ) by hypothesis then {hn} ⊂ {fn} is bounded in
L1(X , µ) so from ‖hn‖1 =

∫
X |hn| dµ =

∫
X hn dµ = νn(X ) we see that

{νn(X )} is a bounded sequence of real numbers. Therefore, the
Vitali-Hahn-Saks Theorem (the “moreover” part) implies that ν is a
measure on (X ,M) that is absolutely continuous with respect to µ.
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 3)

Proof (continued). By the Radon-Nikodym Theorem, there is
nonnegative f on X such that ν(E ) =

∫
E f dµ for all E ∈M (since

ν(E ) < ∞ then f ∈ L1(X , µ)). Since
limn→∞ νn(E ) = limn→∞

∫
E hn dµ =

∫
E f dµ = ν(E ) for all E ∈M, then

for simple ϕ =
∑m

k=1 ckχEk
we have

lim
n→∞

(∫
E

hnϕ dµ

)
= lim

n→∞

(∫
E

hn

(
m∑

k=1

ckχEk

)
dµ

)

= lim
n→∞

(
m∑

k=1

ck

∫
E

hnχEk
dµ

)
= lim

n→∞

m∑
k=1

ck

(∫
Ek

hn dµ

)

=
m∑

k=1

ck lim
n→∞

(∫
Ek

hn dµ

)
=

m∑
k=1

ck

(∫
Ek

f dµ

)
=

m∑
k=1

ck

(∫
E

f χEk
dµ

)

=

∫
E

f

(
m∑

k=1

ckχEk

)
dµ =

∫
E

f ϕ dµ. (32)
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 4)

Proof (continued). Since all elements of L∞(X , µ) are essentially
bounded, then be the Simple Approximation Lemma (Section 18.1) the set
of simple functions is dense in L∞(X , µ). By hypothesis {fn} is bounded in
L1(X , µ) and so {hn} ⊂ {fn} is bounded in L1(X , µ), say by M. Let ε > 0.
For any g ∈ L∞(X , µ) we have simple ϕ ∈ L∞(X , µ) with
‖ϕ− g‖∞ < min{ε/(3M), ε/(3‖f ‖1}. From (32), there is N ∈ N such
that for all n ≥ N

∣∣∫
X hnϕ dµ−

∫
X f ϕ dµ

∣∣ < ε/3. So for n ≥ N∣∣∣∣∫
X

hng dµ−
∫

X
fg dµ

∣∣∣∣ = ∣∣∣∣∫
X

hng dµ−
∫

X
hnϕ dµ +

∫
X

hnϕ dµ

−
∫

X
f ϕ dµ +

∫
X

f ϕ dµ−
∫

X
fg dµ

∣∣∣∣ ≤ ∣∣∣∣∫
X

hng dµ−
∫

X
hnϕ dµ

∣∣∣∣
+

∣∣∣∣∫
X

hnϕ dµ−
∫

X
f ϕ dµ

∣∣∣∣+ ∣∣∣∣∫
X

f ϕ dµ−
∫

X
fg dµ

∣∣∣∣ . . .
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 5)

Proof (continued). . . .

=

∣∣∣∣∫
X

hn(g − ϕ) dµ

∣∣∣∣+ ∣∣∣∣∫
X

hnϕ dµ−
∫

X
f ϕ dµ

∣∣∣∣+ ∣∣∣∣∫
X

f (ϕ− g) dµ

∣∣∣∣
≤
∫

X
|hn||g − ϕ| dµ +

∣∣∣∣∫
X

hnϕ dµ−
∫

X
f ϕ dµ

∣∣∣∣+ ∫
X
|f ||ϕ− g | dµ

≤ ‖g − ϕ‖∞
∫

X
|hn| dµ +

∣∣∣∣∫
X

hnϕ dµ−
∫

X
f ϕ dµ

∣∣∣∣+ ‖ϕ− g‖∞
∫

X
|f | dµ

= ‖g − ϕ‖∞‖hn‖1 +

∣∣∣∣∫
X

hnϕ dµ−
∫

X
f ϕ dµ

∣∣∣∣+ ‖ϕ− g‖∞‖f ‖1

<
ε

3M
M +

ε

3
+

ε

3‖f ‖1
‖f ‖1 = ε.

Therefore

lim
n→∞

(∫
X

hng dµ

)
=

∫
X

fg dµ for all g ∈ L∞(X , µ). (33)
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 6)

Proof (continued). By the Riesz Representation Theorem (Section 19.2),
every bounded linear functional on L1(X , µ) is of the form tg =

∫
X ·g dµ

for some g ∈ L∞(X , µ), so (33) implies lim n →∞T (hn) = T (f ) for all
T ∈ (L1(X , µ))∗; that is, {hn} converges weakly in L1(X , µ) to f , as
claimed.

We now show that (ii) implies (i) by contradiction. ASSUME bounded
{fn} satisfies (ii) but is not uniformly integrable. Then there is ε0 > 0, a
subsequence {hn} of {fn}, and a sequence {En} of measurable sets for
which

lim
n→∞

µn(En) = 0 but

∫
En

|hn| dµ ≥ ε0 for all n ∈ N (34)

(see Exercise 19.5.A). Since we assume (ii) in this case, subsequence {hn}
has a further subsequence that converges weakly in L1(X , µ).
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 7)

Proof (continued). But any subsequence of {hn} will also satisfy (34), so
we can assume without loss of generality that {hn} itself converges weakly
in L1(X , µ) (or equivalently replace {hn} with the weakly convergent
subsequence) to, say, h. For each n ∈ N define the signed measure νn on
M by νn(E ) =

∫
E hn dµ for E ∈M (if you like, we can first define the

measures ν+
n (E ) =

∫
E h+

n dµ and ν−n (E ) =
∫
E h−n dµ [see the introduction

to Section 18.4, “The Radon-Nikodym Theorem”] and then define signed
measure νn = ν+

n − ν−n ). Then each signed measure νn is absolutely
continuous with respect to µ (since µ(E ) = 0 implies
ν+
n (E ) = ν−n (E ) = ν(E ) = 0). Since {hn} converges weakly in L1(X , µ) to

h then for TχE
=
∫
E cχ̇E dµ a bounded linear functional on L1(X , µ) (by

Hölder’s Inequality, since χE ∈ L∞(X , µ); see Section 19.2) we have

limn→∞ TχE
(hn) = limn→∞

∫
E hnχE dµ = limn→∞

(∫
E hn dµ

)
= limn→∞ νn(E ) = TχE

(h) =
∫
E hχE dµ =

∫
E h dµ.
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Theorem 19.12. The Dunford-Pettis Theorem

Theorem 19.12 (continued 8)

Proof (continued). So sequence {νn(E )} of real numbers is convergent
to
∫
E hn dµ and hence is a Cauchy sequence of real numbers for all

E ∈M; that is, {νn} converges setwise to M to signed measure ν defines
as ν(E ) =

∫
E h dµ for E ∈M. So by the Vitali-Han-Saks Theorem

extended to signed measures (see Exercise 19.22 in the 2019 “Updated
Printing” of Royden and Fitzpatrick), sequence {νn(E )} is uniformly
absolutely continuous with respect to µ (that is, for each ε > 0 there is
δ > 0 such that for any measurable E ⊂ X and any n ∈ N, if µ(E ) < δ
then νn(E ) < ε). But this is a CONTRADICTION to (34). Therefore the
assumption that {fn} is not uniformly integrable is false and, in fact, (i)
holds, as claimed.
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Corollary 19.13

Corollary 19.13

Corollary 19.13. Let (X ,M, µ) be a finite measure space and {fn} a
sequence in L1(X , µ) that is dominated by the function g ∈ L1(X , µ) in
the sense that

|fn| ≤ g a.e. on E for all n ∈ N.

Then {fn} has a subsequence that converges weakly in L1(X , µ).

Proof. The sequence {fn} is bounded in L1(X , µ) since∫
X |fn| dµ ≤

∫
X |g | dµ = ‖g‖1. By Proposition 18.17, since g is integrable,

for all ε > 0 there is δ > 0 such that for any measurable E ⊂ X , if
µ(E ) < δ then

∫
E |g | dµ < ε.

So for all n ∈ N we have µ(E ) < δ implies∫
E |fn| dµ ≤

∫
E |g | dµ < ε; that is, {fn} is uniformly integrable. So, by the

Dunford-Pettis Theorem, {fn} has a subsequence that converges weakly in
L1(X , µ), as claimed.
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