Real Analysis

Chapter 2. Lebesgue Measure

 2.1. Introduction-Proofs of Theorems

Table of contents

(1) Problem 2.1

Problem 2.1

Problem 2.1. Let m^{\prime} be a set function defined on a σ-algebra \mathcal{A} with values in $[0, \infty]$. Assume m^{\prime} is countably additive over countable disjoint collections in \mathcal{A}. If A and B are two sets in \mathcal{A} with $A \subset B$, then $m^{\prime}(A) \leq m^{\prime}(B)$. This is called monotonicity.

Proof. First, $B \backslash A=B \cap A^{c}$ and since \mathcal{A} is a σ-algebra (and hence closed under countable intersections and complements), then $B \backslash A \in \mathcal{A}$. Next, $B=(B \backslash A) \cup A$, so by the hypothesized Countable Additivity, $m^{\prime}(B)=m^{\prime}(B \backslash A)+m^{\prime}(A)$ since $B \backslash A$ and A are disjoint. Since $m^{\prime}(B \backslash A) \geq 0$ by hypothesis, then $m^{\prime}(A) \leq m^{\prime}(B)$.

Problem 2.1

Problem 2.1. Let m^{\prime} be a set function defined on a σ-algebra \mathcal{A} with values in $[0, \infty]$. Assume m^{\prime} is countably additive over countable disjoint collections in \mathcal{A}. If A and B are two sets in \mathcal{A} with $A \subset B$, then $m^{\prime}(A) \leq m^{\prime}(B)$. This is called monotonicity.

Proof. First, $B \backslash A=B \cap A^{c}$ and since \mathcal{A} is a σ-algebra (and hence closed under countable intersections and complements), then $B \backslash A \in \mathcal{A}$. Next, $B=(B \backslash A) \cup A$, so by the hypothesized Countable Additivity, $m^{\prime}(B)=m^{\prime}(B \backslash A)+m^{\prime}(A)$ since $B \backslash A$ and A are disjoint. Since $m^{\prime}(B \backslash A) \geq 0$ by hypothesis, then $m^{\prime}(A) \leq m^{\prime}(B)$.

Note. We could weaken the hypothesis of " σ-algebra" to "algebra" and weaken the hypothesis of "countable additivity" to "finite additivity," and the result would still hold.

Problem 2.1

Problem 2.1. Let m^{\prime} be a set function defined on a σ-algebra \mathcal{A} with values in $[0, \infty]$. Assume m^{\prime} is countably additive over countable disjoint collections in \mathcal{A}. If A and B are two sets in \mathcal{A} with $A \subset B$, then $m^{\prime}(A) \leq m^{\prime}(B)$. This is called monotonicity.

Proof. First, $B \backslash A=B \cap A^{c}$ and since \mathcal{A} is a σ-algebra (and hence closed under countable intersections and complements), then $B \backslash A \in \mathcal{A}$. Next, $B=(B \backslash A) \cup A$, so by the hypothesized Countable Additivity, $m^{\prime}(B)=m^{\prime}(B \backslash A)+m^{\prime}(A)$ since $B \backslash A$ and A are disjoint. Since $m^{\prime}(B \backslash A) \geq 0$ by hypothesis, then $m^{\prime}(A) \leq m^{\prime}(B)$.

Note. We could weaken the hypothesis of " σ-algebra" to "algebra" and weaken the hypothesis of "countable additivity" to "finite additivity," and the result would still hold.

