Real Analysis

Chapter 2. Lebesgue Measure 2.1. Introduction—Proofs of Theorems

Real Analysis

Table of contents

Problem 2.1

Problem 2.1. Let m' be a set function defined on a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume m' is countably additive over countable disjoint collections in \mathcal{A} . If A and B are two sets in \mathcal{A} with $A \subset B$, then $m'(A) \leq m'(B)$. This is called *monotonicity*.

Proof. First, $B \setminus A = B \cap A^c$ and since \mathcal{A} is a σ -algebra (and hence closed under countable intersections and complements), then $B \setminus A \in \mathcal{A}$. Next, $B = (B \setminus A) \cup A$, so by the hypothesized Countable Additivity, $m'(B) = m'(B \setminus A) + m'(A)$ since $B \setminus A$ and A are disjoint. Since $m'(B \setminus A) \ge 0$ by hypothesis, then $m'(A) \le m'(B)$.

Real Analysis

Problem 2.1

Problem 2.1. Let m' be a set function defined on a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume m' is countably additive over countable disjoint collections in \mathcal{A} . If A and B are two sets in \mathcal{A} with $A \subset B$, then $m'(A) \leq m'(B)$. This is called *monotonicity*.

Proof. First, $B \setminus A = B \cap A^c$ and since \mathcal{A} is a σ -algebra (and hence closed under countable intersections and complements), then $B \setminus A \in \mathcal{A}$. Next, $B = (B \setminus A) \cup A$, so by the hypothesized Countable Additivity, $m'(B) = m'(B \setminus A) + m'(A)$ since $B \setminus A$ and A are disjoint. Since $m'(B \setminus A) \ge 0$ by hypothesis, then $m'(A) \le m'(B)$.

Note. We could weaken the hypothesis of " σ -algebra" to "algebra" and weaken the hypothesis of "countable additivity" to "finite additivity," and the result would still hold.

Problem 2.1

Problem 2.1. Let m' be a set function defined on a σ -algebra \mathcal{A} with values in $[0, \infty]$. Assume m' is countably additive over countable disjoint collections in \mathcal{A} . If A and B are two sets in \mathcal{A} with $A \subset B$, then $m'(A) \leq m'(B)$. This is called *monotonicity*.

Proof. First, $B \setminus A = B \cap A^c$ and since \mathcal{A} is a σ -algebra (and hence closed under countable intersections and complements), then $B \setminus A \in \mathcal{A}$. Next, $B = (B \setminus A) \cup A$, so by the hypothesized Countable Additivity, $m'(B) = m'(B \setminus A) + m'(A)$ since $B \setminus A$ and A are disjoint. Since $m'(B \setminus A) \ge 0$ by hypothesis, then $m'(A) \le m'(B)$.

Note. We could weaken the hypothesis of " σ -algebra" to "algebra" and weaken the hypothesis of "countable additivity" to "finite additivity," and the result would still hold.