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Problem 2.1. Let m’ be a set function defined on a o-algebra A with
values in [0, c0]. Assume m’ is countably additive over countable disjoint
collections in A. If A and B are two sets in A with A C B, then

m'(A) < m'(B). This is called monotonicity.
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Problem 2.1. Let m’ be a set function defined on a o-algebra A with
values in [0, c0]. Assume m’ is countably additive over countable disjoint
collections in A. If A and B are two sets in A with A C B, then

m'(A) < m'(B). This is called monotonicity.

Proof. First, B\ A= BN A€ and since A is a o-algebra (and hence
closed under countable intersections and complements), then B\ A € A.
Next, B = (B \ A) U A, so by the hypothesized Countable Additivity,
m'(B) = m'(B\ A) + m'(A) since B\ A and A are disjoint. Since
m'(B\ A) > 0 by hypothesis, then m’'(A) < m'(B).
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Note. We could weaken the hypothesis of “o-algebra” to “algebra” and
weaken the hypothesis of “countable additivity” to “finite additivity,” and
the result would still hold.
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