Chapter 2. Lebesgue Measure

2.2. Lebesgue Outer Measure—Proofs of Theorems
Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval \([a, b]\).
Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\epsilon > 0$. Then $(a - \epsilon/2, b + \epsilon/2)$ is (alone) a covering of $[a, b]$ and $\ell((a - \epsilon/2, b + \epsilon/2)) = b - a + \epsilon$. Since ϵ is arbitrary, $m^*([a, b]) \leq b - a = \ell([a, b])$.

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon > 0$. Then $(a - \varepsilon / 2, b + \varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a - \varepsilon / 2, b + \varepsilon / 2)) = b - a + \varepsilon$. Since ε is arbitrary, $m^*([a, b]) \leq b - a = \ell([a, b])$.

Next, let $\{I_n\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_n’s covering $[a, b]$.
Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon > 0$. Then $(a - \varepsilon/2, b + \varepsilon/2)$ is (alone) a covering of $[a, b]$ and $\ell((a - \varepsilon/2, b + \varepsilon/2)) = b - a + \varepsilon$. Since ε is arbitrary,
$m^*([a, b]) \leq b - a = \ell([a, b])$.

Next, let $\{I_n\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_n's covering $[a, b]$. So $a \in I_1$ for some $I_1 = (a_1, b_1) \in A$. Also, if $b_1 \leq b$, then $b_1 \in I_2$ for some $I_2 = (a_2, b_2) \in A$. Similarly, we can construct I_1, I_2, \ldots, I_k (say, $(a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k)$ such that $a_i < b_{i-1} < b_i$).
Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval \([a, b]\). Let \(\varepsilon > 0\). Then \((a - \varepsilon/2, b + \varepsilon/2)\) is (alone) a covering of \([a, b]\) and
\[
\ell((a - \varepsilon/2, b + \varepsilon/2)) = b - a + \varepsilon.
\]
Since \(\varepsilon\) is arbitrary,
\[
m^*(\{a, b\}) \leq b - a = \ell([a, b]).
\]
Next, let \(\{I_n\}\) be a covering of \([a, b]\) by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset \(A\) of \(I_n\)'s covering \([a, b]\). So \(a \in I_1\) for some \(I_1 = (a_1, b_1) \in A\). Also, if \(b_1 \leq b\), then \(b_1 \in I_2\) for some \(I_2 = (a_2, b_2) \in A\). Similarly, we can construct \(I_1, I_2, \ldots, I_k\) (say, \((a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k)\)) such that \(a_i < b_{i-1} < b_i\). Then
\[
\sum_{i=1}^{k} \ell(I_i) \geq \sum_{i=1}^{k} (b_i - a_i) = b_k - a_k - (a_k - b_{k-1}) - \cdots - (a_2 - b_1) - a_1 > b_k - a_1.
\]
Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval \([a, b]\). Let \(\varepsilon > 0\). Then \((a - \varepsilon/2, b + \varepsilon/2)\) is (alone) a covering of \([a, b]\) and
\[\ell((a - \varepsilon/2, b + \varepsilon/2)) = b - a + \varepsilon. \]
Since \(\varepsilon\) is arbitrary,
\[m^*([a, b]) \leq b - a = \ell([a, b]). \]

Next, let \(\{I_n\}\) be a covering of \([a, b]\) by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset \(A\) of \(I_n\)'s covering \([a, b]\). So \(a \in I_1\) for some \(I_1 = (a_1, b_1) \in A\). Also, if \(b_1 \leq b\), then \(b_1 \in I_2\) for some \(I_2 = (a_2, b_2) \in A\). Similarly, we can construct \(I_1, I_2, \ldots, I_k\) (say, \((a_1, b_1), (a_2, b_2), \ldots, (a_k, b_k)\) such that \(a_i < b_{i-1} < b_i\)). Then

\[
\sum_{i=1}^{k} \ell(I_i) = \sum_{i=1}^{k} (b_i - a_i) = b_k - a_1.
\]
Proposition 2.1 (continued)

\[\sum \ell(I_n) > b_k - a_1. \]

Since \(a_1 < a \) and \(b_k > b \), then \(\sum \ell(I_n) > b - a \). So \(m^*([a, b]) = b - a = \ell([a, b]) \).

(2) Next, consider an arbitrary bounded interval \(I \).
Proposition 2.1 (continued)

\[\sum \ell(I_n) > b_k - a_1. \]

Since \(a_1 < a \) and \(b_k > b \), then \(\sum \ell(I_n) > b - a \). So \(m^*([a, b]) = b - a = \ell([a, b]) \).

(2) Next, consider an arbitrary bounded interval \(I \). Then for any \(\varepsilon > 0 \), there is a closed interval \(J \subset I \) such that \(\ell(J) > \ell(I) - \varepsilon \). Notice that \(m^*(I) \leq m^*(\bar{I}) \) by monotonicity. So

\[
\ell(I) - \varepsilon < \ell(J) = m^*(J) \text{ by (1), since } J \text{ is a closed bounded interval} \leq m^*(I) \text{ by monotonicity (Lemma 2.2.A)} \leq m^*(\bar{I}) \text{ by monotonicity since } I \subseteq \bar{I} = \ell(\bar{I}) \text{ by (1), since } I \text{ is a closed bounded interval} = \ell(I) \text{ since } I \text{ is a bounded interval}
\]

and therefore \(\ell(I) - \varepsilon < m^*(I) \leq \ell(I) \).
Proposition 2.1 (continued)

\[\sum \ell(I_n) > b_k - a_1. \]

Since \(a_1 < a \) and \(b_k > b \), then \(\sum \ell(I_n) > b - a \). So
\[m^*(\lbrack a, b \rbrack) = b - a = \ell(\lbrack a, b \rbrack). \]

(2) Next, consider an arbitrary bounded interval \(I \). Then for any \(\varepsilon > 0 \), there is a closed interval \(J \subset I \) such that \(\ell(J) > \ell(I) - \varepsilon \). Notice that \(m^*(I) \leq m^*(J) \) by monotonicity. So

\[\ell(I) - \varepsilon < \ell(J) = m^*(J) \text{ by (1), since } J \text{ is a closed bounded interval} \]

\[\leq m^*(I) \text{ by monotonicity (Lemma 2.2.A)} \]

\[\leq m^*(\overline{I}) \text{ by monotonicity since } I \subset \overline{I} \]

\[= \ell(\overline{I}) \text{ by (1), since } I \text{ is a closed bounded interval} \]

\[= \ell(I) \text{ since } I \text{ is a bounded interval} \]

and therefore \(\ell(I) - \varepsilon < m^*(I) \leq \ell(I) \). Since \(\varepsilon \) is arbitrary, \(\ell(I) = m^*(I) \).
Proposition 2.1 (continued)

\[\sum \ell(I_n) > b_k - a_1. \]

Since \(a_1 < a \) and \(b_k > b \), then \(\sum \ell(I_n) > b - a \). So \(m^*([a, b]) = b - a = \ell([a, b]) \).

(2) Next, consider an arbitrary bounded interval \(I \). Then for any \(\varepsilon > 0 \), there is a closed interval \(J \subset I \) such that \(\ell(J) > \ell(I) - \varepsilon \). Notice that \(m^*(I) \leq m^*(\overline{I}) \) by monotonicity. So

\[
\ell(I) - \varepsilon < \ell(J) = m^*(J) \text{ by (1), since } J \text{ is a closed bounded interval} \\
\leq m^*(I) \text{ by monotonicity (Lemma 2.2.A)} \\
\leq m^*(\overline{I}) \text{ by monotonicity since } I \subset \overline{I} \\
= \ell(\overline{I}) \text{ by (1), since } I \text{ is a closed bounded interval} \\
= \ell(I) \text{ since } I \text{ is a bounded interval}
\]

and therefore \(\ell(I) - \varepsilon < m^*(I) \leq \ell(I) \). Since \(\varepsilon \) is arbitrary, \(\ell(I) = m^*(I) \).
Proposition 2.1. The outer measure of an interval is its length.

Proof (continued). (3) If \(I \) is an unbounded interval, then given any natural number \(n \in \mathbb{N} \), there is a closed interval \(J \subset I \) with \(\ell(J) = n \). Hence \(m^*(I) \geq m^*(J) = \ell(J) = n \). Since \(m^*(I) \geq n \) and \(n \in \mathbb{N} \) is arbitrary, then \(m^*(I) = \infty = \ell(I) \). \(\square \)
Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof. Suppose $m^*(A) = M < \infty$. Then for all $\varepsilon > 0$ there exist $\{I_n\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \bigcup I_n$ and $\sum \ell(I_n) < M + \varepsilon$ by Theorem 0.3(b).
Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof. Suppose $m^*(A) = M < \infty$. Then for all $\varepsilon > 0$ there exist $\{I_n\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \bigcup I_n$ and $\sum \ell(I_n) < M + \varepsilon$ by Theorem 0.3(b). So if $y \in \mathbb{R}$, then $\{I_n + y\}$ is a covering of $A + y$ and so $m^*(A + y) \leq \sum \ell(I_n + y) = \sum \ell(I_n) < M + \varepsilon$. Therefore $m^*(A + y) \leq M$.
Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof. Suppose $m^*(A) = M < \infty$. Then for all $\varepsilon > 0$ there exist $\{I_n\}_{n=1}^\infty$ bounded open intervals such that $A \subset \bigcup I_n$ and $\sum \ell(I_n) < M + \varepsilon$ by Theorem 0.3(b). So if $y \in \mathbb{R}$, then $\{I_n + y\}$ is a covering of $A + y$ and so $m^*(A + y) \leq \sum \ell(I_n + y) = \sum \ell(I_n) < M + \varepsilon$. Therefore $m^*(A + y) \leq M$.

Now let $\{J_n\}$ be a collection of bounded open intervals such that $\bigcup J_n \supset A + y$. Assume that $\sum \ell(J_n) < M$. Then $\{J_n - y\}$ is a covering of A and $\sum \ell(J_n - y) = \sum \ell(J_n) < M$, a contradiction. So $\sum \ell(J_n) \geq M$ and hence $m^*(A + y) \geq M$. So $m^*(A + y) = m^*(A) = M$.

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof. Suppose $m^*(A) = M < \infty$. Then for all $\varepsilon > 0$ there exist $\{I_n\}_{n=1}^\infty$ bounded open intervals such that $A \subset \bigcup I_n$ and $\sum \ell(I_n) < M + \varepsilon$ by Theorem 0.3(b). So if $y \in \mathbb{R}$, then $\{I_n + y\}$ is a covering of $A + y$ and so $m^*(A + y) \leq \sum \ell(I_n + y) = \sum \ell(I_n) < M + \varepsilon$. Therefore $m^*(A + y) \leq M$.

Now let $\{J_n\}$ be a collection of bounded open intervals such that $\bigcup J_n \supset A + y$. **ASSUME** that $\sum \ell(J_n) < M$. Then $\{J_n - y\}$ is a covering of A and $\sum \ell(J_n - y) = \sum \ell(J_n) < M$, a CONTRADICTION. So $\sum \ell(J_n) \geq M$ and hence $m^*(A + y) \geq M$. So $m^*(A + y) = m^*(A) = M$.
Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof (continued). Suppose $m^*(A) = \infty$. Then for any $\{I_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \bigcup I_n$, we must have $\sum \ell(I_n) = \infty$. Consider $A + y$.

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof (continued). Suppose $m^*(A) = \infty$. Then for any $\{I_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \bigcup I_n$, we must have $\sum \ell(I_n) = \infty$. Consider $A + y$. For any $\{J_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A + y \subset \bigcup J_n$, the collection $\{J_n - y\}_{n=1}^{\infty}$ is a set of bounded open intervals such that $A \subset \bigcup (J_n - y)$. So $\sum \ell(J_n - y) = \infty$. But $\ell(J_n) = \ell(J_n - y)$, so we must have $\sum \ell(J_n) = \infty$. Since $\{J_n\}_{n=1}^{\infty}$ is an arbitrary collection of bounded open intervals covering $A + y$, we must have $m^*(A + y) = \infty = m^*(A)$. \square
Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number y, $m^*(A + y) = m^*(A)$.

Proof (continued). Suppose $m^*(A) = \infty$. Then for any $\{I_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \bigcup I_n$, we must have $\sum \ell(I_n) = \infty$. Consider $A + y$. For any $\{J_n\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A + y \subset \bigcup J_n$, the collection $\{J_n - y\}_{n=1}^{\infty}$ is a set of bounded open intervals such that $A \subset \bigcup (J_n - y)$. So $\sum \ell(J_n - y) = \infty$. But $\ell(J_n) = \ell(J_n - y)$, so we must have $\sum \ell(J_n) = \infty$. Since $\{J_n\}_{n=1}^{\infty}$ is an arbitrary collection of bounded open intervals covering $A + y$, we must have $m^*(A + y) = \infty = m^*(A)$. \qed
Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if \(\{E_k\}_{k=1}^{\infty} \) is any countable collection of sets then

\[
m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq \sum_{k=1}^{\infty} m^*(E_k).\]

Proof. The result holds trivially if \(m^*(E_k) = \infty \) for some \(k \). So without loss of generality assume each \(E_k \) has finite outer measure.
Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if \(\{E_k\}_{k=1}^{\infty} \) is any countable collection of sets then

\[
m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq \sum_{k=1}^{\infty} m^*(E_k).
\]

Proof. The result holds trivially if \(m^*(E_k) = \infty \) for some \(k \). So without loss of generality assume each \(E_k \) has finite outer measure. Then for all \(\varepsilon > 0 \) and for each \(k \in \mathbb{N} \), there is a countable set of open intervals \(\{I_{k,i}\}_{i=1}^{\infty} \) such that \(E_k \subset \bigcup_{i=1}^{\infty} I_{k,i} \) and \(\sum_{i=1}^{\infty} \ell(I_{k,i}) < m^*(E_k) + \varepsilon/2^k \) (by Theorem 0.3(b)). Then \(\{I_{k,i}\} \) where \(i, k \in \mathbb{N} \) is a countable collection (by Theorem 0.10) of open intervals that covers \(\bigcup E_k \).
Proposition 2.3. Outer measure is countably subadditive. That is, if \(\{E_k\}_{k=1}^{\infty} \) is any countable collection of sets then

\[
m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq \sum_{k=1}^{\infty} m^*(E_k).
\]

Proof. The result holds trivially if \(m^*(E_k) = \infty \) for some \(k \). So without loss of generality assume each \(E_k \) has finite outer measure. Then for all \(\varepsilon > 0 \) and for each \(k \in \mathbb{N} \), there is a countable set of open intervals \(\{I_{k,i}\}_{i=1}^{\infty} \) such that \(E_k \subset \bigcup_{i=1}^{\infty} I_{k,i} \) and \(\sum_{i=1}^{\infty} \ell(I_{k,i}) < m^*(E_k) + \varepsilon/2^k \) (by Theorem 0.3(b)). Then \(\{I_{k,i}\} \) where \(i, k \in \mathbb{N} \) is a countable collection (by Theorem 0.10) of open intervals that covers \(\bigcup E_k \). So

\[
m^*(\bigcup E_k) \leq \sum_{i,k} \ell(I_{k,i}) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \ell(I_{k,i}) < \sum_{k=1}^{\infty} (m^*(E_k) + \varepsilon/2^k) = \left(\sum_{k=1}^{\infty} m^*(E_k) \right) + \varepsilon.
\]

Therefore \(m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq \sum_{k=1}^{\infty} m^*(E_k). \)
Proposition 2.3. Outer measure is countably subadditive. That is, if \(\{ E_k \}_{k=1}^{\infty} \) is any countable collection of sets then

\[
m^* \left(\bigcup_{k=1}^{\infty} E_k \right) \leq \sum_{k=1}^{\infty} m^*(E_k).
\]

Proof. The result holds trivially if \(m^*(E_k) = \infty \) for some \(k \). So without loss of generality assume each \(E_k \) has finite outer measure. Then for all \(\varepsilon > 0 \) and for each \(k \in \mathbb{N} \), there is a countable set of open intervals \(\{ I_{k,i} \}_{i=1}^{\infty} \) such that \(E_k \subset \bigcup_{i=1}^{\infty} I_{k,i} \) and \(\sum_{i=1}^{\infty} \ell(I_{k,i}) < m^*(E_k) + \varepsilon/2^k \) (by Theorem 0.3(b)). Then \(\{ I_{k,i} \} \) where \(i, k \in \mathbb{N} \) is a countable collection (by Theorem 0.10) of open intervals that covers \(\bigcup E_k \). So

\[
m^*(\bigcup E_k) \leq \sum_{i,k} \ell(I_{k,i}) = \sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \ell(I_{k,i}) < \sum_{k=1}^{\infty} (m^*(E_k) + \varepsilon/2^k) = (\sum_{k=1}^{\infty} m^*(E_k)) + \varepsilon.
\]

Therefore \(m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k) \).