Real Analysis

Chapter 2. Lebesgue Measure

2.2. Lebesgue Outer Measure-Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma 2.2.A
(2) Proposition 2.1
(3) Proposition 2.2
(4) Proposition 2.3
(5) Exercise 2.5

Lemma 2.2.A

Lemma 2.2.A. Outer measure is monotone. That is, if $A \subset B$ then $m^{*}(A) \leq m^{*}(B)$.

Proof. Let $A \subset B$ be sets of real numbers. We consider the sets

$$
X_{A}=\left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \mid A \subset \cup_{n=1}^{\infty} I_{n} \text { and each } I_{n} \text { is a bounded open interval }\right\}
$$

and

$$
X_{B}=\left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \mid B \subset \cup_{n=1}^{\infty} I_{n} \text { and each } I_{n} \text { is a bounded open interval }\right\}
$$

To find an arbitrary element of X_{B}, we need an arbitrary countable covering of B by bounded open intervals.

Lemma 2.2.A

Lemma 2.2.A. Outer measure is monotone. That is, if $A \subset B$ then $m^{*}(A) \leq m^{*}(B)$.

Proof. Let $A \subset B$ be sets of real numbers. We consider the sets

$$
X_{A}=\left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \mid A \subset \cup_{n=1}^{\infty} I_{n} \text { and each } I_{n} \text { is a bounded open interval }\right\}
$$

and

$$
X_{B}=\left\{\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \mid B \subset \cup_{n=1}^{\infty} I_{n} \text { and each } I_{n} \text { is a bounded open interval }\right\} .
$$

To find an arbitrary element of X_{B}, we need an arbitrary countable covering of B by bounded open intervals.

Lemma 2.2.A (continued)

Lemma 2.2.A. Outer measure is monotone. That is, if $A \subset B$ then $m^{*}(A) \leq m^{*}(B)$.

Proof (continued). To find an arbitrary element of X_{B}, we need an arbitrary countable covering of B by bounded open intervals. So let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a countable collection of bounded open intervals such that $B \subset \cup_{n=1}^{\infty} I_{n}$. Then $\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \in X_{B}$. Notice that $A \subset B \subset \cup_{n=1}^{\infty} I_{n}$ and hence $\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \in X_{A}$. So $X_{B} \subset X_{A}$. Therefore
$m^{*}(A)=\inf \left(X_{A}\right) \leq \inf \left(X_{B}\right)=m^{*}(B)$.

Lemma 2.2.A (continued)

Lemma 2.2.A. Outer measure is monotone. That is, if $A \subset B$ then $m^{*}(A) \leq m^{*}(B)$.

Proof (continued). To find an arbitrary element of X_{B}, we need an arbitrary countable covering of B by bounded open intervals. So let $\left\{I_{n}\right\}_{n=1}^{\infty}$ be a countable collection of bounded open intervals such that $B \subset \cup_{n=1}^{\infty} I_{n}$. Then $\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \in X_{B}$. Notice that $A \subset B \subset \cup_{n=1}^{\infty} I_{n}$ and hence $\sum_{n=1}^{\infty} \ell\left(I_{n}\right) \in X_{A}$. So $X_{B} \subset X_{A}$. Therefore

$$
m^{*}(A)=\inf \left(X_{A}\right) \leq \inf \left(X_{B}\right)=m^{*}(B)
$$

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$.

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$. $\varepsilon>0$. Then $(a-\varepsilon / 2, b+\varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a-\varepsilon / 2, b+\varepsilon / 2))=b-a+\varepsilon$. Since ε is arbitrary, $m^{*}([a, b]) \leq b-a=\ell([a, b])$.

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon>0$. Then $(a-\varepsilon / 2, b+\varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a-\varepsilon / 2, b+\varepsilon / 2))=b-a+\varepsilon$. Since ε is arbitrary, $m^{*}([a, b]) \leq b-a=\ell([a, b])$.
Next, let $\left\{I_{n}\right\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_{n} 's covering $[a, b]$.

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon>0$. Then $(a-\varepsilon / 2, b+\varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a-\varepsilon / 2, b+\varepsilon / 2))=b-a+\varepsilon$. Since ε is arbitrary, $m^{*}([a, b]) \leq b-a=\ell([a, b])$.
Next, let $\left\{I_{n}\right\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_{n} 's covering $[a, b]$.
So $a \in I_{1}$ for some $I_{1}=\left(a_{1}, b_{1}\right) \in A$. Also, if $b_{1} \leq b$, then $b_{1} \in I_{2}$ for
some $I_{2}=\left(a_{2}, b_{2}\right) \in A$. Similarly, we can construct $I_{1}, I_{2}, \ldots, I_{k}$ (say,
$\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right)$ such that $\left.a_{i}<b_{i-1}<b_{i}\right)$.

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon>0$. Then $(a-\varepsilon / 2, b+\varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a-\varepsilon / 2, b+\varepsilon / 2))=b-a+\varepsilon$. Since ε is arbitrary, $m^{*}([a, b]) \leq b-a=\ell([a, b])$.
Next, let $\left\{I_{n}\right\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_{n} 's covering $[a, b]$. So $a \in I_{1}$ for some $I_{1}=\left(a_{1}, b_{1}\right) \in A$. Also, if $b_{1} \leq b$, then $b_{1} \in I_{2}$ for some $I_{2}=\left(a_{2}, b_{2}\right) \in A$. Similarly, we can construct $I_{1}, I_{2}, \ldots, I_{k}$ (say, $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right)$ such that $\left.a_{i}<b_{i-1}<b_{i}\right)$. Then

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length. Proof. (1) We first show the result holds for a closed interval $[a, b]$. Let $\varepsilon>0$. Then $(a-\varepsilon / 2, b+\varepsilon / 2)$ is (alone) a covering of $[a, b]$ and $\ell((a-\varepsilon / 2, b+\varepsilon / 2))=b-a+\varepsilon$. Since ε is arbitrary, $m^{*}([a, b]) \leq b-a=\ell([a, b])$.
Next, let $\left\{I_{n}\right\}$ be a covering of $[a, b]$ by bounded open intervals. By the Heine-Borel Theorem, there exists a finite subset A of I_{n} 's covering $[a, b]$. So $a \in I_{1}$ for some $I_{1}=\left(a_{1}, b_{1}\right) \in A$. Also, if $b_{1} \leq b$, then $b_{1} \in I_{2}$ for some $I_{2}=\left(a_{2}, b_{2}\right) \in A$. Similarly, we can construct $I_{1}, I_{2}, \ldots, I_{k}$ (say, $\left(a_{1}, b_{1}\right),\left(a_{2}, b_{2}\right), \ldots,\left(a_{k}, b_{k}\right)$ such that $\left.a_{i}<b_{i-1}<b_{i}\right)$. Then

$$
\begin{aligned}
\sum \ell\left(I_{n}\right) & \geq \sum_{i=1}^{k} \ell\left(I_{i}\right)=\sum_{i=1}^{k}\left(b_{i}-a_{i}\right) \\
& =\left(b_{k}-a_{k}\right)+\left(b_{k-1}-a_{k-1}\right)+\cdots+\left(b_{1}-a_{1}\right) \\
& =b_{k}-\left(a_{k}-b_{k-1}\right)-\cdots-\left(a_{2}-b_{1}\right)-a_{1} \\
& >b_{k}-a_{1}
\end{aligned}
$$

Proposition 2.1 (continued)

$$
\sum \ell\left(I_{n}\right)>b_{k}-a_{1} .
$$

Since $a_{1}<a$ and $b_{k}>b$, then $\sum \ell\left(I_{n}\right)>b-a$. So $m^{*}([a, b])=b-a=\ell([a, b])$.
(2) Next, consider an arbitrary bounded interval I.

Proposition 2.1 (continued)

$$
\sum \ell\left(I_{n}\right)>b_{k}-a_{1} .
$$

Since $a_{1}<a$ and $b_{k}>b$, then $\sum \ell\left(I_{n}\right)>b-a$. So $m^{*}([a, b])=b-a=\ell([a, b])$.
(2) Next, consider an arbitrary bounded interval I. Then for any $\varepsilon>0$, there is a closed interval $J \subset I$ such that $\ell(J)>\ell(I)-\varepsilon$. Notice that $m^{*}(I) \leq m^{*}(\bar{I})$ by monotonicity. So

$$
\begin{aligned}
\ell(I)-\varepsilon<\ell(J) & =m^{*}(J) \text { by }(1) \text {, since } J \text { is a closed bounded interval } \\
& \leq m^{*}(I) \text { by monotonicity (Lemma 2.2.A) } \\
& \leq m^{*}(I) \text { by monotonicity since } I \subseteq I \\
& =\ell(\bar{I}) \text { by }(1) \text {, since } I \text { is a closed bounded interval } \\
& =\ell(I) \text { since } I \text { is a bounded interval }
\end{aligned}
$$

Proposition 2.1 (continued)

$$
\sum \ell\left(I_{n}\right)>b_{k}-a_{1} .
$$

Since $a_{1}<a$ and $b_{k}>b$, then $\sum \ell\left(I_{n}\right)>b-a$. So $m^{*}([a, b])=b-a=\ell([a, b])$.
(2) Next, consider an arbitrary bounded interval I. Then for any $\varepsilon>0$, there is a closed interval $J \subset I$ such that $\ell(J)>\ell(I)-\varepsilon$. Notice that $m^{*}(I) \leq m^{*}(\bar{I})$ by monotonicity. So

$$
\begin{aligned}
\ell(I)-\varepsilon<\ell(J) & =m^{*}(J) \text { by }(1) \text {, since } J \text { is a closed bounded interval } \\
& \left.\leq m^{*}(I) \text { by monotonicity (Lemma } 2.2 . \mathrm{A}\right) \\
& \leq m^{*}(\bar{I}) \text { by monotonicity since } I \subseteq \bar{I} \\
& =\ell(\bar{I}) \text { by }(1), \text { since } I \text { is a closed bounded interval } \\
& =\ell(I) \text { since } I \text { is a bounded interval }
\end{aligned}
$$

Proposition 2.1 (continued)

$$
\sum \ell\left(I_{n}\right)>b_{k}-a_{1} .
$$

Since $a_{1}<a$ and $b_{k}>b$, then $\sum \ell\left(I_{n}\right)>b-a$. So $m^{*}([a, b])=b-a=\ell([a, b])$.
(2) Next, consider an arbitrary bounded interval I. Then for any $\varepsilon>0$, there is a closed interval $J \subset I$ such that $\ell(J)>\ell(I)-\varepsilon$. Notice that $m^{*}(I) \leq m^{*}(\bar{I})$ by monotonicity. So

$$
\begin{aligned}
\ell(I)-\varepsilon<\ell(J) & =m^{*}(J) \text { by }(1) \text {, since } J \text { is a closed bounded interval } \\
& \left.\leq m^{*}(I) \text { by monotonicity (Lemma } 2.2 . \mathrm{A}\right) \\
& \leq m^{*}(\bar{I}) \text { by monotonicity since } I \subseteq \bar{I} \\
& =\ell(\bar{I}) \text { by }(1), \text { since } I \text { is a closed bounded interval } \\
& =\ell(I) \text { since } I \text { is a bounded interval }
\end{aligned}
$$

and therefore $\ell(I)-\varepsilon<m^{*}(I) \leq \ell(I)$. Since ε is arbitrary, $\ell(I)=m^{*}(I)$.

Proposition 2.1 (continued 2)

Proposition 2.1. The outer measure of an interval is its length.

Proof (continued). (3) If I is an unbounded interval, then given any natural number $n \in \mathbb{N}$, there is a closed interval $J \subset I$ with $\ell(J)=n$. Hence $m^{*}(I) \geq m^{*}(J)=\ell(J)=n$. Since $m^{*}(I) \geq n$ and $n \in \mathbb{N}$ is arbitrary, then $m^{*}(I)=\infty=\ell(I)$.

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof. Suppose $m^{*}(A)=M<\infty$. Then for all $\varepsilon>0$ there exist $\left\{I_{n}\right\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \cup I_{n}$ and $\sum \ell\left(I_{n}\right)<M+\varepsilon$ by Theorem 0.3(b).

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof. Suppose $m^{*}(A)=M<\infty$. Then for all $\varepsilon>0$ there exist $\left\{I_{n}\right\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \cup I_{n}$ and $\sum \ell\left(I_{n}\right)<M+\varepsilon$ by Theorem 0.3(b). So if $y \in \mathbb{R}$, then $\left\{I_{n}+y\right\}$ is a covering of $A+y$ and so $m^{*}(A+y) \leq \sum \ell\left(I_{n}+y\right)=\sum \ell\left(I_{n}\right)<M+\varepsilon$. Therefore $m^{*}(A+y) \leq M$.

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof. Suppose $m^{*}(A)=M<\infty$. Then for all $\varepsilon>0$ there exist $\left\{I_{n}\right\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \cup I_{n}$ and $\sum \ell\left(I_{n}\right)<M+\varepsilon$ by Theorem $0.3(\mathrm{~b})$. So if $y \in \mathbb{R}$, then $\left\{I_{n}+y\right\}$ is a covering of $A+y$ and so $m^{*}(A+y) \leq \sum \ell\left(I_{n}+y\right)=\sum \ell\left(I_{n}\right)<M+\varepsilon$. Therefore $m^{*}(A+y) \leq M$. Now let $\left\{J_{n}\right\}$ be a collection of bounded open intervals such that $\cup J_{n} \supset A+y$. ASSUME that $\sum \ell\left(J_{n}\right)<M$. Then $\left\{J_{n}-y\right\}$ is a covering of A and $\sum \ell\left(J_{n}-y\right)=\sum \ell\left(J_{n}\right)<M$, a CONTRADICTION. So $\sum \ell\left(J_{n}\right) \geq M$ and hence $m^{*}(A+y) \geq M$. So $m^{*}(A+y)=m^{*}(A)=M$.

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof. Suppose $m^{*}(A)=M<\infty$. Then for all $\varepsilon>0$ there exist $\left\{I_{n}\right\}_{n=1}^{\infty}$ bounded open intervals such that $A \subset \cup I_{n}$ and $\sum \ell\left(I_{n}\right)<M+\varepsilon$ by Theorem $0.3(\mathrm{~b})$. So if $y \in \mathbb{R}$, then $\left\{I_{n}+y\right\}$ is a covering of $A+y$ and so $m^{*}(A+y) \leq \sum \ell\left(I_{n}+y\right)=\sum \ell\left(I_{n}\right)<M+\varepsilon$. Therefore $m^{*}(A+y) \leq M$.

Now let $\left\{J_{n}\right\}$ be a collection of bounded open intervals such that $\cup J_{n} \supset A+y$. ASSUME that $\sum \ell\left(J_{n}\right)<M$. Then $\left\{J_{n}-y\right\}$ is a covering of A and $\sum \ell\left(J_{n}-y\right)=\sum \ell\left(J_{n}\right)<M$, a CONTRADICTION. So $\sum \ell\left(J_{n}\right) \geq M$ and hence $m^{*}(A+y) \geq M$. So $m^{*}(A+y)=m^{*}(A)=M$.

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof (continued). Suppose $m^{*}(A)=\infty$. Then for any $\left\{I_{n}\right\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \cup I_{n}$, we must have $\sum \ell\left(I_{n}\right)=\infty$. Consider $A+y$.

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof (continued). Suppose $m^{*}(A)=\infty$. Then for any $\left\{I_{n}\right\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \cup I_{n}$, we must have $\sum \ell\left(I_{n}\right)=\infty$. Consider $A+y$. For any $\left\{J_{n}\right\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A+y \subset \cup J_{n}$, the collection $\left\{J_{n}-y\right\}_{n=1}^{\infty}$ is a set of bounded open intervals such that $A \subset \cup\left(J_{n}-y\right)$. So $\sum \ell\left(J_{n}-y\right)=\infty$. But $\ell\left(J_{n}\right)=\ell\left(J_{n}-y\right)$, so we must have $\sum \ell\left(J_{n}\right)=\infty$. Since $\left\{J_{n}\right\}_{n=1}^{\infty}$ is an arbitrary collection of bounded open intervals covering $A+y$, we must have $m^{*}(A+y)=\infty=m^{*}(A)$.

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any set A and number $y, m^{*}(A+y)=m^{*}(A)$.

Proof (continued). Suppose $m^{*}(A)=\infty$. Then for any $\left\{I_{n}\right\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A \subset \cup I_{n}$, we must have $\sum \ell\left(I_{n}\right)=\infty$. Consider $A+y$. For any $\left\{J_{n}\right\}_{n=1}^{\infty}$ a set of bounded open intervals such that $A+y \subset \cup J_{n}$, the collection $\left\{J_{n}-y\right\}_{n=1}^{\infty}$ is a set of bounded open intervals such that $A \subset \cup\left(J_{n}-y\right)$. So $\sum \ell\left(J_{n}-y\right)=\infty$. But $\ell\left(J_{n}\right)=\ell\left(J_{n}-y\right)$, so we must have $\sum \ell\left(J_{n}\right)=\infty$. Since $\left\{J_{n}\right\}_{n=1}^{\infty}$ is an arbitrary collection of bounded open intervals covering $A+y$, we must have $m^{*}(A+y)=\infty=m^{*}(A)$.

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if $\left\{E_{k}\right\}_{k=1}^{\infty}$ is any countable collection of sets then

$$
m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)
$$

Proof. The result holds trivially if $m^{*}\left(E_{k}\right)=\infty$ for some k. So without loss of generality assume each E_{k} has finite outer measure.

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if $\left\{E_{k}\right\}_{k=1}^{\infty}$ is any countable collection of sets then

$$
m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)
$$

Proof. The result holds trivially if $m^{*}\left(E_{k}\right)=\infty$ for some k. So without loss of generality assume each E_{k} has finite outer measure. Then for all
$\varepsilon>0$ and for each $k \in \mathbb{N}$, there is a countable set of open intervals $\left\{I_{k, i}\right\}_{i=1}^{\infty}$ such that $E_{k} \subset \cup_{i=1}^{\infty} I_{k, i}$ and $\sum_{i=1}^{\infty} \ell\left(I_{k, i}\right)<m^{*}\left(E_{k}\right)+\varepsilon / 2^{k}$ (by Theorem 0.3(b)). Then $\left\{I_{k, i}\right\}$ where $i, k \in \mathbb{N}$ is a countable collection (by Theorem 0.10) of open intervals that covers $\cup E_{k}$.

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if $\left\{E_{k}\right\}_{k=1}^{\infty}$ is any countable collection of sets then

$$
m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right) .
$$

Proof. The result holds trivially if $m^{*}\left(E_{k}\right)=\infty$ for some k. So without loss of generality assume each E_{k} has finite outer measure. Then for all $\varepsilon>0$ and for each $k \in \mathbb{N}$, there is a countable set of open intervals $\left\{I_{k, i}\right\}_{i=1}^{\infty}$ such that $E_{k} \subset \cup_{i=1}^{\infty} I_{k, i}$ and $\sum_{i=1}^{\infty} \ell\left(I_{k, i}\right)<m^{*}\left(E_{k}\right)+\varepsilon / 2^{k}$ (by Theorem $0.3(\mathrm{~b})$). Then $\left\{l_{k, i}\right\}$ where $i, k \in \mathbb{N}$ is a countable collection (by Theorem 0.10) of open intervals that covers $\cup E_{k}$. So

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if $\left\{E_{k}\right\}_{k=1}^{\infty}$ is any countable collection of sets then

$$
m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right) .
$$

Proof. The result holds trivially if $m^{*}\left(E_{k}\right)=\infty$ for some k. So without loss of generality assume each E_{k} has finite outer measure. Then for all $\varepsilon>0$ and for each $k \in \mathbb{N}$, there is a countable set of open intervals $\left\{I_{k, i}\right\}_{i=1}^{\infty}$ such that $E_{k} \subset \cup_{i=1}^{\infty} I_{k, i}$ and $\sum_{i=1}^{\infty} \ell\left(I_{k, i}\right)<m^{*}\left(E_{k}\right)+\varepsilon / 2^{k}$ (by Theorem $0.3(\mathrm{~b})$). Then $\left\{l_{k, i}\right\}$ where $i, k \in \mathbb{N}$ is a countable collection (by Theorem 0.10) of open intervals that covers $\cup E_{k}$. So $m^{*}\left(\cup E_{k}\right) \leq \sum_{i, k} \ell\left(I_{k, i}\right)=\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \ell\left(I_{k, i}\right)<\sum_{k=1}^{\infty}\left(m^{*}\left(E_{k}\right)+\varepsilon / 2^{k}\right)=$ $\left(\sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)\right)+\varepsilon$.
Therefore $m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)$.

Exercise 2.5

Exercise 2.5. [0, 1] is not countable.

Proof. By Proposition 2.1, $m^{*}([0,1])=\ell([0,1])=1$. By Corollary 6-9 (in Kirkwood's book and in the Riemann-Lebesgue Supplement; or by the Example on page 31 of Royden and Fitzpatrick), if a set is countable then the outer measure is 0 , or by the logically equivalent contrapositive, if a set has positive measure then it is not countable. Hence $[0,1]$ is not countable.

Exercise 2.5

Exercise 2.5. [0, 1] is not countable.

Proof. By Proposition 2.1, $m^{*}([0,1])=\ell([0,1])=1$. By Corollary 6-9 (in Kirkwood's book and in the Riemann-Lebesgue Supplement; or by the Example on page 31 of Royden and Fitzpatrick), if a set is countable then the outer measure is 0 , or by the logically equivalent contrapositive, if a set has positive measure then it is not countable. Hence $[0,1]$ is not countable.

