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Lemma 2.2.A

Lemma 2.2.A. Outer measure is monotone. That is, if A C B then
m*(A) < m*(B).
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Lemma 2.2.A

Lemma 2.2.A

Lemma 2.2.A. Outer measure is monotone. That is, if A C B then
m*(A) < m*(B).

Proof. Let A C B be sets of real numbers. We consider the sets

Xa = {Zﬁ(/n)
n=1

and

Xg = { Zg(ln)
n=1

A C Up2 1, and each I, is a bounded open interval}

B C Up24ln and each I, is a bounded open interval} .

To find an arbitrary element of Xg, we need an arbitrary countable
covering of B by bounded open intervals.
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Lemma 2.2.A (continued)

Lemma 2.2.A. Outer measure is monotone. That is, if A C B then
m*(A) < m*(B).

Proof (continued). To find an arbitrary element of Xg, we need an
arbitrary countable covering of B by bounded open intervals.
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Lemma 2.2.A (continued)

Lemma 2.2.A. Outer measure is monotone. That is, if A C B then
m*(A) < m*(B).

Proof (continued). To find an arbitrary element of Xg, we need an
arbitrary countable covering of B by bounded open intervals. So let
{I}721 be a countable collection of bounded open intervals such that
B C UX 1, Then > 72, ¢(I,) € Xg. Notice that AC B C U241, and
hence >, ¢(In) € Xa. So Xg C Xa. Therefore

m*(A) = inf(Xa) < inf(Xg) = m*(B).
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Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.
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Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.
Proof. (1) We first show the result holds for a closed interval [a, b].
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Proposition 2.1

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval [a, b]. Let
£>0. Then (a—¢/2,b+¢/2) is (alone) a covering of [a, b] and
l((a—e/2,b+¢/2)) = b— a+e. Since ¢ is arbitrary,

m*([a, b]) < b— a = {(][a, b]).
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Proposition 2.1

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval [a, b]. Let
£>0. Then (a—¢/2,b+¢/2) is (alone) a covering of [a, b] and
l((a—e/2,b+¢/2)) = b— a+e. Since ¢ is arbitrary,

m*([a, b]) < b— a = {(][a, b]).

Next, let {/,} be a covering of [a, b] by bounded open intervals. By the
Heine-Borel Theorem, there exists a finite subset A of /,'s covering [a, b]
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Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval [a, b]. Let
£>0. Then (a—¢/2,b+¢/2) is (alone) a covering of [a, b] and
l((a—e/2,b+¢/2)) = b— a+e. Since ¢ is arbitrary,

m*([a, b]) < b— a = {(][a, b]).

Next, let {/,} be a covering of [a, b] by bounded open intervals. By the
Heine-Borel Theorem, there exists a finite subset A of /,'s covering [a, b].
So a € I; for some I; = (a1, b1) € A. Also, if by < b, then by € I, for
some I = (a2, b2) € A. Similarly, we can construct /1, b, ..., Iy (say,

(31, bl), (32, bz), ey (ak, bk) such that a; < bj_1 < b,').
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Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.

Proof. (1) We first show the result holds for a closed interval [a, b]. Let
£>0. Then (a—¢/2,b+¢/2) is (alone) a covering of [a, b] and
l((a—e/2,b+¢/2)) = b— a+e. Since ¢ is arbitrary,

m*([a, b]) < b— a = {(][a, b]).

Next, let {/,} be a covering of [a, b] by bounded open intervals. By the
Heine-Borel Theorem, there exists a finite subset A of /,'s covering [a, b].
So a € I; for some I; = (a1, b1) € A. Also, if by < b, then by € I, for

some I = (a2, b2) € A. Similarly, we can construct /1, b, ..., Iy (say,
(a1, b1), (a2, b2), . .., (ak, bk) such that a; < bj_1 < b;). Then
k k
Uy = N )= (bi—a)
i=1 i=1
(bxk — ak) + (bk—1 — ak—1) + -+ (b1 — a1)
= br—(ak—bk-1)— - —(a2—b1) — a1
> by — ar.
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Proposition 2.1 (continued)

> () > by — a1

Since a; < a and by > b, then > ¢(l,) > b—a. So
m*([aa b]) =b-a= 6([8, b])
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Proposition 2.1 (continued)

> () > by — a1

Since a; < a and by > b, then > ¢(l,) > b—a. So
m*([aa b]) =b-a= 6([8, b])

(2) Next, consider an arbitrary bounded interval /.
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Proposition 2.1 (continued)

> () > by — a1
Since a; < a and by > b, then > ¢(l,) > b—a. So
m*([aa b]) =b-a= 6([8, b])

(2) Next, consider an arbitrary bounded interval /. Then for any € > 0,
there is a closed interval J C I such that ¢(J) > ¢(I) — . Notice that
m*(1) < m*(I) by monotonicity. So

o) —e <)

m*(J) by (1), since J is a closed bounded interval
m™*(I) by monotonicity (Lemma 2.2.A)

IN A

*

(1) by monotonicity since | C |
= /(I) by (1), since I is a closed bounded interval
= /() since | is a bounded interval

and therefore ¢(1) —e < m*(1) < ¢(1).
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Proposition 2.1 (continued)

> () > by — a1
Since a; < a and by > b, then > ¢(l,) > b—a. So
m*([aa b]) =b-a= 6([8, b])

(2) Next, consider an arbitrary bounded interval /. Then for any € > 0,
there is a closed interval J C I such that ¢(J) > ¢(I) — . Notice that
m*(1) < m*(I) by monotonicity. So

o) —e <)

m*(J) by (1), since J is a closed bounded interval
m™*(I) by monotonicity (Lemma 2.2.A)
m*(1) by monotonicity since | C |

IN A

= {(I) by (1), since I is a closed bounded interval
= {(I) since | is a bounded interval

and therefore ¢(1) —e < m*(I) < ¢(I). Since ¢ is arbitrary, {(/) = m*(/).
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Proposition 2.1 (continued 2)

Proposition 2.1. The outer measure of an interval is its length.

Proof (continued). (3) If / is an unbounded interval, then given any
natural number n € N, there is a closed interval J C [ with ¢(J) = n.
Hence m*(I) > m*(J) = ¢(J) = n. Since m*(/) > nand n € N is
arbitrary, then m*(/) = oo = £(1). O
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Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).
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Proposition 2.2

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).

Proof. Suppose m*(A) = M < oo. Then for all £ > 0 there exist {/,}7
bounded open intervals such that A C U/, and > ¢(/,) < M + ¢ by
Theorem 0.3(b).
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Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).

Proof. Suppose m*(A) = M < oo. Then for all £ > 0 there exist {/,}7
bounded open intervals such that A C U/, and > ¢(/,) < M + ¢ by
Theorem 0.3(b). So if y € R, then {/, + y} is a covering of A+ y and so
m*(A+y) <> Ul +y)=> 4I,) < M+¢c. Therefore m*(A+y) < M.
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Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).

Proof. Suppose m*(A) = M < oo. Then for all £ > 0 there exist {/,}7
bounded open intervals such that A C U/, and > ¢(/,) < M + ¢ by
Theorem 0.3(b). So if y € R, then {/, + y} is a covering of A+ y and so
m*(A+y) <> Ul +y)=> 4I,) < M+¢c. Therefore m*(A+y) < M.

Now let {J,} be a collection of bounded open intervals such that
UJyp D A+ y. ASSUME that > ¢(J,) < M. Then {J, — y} is a covering
of Aand Y 4(Jp —y) = > ¥(Jn) < M, a CONTRADICTION. So
> 4(Jy) > M and hence m*(A+y) > M. So m*(A+y) = m*(A) = M.
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Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).
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Proposition 2.2

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).

Proof (continued). Suppose m*(A) = co. Then for any {/,}°°, a set of
bounded open intervals such that A C Ul,, we must have > ¢(/,) = c.
Consider A+ y.
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Proposition 2.2

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y, m*(A+ y) = m*(A).

Proof (continued). Suppose m*(A) = co. Then for any {/,}°°, a set of

bounded open intervals such that A C Ul,, we must have > ¢(/,) = c.
Consider A+ y. For any {J,}5°, a set of bounded open intervals such

that A4y C UJp, the collection {J, — y}°2, is a set of bounded open
intervals such that A C U(J, — y). So > 4(J, — y) = oo. But

0(Jn) = £(Jn — y), so we must have ) ¢(J,) = co. Since {J,}72 is an
arbitrary collection of bounded open intervals covering A + y, we must

have m*(A+ y) = co = m*(A).
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Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if
{Ex}?2, is any countable collection of sets then

k=1 k=1
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Proposition 2.3

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if
{Ex}?2, is any countable collection of sets then

k=1 k=1

Proof. The result holds trivially if m*(Ex) = oo for some k. So without
loss of generality assume each Ej has finite outer measure.
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Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if
{Ex}?2, is any countable collection of sets then

k=1 k=1

Proof. The result holds trivially if m*(Ex) = oo for some k. So without
loss of generality assume each Ej has finite outer measure. Then for all

€ > 0 and for each k € N, there is a countable set of open intervals
{Ik,f}?il such that E, C U?illk,i and Z?il E(/kﬂ') < m*(Ek) +6/2k (by
Theorem 0.3(b)). Then {/x;} where i, k € N is a countable collection (by
Theorem 0.10) of open intervals that covers UE.
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Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if
{Ex}?2, is any countable collection of sets then

k=1 k=1

Proof. The result holds trivially if m*(Ex) = oo for some k. So without
loss of generality assume each Ej has finite outer measure. Then for all

€ > 0 and for each k € N, there is a countable set of open intervals
{Ik,f}?il such that E, C U?illk,i and Z?il E(/kﬂ') < m*(Ek) + 6/2k (by
Theorem 0.3(b)). Then {/x;} where i, k € N is a countable collection (by
Theorem 0.10) of open intervals that covers UEj. So

m*(UEK) < 32 i) = D00y 2072 ki) < SoRia(m*(Ex) +¢/2%) =
(50 m () + <.

* oo o *
Therefore m* (U~ Ex) < > peq m*(Ex). O
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Exercise 2.5

Exercise 2.5. [0,1] is not countable.
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Exercise 2.5

Exercise 2.5. [0,1] is not countable.

Proof. By Proposition 2.1, m*([0,1]) = ¢([0, 1]) = 1. By Corollary 6-9 (in
Kirkwood's book and in the Riemann-Lebesgue Supplement; or by the
Example on page 31 of Royden and Fitzpatrick), if a set is countable then
the outer measure is 0, or by the logically equivalent contrapositive, if a
set has positive measure then it is not countable. Hence [0, 1] is not
countable.

O
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