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Lemma 2.2.A

Lemma 2.2.A

Lemma 2.2.A. Outer measure is monotone. That is, if A ⊂ B then
m∗(A) ≤ m∗(B).

Proof. Let A ⊂ B be sets of real numbers. We consider the sets

XA =

{ ∞∑
n=1

`(In)

∣∣∣∣∣A ⊂ ∪∞n=1In and each In is a bounded open interval

}

and

XB =

{ ∞∑
n=1

`(In)

∣∣∣∣∣B ⊂ ∪∞n=1In and each In is a bounded open interval

}
.

To find an arbitrary element of XB , we need an arbitrary countable
covering of B by bounded open intervals.
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Lemma 2.2.A

Lemma 2.2.A (continued)

Lemma 2.2.A. Outer measure is monotone. That is, if A ⊂ B then
m∗(A) ≤ m∗(B).

Proof (continued). To find an arbitrary element of XB , we need an
arbitrary countable covering of B by bounded open intervals. So let
{In}∞n=1 be a countable collection of bounded open intervals such that
B ⊂ ∪∞n=1In. Then

∑∞
n=1 `(In) ∈ XB . Notice that A ⊂ B ⊂ ∪∞n=1In and

hence
∑∞

n=1 `(In) ∈ XA. So XB ⊂ XA. Therefore

m∗(A) = inf(XA) ≤ inf(XB) = m∗(B).
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Proposition 2.1

Proposition 2.1

Proposition 2.1. The outer measure of an interval is its length.
Proof. (1) We first show the result holds for a closed interval [a, b].

Let
ε > 0. Then (a− ε/2, b + ε/2) is (alone) a covering of [a, b] and
`((a− ε/2, b + ε/2)) = b − a + ε. Since ε is arbitrary,
m∗([a, b]) ≤ b − a = `([a, b]).
Next, let {In} be a covering of [a, b] by bounded open intervals. By the
Heine-Borel Theorem, there exists a finite subset A of In’s covering [a, b].
So a ∈ I1 for some I1 = (a1, b1) ∈ A. Also, if b1 ≤ b, then b1 ∈ I2 for
some I2 = (a2, b2) ∈ A. Similarly, we can construct I1, I2, . . . , Ik (say,
(a1, b1), (a2, b2), . . . , (ak , bk) such that ai < bi−1 < bi ). Then∑

`(In) ≥
k∑

i=1

`(Ii ) =
k∑

i=1

(bi − ai )

= (bk − ak) + (bk−1 − ak−1) + · · ·+ (b1 − a1)

= bk − (ak − bk−1)− · · · − (a2 − b1)− a1

> bk − a1.
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Proposition 2.1

Proposition 2.1 (continued)

∑
`(In) > bk − a1.

Since a1 < a and bk > b, then
∑

`(In) > b − a. So
m∗([a, b]) = b − a = `([a, b]).

(2) Next, consider an arbitrary bounded interval I .

Then for any ε > 0,
there is a closed interval J ⊂ I such that `(J) > `(I )− ε. Notice that
m∗(I ) ≤ m∗(I ) by monotonicity. So

`(I )− ε < `(J) = m∗(J) by (1), since J is a closed bounded interval

≤ m∗(I ) by monotonicity (Lemma 2.2.A)

≤ m∗(I ) by monotonicity since I ⊆ I

= `(I ) by (1), since I is a closed bounded interval

= `(I ) since I is a bounded interval

and therefore `(I )− ε < m∗(I ) ≤ `(I ). Since ε is arbitrary, `(I ) = m∗(I ).
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Proposition 2.1 (continued)
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Proposition 2.1

Proposition 2.1 (continued 2)

Proposition 2.1. The outer measure of an interval is its length.

Proof (continued). (3) If I is an unbounded interval, then given any
natural number n ∈ N, there is a closed interval J ⊂ I with `(J) = n.
Hence m∗(I ) ≥ m∗(J) = `(J) = n. Since m∗(I ) ≥ n and n ∈ N is
arbitrary, then m∗(I ) = ∞ = `(I ).
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Proposition 2.2

Proposition 2.2

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y , m∗(A + y) = m∗(A).

Proof. Suppose m∗(A) = M < ∞. Then for all ε > 0 there exist {In}∞n=1

bounded open intervals such that A ⊂ ∪In and
∑

`(In) < M + ε by
Theorem 0.3(b).

So if y ∈ R, then {In + y} is a covering of A + y and so
m∗(A + y) ≤

∑
`(In + y) =

∑
`(In) < M + ε. Therefore m∗(A + y) ≤ M.

Now let {Jn} be a collection of bounded open intervals such that
∪Jn ⊃ A + y . ASSUME that

∑
`(Jn) < M. Then {Jn − y} is a covering

of A and
∑

`(Jn − y) =
∑

`(Jn) < M, a CONTRADICTION. So∑
`(Jn) ≥ M and hence m∗(A + y) ≥ M. So m∗(A + y) = m∗(A) = M.
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Proposition 2.2

Proposition 2.2 (continued)

Proposition 2.2. Outer measure is translation invariant; that is, for any
set A and number y , m∗(A + y) = m∗(A).

Proof (continued). Suppose m∗(A) = ∞. Then for any {In}∞n=1 a set of
bounded open intervals such that A ⊂ ∪In, we must have

∑
`(In) = ∞.

Consider A + y .

For any {Jn}∞n=1 a set of bounded open intervals such
that A + y ⊂ ∪Jn, the collection {Jn − y}∞n=1 is a set of bounded open
intervals such that A ⊂ ∪(Jn − y). So

∑
`(Jn − y) = ∞. But

`(Jn) = `(Jn − y), so we must have
∑

`(Jn) = ∞. Since {Jn}∞n=1 is an
arbitrary collection of bounded open intervals covering A + y , we must
have m∗(A + y) = ∞ = m∗(A).
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Proposition 2.3

Proposition 2.3

Proposition 2.3. Outer measure is countably subadditive. That is, if
{Ek}∞k=1 is any countable collection of sets then

m∗

( ∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek).

Proof. The result holds trivially if m∗(Ek) = ∞ for some k. So without
loss of generality assume each Ek has finite outer measure.

Then for all
ε > 0 and for each k ∈ N, there is a countable set of open intervals
{Ik,i}∞i=1 such that Ek ⊂ ∪∞i=1Ik,i and

∑∞
i=1 `(Ik,i ) < m∗(Ek) + ε/2k (by

Theorem 0.3(b)). Then {Ik,i} where i , k ∈ N is a countable collection (by
Theorem 0.10) of open intervals that covers ∪Ek . So
m∗(∪Ek) ≤

∑
i ,k `(Ik,i ) =

∑∞
k=1

∑∞
i=1 `(Ik,i ) <

∑∞
k=1(m

∗(Ek) + ε/2k) =
(
∑∞

k=1 m∗(Ek)) + ε.

Therefore m∗ (
⋃∞

k=1 Ek) ≤
∑∞

k=1 m∗(Ek).
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m∗(∪Ek) ≤

∑
i ,k `(Ik,i ) =

∑∞
k=1

∑∞
i=1 `(Ik,i ) <

∑∞
k=1(m

∗(Ek) + ε/2k) =
(
∑∞

k=1 m∗(Ek)) + ε.

Therefore m∗ (
⋃∞

k=1 Ek) ≤
∑∞

k=1 m∗(Ek).
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Exercise 2.5

Exercise 2.5

Exercise 2.5. [0, 1] is not countable.

Proof. By Proposition 2.1, m∗([0, 1]) = `([0, 1]) = 1. By Corollary 6-9 (in
Kirkwood’s book and in the Riemann-Lebesgue Supplement; or by the
Example on page 31 of Royden and Fitzpatrick), if a set is countable then
the outer measure is 0, or by the logically equivalent contrapositive, if a
set has positive measure then it is not countable. Hence [0, 1] is not
countable.
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