Real Analysis

Chapter 2. Lebesgue Measure

2.3. The σ -Algebra of Lebesgue Measurable Sets—Proofs of Theorems

Table of contents

- Proposition 2.4
- 2 Proposition 2.5
- 3 Proposition 2.6
- 4 Proposition 2.7
- **5** Proposition 2.13
- 6 Proposition 2.8
- Proposition 2.10

Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$. So by monotonicity (Lemma 2.2.A), $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap E^c) \leq m^*(A)$. Therefore

$$m^*(A) \geq m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \setminus E).$$

The reversal of this inequality follows from Note 2.3.A. Hence, E is measurable, as claimed.

Real Analysis September 20, 2022

Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$. So by monotonicity (Lemma 2.2.A), $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap E^c) \leq m^*(A)$. Therefore

$$m^*(A) \ge m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \setminus E).$$

The reversal of this inequality follows from Note 2.3.A. Hence, E is measurable, as claimed.

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$.

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \text{ since } E_1 \in \mathcal{M}$$

$$= m^*(A \cap E_1) + \{m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2) + m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2^c)\}, \quad (*)$$
since $E_2 \in \mathcal{M}$.

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \text{ since } E_1 \in \mathcal{M}$$

$$= m^*(A \cap E_1) + \{m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2) + m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2^c)\}, \quad (*)$$
since $E_2 \in \mathcal{M}$.

Next, in general,

$$[A \cap E_1^c] \cap E_2^c = A \cap [E_1^c \cap E_2^c] = A \cap [E_1 \cup E_2]^c.$$
 (**)

Real Analysis September 20, 2022 4 / 12

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \text{ since } E_1 \in \mathcal{M}$$

$$= m^*(A \cap E_1) + \{m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2) + m^*(\underbrace{[A \cap E_1^c]}_{\subset \mathbb{R}} \cap E_2^c)\}, \quad (*)$$
since $E_2 \in \mathcal{M}$.

Next, in general,

$$[A \cap E_1^c] \cap E_2^c = A \cap [E_1^c \cap E_2^c] = A \cap [E_1 \cup E_2]^c.$$
 (**)

Real Analysis September 20, 2022

We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

- (1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
- (b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$.

So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.

We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

- (1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
- (b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$. So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.
- (2) Let $x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$.
- (a) If $x \in A \cap E_1$ then $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (b) If $x \in A \cap E_2$ then either $x \in E_1$ or $x \in E_1^c$ and so $x \in A \cap E_2 \cap E_1$ or $x \in A \cap E_2 \cap E_1^c$. Also, $A \cap E_2 \cap E_1 \subset A \cap E_1$ and hence $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1]$. So
- $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c].$ So

 $A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c].$

We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

- (1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
- (b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$. So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.
- (2) Let $x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$.
- (a) If $x \in A \cap E_1$ then $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (b) If $x \in A \cap E_2$ then either $x \in E_1$ or $x \in E_1^c$ and so $x \in A \cap E_2 \cap E_1$ or $x \in A \cap E_2 \cap E_1^c$. Also, $A \cap E_2 \cap E_1 \subset A \cap E_1$ and hence $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]$. So $A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]$.

So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2).$

Real Analysis September 20, 2022 5 / 12

We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

- (1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
- (b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$.
- So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.
- (2) Let $x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$.
- (a) If $x \in A \cap E_1$ then $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
- (b) If $x \in A \cap E_2$ then either $x \in E_1$ or $x \in E_1^c$ and so $x \in A \cap E_2 \cap E_1$ or
- $x \in A \cap E_2 \cap E_1^c$. Also, $A \cap E_2 \cap E_1 \subset A \cap E_1$ and hence
- $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c].$ So
- $A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c].$
- So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2).$

() Real Analysis

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$, by subadditivity (Proposition 2.3),

$$m^*(A \cap [E_1 \cup E_2]) \le m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2).$$
 (***)

Therefore

$$m^{*}(A) = m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}^{c}) \text{ by } (*)$$

$$= m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (**)$$

$$\geq m^{*}(A \cap (E_{1} \cup E_{2})) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (***).$$

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$, by subadditivity (Proposition 2.3),

$$m^*(A \cap [E_1 \cup E_2]) \le m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2).$$
 (***)

Therefore

$$m^{*}(A) = m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}^{c}) \text{ by } (*)$$

$$= m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (**)$$

$$\geq m^{*}(A \cap (E_{1} \cup E_{2})) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (***).$$

The reversal of this inequality follows from Note 2.3.A. Hence $E_1 \cup E_2 \in \mathcal{M}$, as claimed.

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$, by subadditivity (Proposition 2.3),

$$m^*(A \cap [E_1 \cup E_2]) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2).$$
 (***)

Therefore

$$m^{*}(A) = m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}^{c}) \text{ by } (*)$$

$$= m^{*}(A \cap E_{1}) + m^{*}([A \cap E_{1}^{c}] \cap E_{2}) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (**)$$

$$\geq m^{*}(A \cap (E_{1} \cup E_{2})) + m^{*}(A \cap [E_{1} \cup E_{2}]^{c}) \text{ by } (***).$$

The reversal of this inequality follows from Note 2.3.A. Hence $E_1 \cup E_2 \in \mathcal{M}$, as claimed.

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then $m^*\left(A \cap \left[\bigcup_{k=1}^n E_k\right]\right) = \sum_{k=1}^n m^*(A \cap E_k)$. In particular, when $A = \mathbb{R}$ we see that m^* is finite additive on \mathcal{M} .

Proof. We establish the result for n=2 and the general case follows by induction. Let $E_1, E_2 \in \mathcal{M}$, $E_1 \cap E_2 = \emptyset$ and $A \subset \mathbb{R}$.

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then $m^*\left(A \cap \left[\bigcup_{k=1}^n E_k\right]\right) = \sum_{k=1}^n m^*(A \cap E_k)$. In particular, when $A = \mathbb{R}$ we see that m^* is finite additive on \mathcal{M} .

Proof. We establish the result for n=2 and the general case follows by

induction. Let $E_1, E_2 \in \mathcal{M}$, $E_1 \cap E_2 = \emptyset$ and $A \subset \mathbb{R}$. Then $A \cap (E_1 \cup E_2) \cap E_2 = A \cap E_2$ and $A \cap (E_1 \cup E_2) \cap E_2^c = A \cap E_1$. Therefore $m^*(\underbrace{A \cap (E_1 \cup E_2)}) = m^*(\underbrace{[A \cap (E_1 \cup E_2)] \cap E_2}) \cap E_2) + m^*(\underbrace{[A \cap (E_1 \cup E_2)] \cap E_2}) \cap E_2^c)$ since $E_2 \in \mathcal{M}$ $= m^*(A \cap E_2) + m^*(A \cap E_1) = \sum_{i=1}^{2} m^*(A \cap E_k). \quad \Box$

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then $m^*\left(A \cap \left[\bigcup_{k=1}^n E_k\right]\right) = \sum_{k=1}^n m^*(A \cap E_k)$. In particular, when $A = \mathbb{R}$ we see that m^* is finite additive on \mathcal{M} .

Proof. We establish the result for n=2 and the general case follows by induction. Let $E_1, E_2 \in \mathcal{M}$, $E_1 \cap E_2 = \emptyset$ and $A \subset \mathbb{R}$. Then $A \cap (E_1 \cup E_2) \cap E_2 = A \cap E_2$ and $A \cap (E_1 \cup E_2) \cap E_2^c = A \cap E_1$. Therefore

$$m^{*}(\underbrace{A \cap (E_{1} \cup E_{2})}_{\subset \mathbb{R}}) = m^{*}(\underbrace{[A \cap (E_{1} \cup E_{2})]}_{\subset \mathbb{R}} \cap E_{2})$$
$$+m^{*}(\underbrace{[A \cap (E_{1} \cup E_{2})]}_{\subset \mathbb{R}} \cap E_{2}^{c}) \text{ since } E_{2} \in \mathcal{M}$$

$$= m^*(A \cap E_2) + m^*(A \cap E_1) = \sum_{k=1}^{2} m^*(A \cap E_k). \quad \Box$$

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $\{A_k\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$. Notice that $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$. Then the set $\{E_k\}$ consists of pairwise disjoint sets and since each $A_k \in \mathcal{M}$, then $\bigcup_{i=1}^{k-1} A_i \in \mathcal{M}$ by Proposition 2.5 and $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k\right)^c \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).

Real Analysis September 20, 2022 8 / 12

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $\{A_k\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$. Notice that $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$. Then the set $\{E_k\}$ consists of pairwise disjoint sets and since each $A_k \in \mathcal{M}$, then $\bigcup_{i=1}^{k-1} A_i \in \mathcal{M}$ by Proposition 2.5 and $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k\right)^c \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).

Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_n = \bigcup_{k=1}^n E_k$. Then $F_n \in \mathcal{M}$ by Proposition 2.5, $F_n^c \supset (\bigcup_{k=1}^{\infty} E_k)^c$, and so by monotonicity (Lemma 2.2.A)

$$m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \ge m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c).$$
 (*)

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $\{A_k\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$. Notice that $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$. Then the set $\{E_k\}$ consists of pairwise disjoint sets and since each $A_k \in \mathcal{M}$, then $\bigcup_{i=1}^{k-1} A_i \in \mathcal{M}$ by Proposition 2.5 and $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k\right)^c \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra). Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_n = \bigcup_{k=1}^n E_k$. Then $F_n \in \mathcal{M}$ by

Proposition 2.5, $F_n^c \supset (\bigcup_{k=1}^{\infty} E_k)^c$, and so by monotonicity (Lemma 2.2.A)

$$m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \ge m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c).$$
 (*)

By Proposition 2.6,

$$m^*(A \cap F_n) = \sum_{k=1}^n m^*(A \cap E_k).$$
 (**)

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let $\{A_k\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i$. Notice that $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$. Then the set $\{E_k\}$ consists of pairwise disjoint sets and since each $A_k \in \mathcal{M}$, then $\bigcup_{i=1}^{k-1} A_i \in \mathcal{M}$ by Proposition 2.5 and $E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k\right)^c \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra). Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_n = \bigcup_{k=1}^n E_k$. Then $F_n \in \mathcal{M}$ by

Proposition 2.5,
$$F_n^c \supset (\bigcup_{k=1}^{\infty} E_k)^c$$
, and so by monotonicity (Lemma 2.2.A)

$$m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \ge m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c).$$
 (*)

By Proposition 2.6,

$$m^*(A \cap F_n) = \sum_{k=1}^n m^*(A \cap E_k).$$
 (**)

Proof (continued). So by (*) and (**) we have

$$m^*(A) \geq \left(\sum_{k=1}^n m^*(A \cap E_k)\right) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^c)$$

for all $n \in \mathbb{N}$. Therefore

$$m^{*}(A) \geq \sum_{k=1}^{\infty} m^{*}(A \cap E_{k}) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$

$$\geq m^{*}(\bigcup_{k=1}^{\infty} (A \cap E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$
by countable subadditivity (Proposition 2.3)
$$= m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c}).$$

Proof (continued). So by (*) and (**) we have

$$m^*(A) \geq \left(\sum_{k=1}^n m^*(A \cap E_k)\right) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^c)$$

for all $n \in \mathbb{N}$. Therefore

$$m^{*}(A) \geq \sum_{k=1}^{\infty} m^{*}(A \cap E_{k}) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$

$$\geq m^{*}(\bigcup_{k=1}^{\infty} (A \cap E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$
by countable subadditivity (Proposition 2.3)
$$= m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c}).$$

The reversal of this inequality follows from Note 2.3.A. Hence $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$, as claimed.

Proof (continued). So by (*) and (**) we have

$$m^*(A) \geq \left(\sum_{k=1}^n m^*(A \cap E_k)\right) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^c)$$

for all $n \in \mathbb{N}$. Therefore

$$m^{*}(A) \geq \sum_{k=1}^{\infty} m^{*}(A \cap E_{k}) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$

$$\geq m^{*}(\bigcup_{k=1}^{\infty} (A \cap E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c})$$
by countable subadditivity (Proposition 2.3)
$$= m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})) + m^{*}(A \cap (\bigcup_{k=1}^{\infty} E_{k})^{c}).$$

The reversal of this inequality follows from Note 2.3.A. Hence $\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M}$, as claimed.

Proposition 2.13. (From Section 2.5.) If $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_k are pairwise disjoint, then $m^* \left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m^*(E_k)$.

Proof. First, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$m^*(\bigcup_{k=1}^{\infty} E_k) \le \sum_{k=1}^{\infty} m^*(E_k).$$
 (*)

Proposition 2.6 shows that m^* is finite additive on \mathcal{M} , and so for all $n \in \mathbb{N}$, $m^*(\bigcup_{k=1}^n E_k) = \sum_{k=1}^n m^*(E_k)$.

Real Analysis September 20, 2022

Proposition 2.13. (From Section 2.5.) If $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_k are pairwise disjoint, then $m^*\left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m^*(E_k)$.

Proof. First, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$m^*(\cup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)$$

Proposition 2.6 shows that m^* is finite additive on \mathcal{M} , and so for all $n \in \mathbb{N}$, $m^*(\bigcup_{k=1}^n E_k) = \sum_{k=1}^n m^*(E_k)$. By monotonicity (Lemma 2.2.A) $m^*(\bigcup_{k=1}^{\infty} E_k) \ge m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k)$ for all $n \in \mathbb{N}$, and so

$$m^*(\bigcup_{k=1}^{\infty} E_k) \ge \sum_{k=1}^{\infty} m^*(E_k).$$
 (**)

Combining (*) and (**) yields the result.

September 20, 2022

Proposition 2.13. (From Section 2.5.) If $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_k are pairwise disjoint, then $m^* \left(\bigcup_{k=1}^{\infty} E_k\right) = \sum_{k=1}^{\infty} m^*(E_k)$.

Proof. First, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$m^*(\cup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)$$

Proposition 2.6 shows that m^* is finite additive on \mathcal{M} , and so for all $n \in \mathbb{N}$, $m^*(\cup_{k=1}^n E_k) = \sum_{k=1}^n m^*(E_k)$. By monotonicity (Lemma 2.2.A) $m^*(\cup_{k=1}^\infty E_k) \geq m^*(\cup_{k=1}^n E_k) = \sum_{k=1}^n m^*(E_k)$ for all $n \in \mathbb{N}$, and so

$$m^*(\bigcup_{k=1}^{\infty} E_k) \ge \sum_{k=1}^{\infty} m^*(E_k).$$
 (**)

Combining (*) and (**) yields the result.

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of $\mathbb R$ contains intervals of the form (a,∞) , then it contains all intervals. So we need to only show for all $a\in\mathbb R$ that $(a,\infty)\in\mathcal M$.

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of $\mathbb R$ contains intervals of the form (a,∞) , then it contains all intervals. So we need to only show for all $a\in\mathbb R$ that $(a,\infty)\in\mathcal M$. Let $A\subset\mathbb R$. Without loss of generality $a\not\in A$ (otherwise, replace A be $A\setminus\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1=A\cap(-\infty,a]=A\cap(-\infty,a)$ and $A_2=A\cap(a,\infty)$. Then $A=A_1\cup A_2$ and $m^*(A)\leq m^*(A_1)+m^*(A_2)$ by subbadditivity (Proposition 2.3).

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \notin A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subbadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with bounded open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I_k''\}$ are countable open covers of A_1 and A_2 , respectively, where $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$ for all k.

Real Analysis September 20, 2022 11 / 12

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \notin A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subbadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with bounded open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I_k'''\}$ are countable open covers of A_1 and A_2 , respectively, where $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$ for all k. Therefore, $m^*(A_1) + m^*(A_2) \le \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an

 $m^*(A_1) + m^*(A_2) \le \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an arbitrary cover of set A, we have $m^*(A_1) + m^*(A_2) \le m^*(A)$.

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \notin A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subbadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with bounded open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I_k'''\}$ are countable open covers of A_1 and A_2 , respectively, where $\ell(I_k) = \ell(I_k') + \ell(I_k'')$ for all k. Therefore, $m^*(A_1) + m^*(A_2) \le \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an arbitrary cover of set A, we have $m^*(A_1) + m^*(A_2) \leq m^*(A)$. Therefore $m^*(A) = m^*(A_1) + m^*(A_2) = m^*(A \cap (-\infty, a]) + m^*(A \cap (a, \infty))$ and $(a,\infty)\in\mathcal{M}.$

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ -algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞) , then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \notin A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subbadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with bounded open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I_k''\}$ are countable open covers of A_1 and A_2 , respectively, where $\ell(I_k) = \ell(I_k') + \ell(I_k'')$ for all k. Therefore, $m^*(A_1) + m^*(A_2) \le \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an arbitrary cover of set A, we have $m^*(A_1) + m^*(A_2) \leq m^*(A)$. Therefore $m^*(A) = m^*(A_1) + m^*(A_2) = m^*(A \cap (-\infty, a]) + m^*(A \cap (a, \infty))$ and $(a,\infty)\in\mathcal{M}$.

Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}$, $y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A - y)$$
 by the translation invariance of m^* (Proposition 2.2)
$$= m^*([A - y] \cap E) + m^*([A - y] \cap E^c)$$
 because $E \in \mathcal{M}$
$$= m^*(A \cap [E + y]) + m^*(A \cap [E + y]^c),$$

where the last equality holds because $([A-y]\cap E)+y=A\cap [E+y]$, $([A-y]\cap E^c)+y=A\cap [E+y]^c$, and the fact that m^* is translation invariant (Proposition 2.2). So $E+y\in \mathcal{M}$.

Real Analysis September 20, 2022

Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}$, $y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A - y)$$
 by the translation invariance of m^* (Proposition 2.2)
$$= m^*([A - y] \cap E) + m^*([A - y] \cap E^c) \text{ because } E \in \mathcal{M}$$
$$= m^*(A \cap [E + y]) + m^*(A \cap [E + y]^c),$$

where the last equality holds because $([A-y] \cap E) + y = A \cap [E+y]$, $([A-y] \cap E^c) + y = A \cap [E+y]^c$, and the fact that m^* is translation invariant (Proposition 2.2). So $E+y \in \mathcal{M}$.

Real Analysis September 20, 2022 12 / 12