Chapter 2. Lebesgue Measure
2.3. The σ-Algebra of Lebesgue Measurable Sets—Proofs of Theorems
Proposition 2.4

Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$.
Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$. So by monotonicity (Lemma 2.2.A), $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap E^c) \leq m^*(A)$. (1)
Proposition 2.4

Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$. So by monotonicity (Lemma 2.2.A), $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap E^c) \leq m^*(A)$. Therefore

$$m^*(A) \geq m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \setminus E).$$

The reversal of this inequality (and hence the conclusion of equality) follow from subadditivity, Proposition 2.3. See the comment on page 35 of the text.
Proposition 2.4. If $m^*(E) = 0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^c \subset A$. So by monotonicity (Lemma 2.2.A), $m^*(A \cap E) \leq m^*(E) = 0$ and $m^*(A \cap E^c) \leq m^*(A)$. Therefore

$$m^*(A) \geq m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \cap E^c) = m^*(A \cap E) + m^*(A \setminus E).$$

The reversal of this inequality (and hence the conclusion of equality) follow from subadditivity, Proposition 2.3. See the comment on page 35 of the text.
Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let \(E_1, E_2 \in \mathcal{M} \) and let \(A \subset \mathbb{R} \).
Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow by induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \text{ since } E_1 \in \mathcal{M}$$

$$= m^*(A \cap E_1) + \{m^*(A \cap E_1^c \cap E_2) + m^*(A \cap E_1^c \cap E_2^c)\}, \quad (*)$$

$$\quad \text{since } E_2 \in \mathcal{M}.$$
Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow by induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

\[
m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \text{ since } E_1 \in \mathcal{M}
\]

\[
= m^*(A \cap E_1) + \{ m^*([A \cap E_1^c] \cap E_2) + m^*([A \cap E_1^c] \cap E_2^c) \}, \quad (*)
\]

since $E_2 \in \mathcal{M}$.

Next, in general,

\[
[A \cap E_1^c] \cap E_2^c = A \cap [E_1^c \cap E_2^c] = A \cap [E_1 \cup E_2]^c. \quad (**)\]

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow by induction. Let $E_1, E_2 \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A \cap E_1) + m^*(A \cap E_1^c), \quad \text{since } E_1 \in \mathcal{M}$$

$$= m^*(A \cap E_1) + \{m^*([A \cap E_1^c] \cap E_2) + m^*([A \cap E_1^c] \cap E_2^c)\}, \quad (*)$$

since $E_2 \in \mathcal{M}$.

Next, in general,

$$[A \cap E_1^c] \cap E_2^c = A \cap [E_1^c \cap E_2^c] = A \cap [E_1 \cup E_2]^c. \quad (**)$$
Proposition 2.5 (continued 1)

We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).

(a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
Proposition 2.5 (continued 1)

We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
 (a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
 (b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).
Proposition 2.5 (continued 1)

We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
(a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
(b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).

So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).
We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
(a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
(b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).
So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).

(2) Let \(x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)\).
Proposition 2.5 (continued 1)

We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).

(a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).

(b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).

So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).

(2) Let \(x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)\).

(a) If \(x \in A \cap E_1\) then \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
We now establish \[A \cap E_1 \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2). \]

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2] \).

(a) If \(x \in A \cap E_1 \) then \(x \in A \cap (E_1 \cup E_2) \).

(b) If \(x \in A \cap E_1^c \cap E_2 \) then \(x \in A \cap E_2 \) and \(x \in A \cap (E_1 \cup E_2) \).

So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).

(2) Let \(x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2) \).

(a) If \(x \in A \cap E_1 \) then \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2] \).

(b) If \(x \in A \cap E_2 \) then either \(x \in E_1 \) or \(x \in E_1^c \) and so \(x \in A \cap E_2 \cap E_1 \) or \(x \in A \cap E_2 \cap E_1^c \).
We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

(1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
(a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
(b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$.
So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.

(2) Let $x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$.
(a) If $x \in A \cap E_1$ then $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
(b) If $x \in A \cap E_2$ then either $x \in E_1$ or $x \in E_1^c$ and so $x \in A \cap E_2 \cap E_1$ or $x \in A \cap E_2 \cap E_1^c$. Also, $A \cap E_2 \cap E_1 \subset A \cap E_2$ and hence $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]$.

Real Analysis
October 6, 2016 5 / 12
Proposition 2.5 (continued 1)

We now establish $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)$.

(1) Let $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
 (a) If $x \in A \cap E_1$ then $x \in A \cap (E_1 \cup E_2)$.
 (b) If $x \in A \cap E_1^c \cap E_2$ then $x \in A \cap E_2$ and $x \in A \cap (E_1 \cup E_2)$.

So $[A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)$.

(2) Let $x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)$.
 (a) If $x \in A \cap E_1$ then $x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]$.
 (b) If $x \in A \cap E_2$ then either $x \in E_1$ or $x \in E_1^c$ and so $x \in A \cap E_2 \cap E_1$ or $x \in A \cap E_2 \cap E_1^c$. Also, $A \cap E_2 \cap E_1 \subset A \cap E_2$ and hence $x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]$. So $A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]$.

Real Analysis
October 6, 2016
5 / 12
We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
(a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
(b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).
So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).

(2) Let \(x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)\).
(a) If \(x \in A \cap E_1\) then \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
(b) If \(x \in A \cap E_2\) then either \(x \in E_1\) or \(x \in E_1^c\) and so \(x \in A \cap E_2 \cap E_1\) or \(x \in A \cap E_2 \cap E_1^c\). Also, \(A \cap E_2 \cap E_1 \subset A \cap E_2\) and hence \(x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]\). So \(A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]\).
So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).
Proposition 2.5 (continued 1)

We now establish \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).

(1) Let \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
 (a) If \(x \in A \cap E_1\) then \(x \in A \cap (E_1 \cup E_2)\).
 (b) If \(x \in A \cap E_1^c \cap E_2\) then \(x \in A \cap E_2\) and \(x \in A \cap (E_1 \cup E_2)\).
 So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] \subset A \cap (E_1 \cup E_2)\).

(2) Let \(x \in A \cap (E_1 \cup E_2) = (A \cap E_1) \cup (A \cap E_2)\).
 (a) If \(x \in A \cap E_1\) then \(x \in [A \cap E_1] \cup [A \cap E_1^c \cap E_2]\).
 (b) If \(x \in A \cap E_2\) then either \(x \in E_1\) or \(x \in E_1^c\) and so \(x \in A \cap E_2 \cap E_1\) or \(x \in A \cap E_2 \cap E_1^c\). Also, \(A \cap E_2 \cap E_1 \subset A \cap E_2\) and hence \(x \in [A \cap E_2 \cap E_1] \cup [A \cap E_2 \cap E_1^c] \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]\). So \(A \cap (E_1 \cup E_2) \subset [A \cap E_1] \cup [A \cap E_2 \cap E_1^c]\).
 So \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\).
Proposition 2.5 (continued 2)

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\), by subadditivity (Proposition 2.3),

\[
m^*(A \cap [E_1 \cup E_2]) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2).
\] (* * *)

Therefore

\[
m^*(A) = m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*(A \cap (E_1 \cup E_2)) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*(A \cap (E_1 \cup E_2))
\]

The reversal of this inequality (and hence the conclusion of equality) follows from subadditivity, Proposition 2.3. See the comment on page 35 of the text. Hence \(E_1 \cup E_2 \in M\).
Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\), by subadditivity (Proposition 2.3),

\[
m^*(A \cap [E_1 \cup E_2]) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2).
\] \((***)\)

Therefore

\[
m^*(A) = m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*([A \cap E_1^c] \cap E_2^c) \text{ by (**) and (***)}
\]

\[
m^*(A) = m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*(A \cap [E_1 \cup E_2]^c) \text{ by (**) and (***)}
\]

\[
m^*(A) \geq m^*(A \cap (E_1 \cup E_2)) + m^*(A \cap [E_1 \cup E_2]^c) \text{ by (***)}.
\]
Proposition 2.5 (continued 2)

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\), by subadditivity (Proposition 2.3),

\[
m^*(A \cap [E_1 \cup E_2]) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2). \quad (\ast \ast \ast)
\]

Therefore

\[
m^*(A) = m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*([A \cap E_1^c] \cap E_2^c) \quad \text{by (\ast)}
\]

\[
= m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*(A \cap [E_1 \cup E_2]^c) \quad \text{by (\ast \ast)}
\]

\[
\geq m^*(A \cap (E_1 \cup E_2)) + m^*(A \cap [E_1 \cup E_2]^c) \quad \text{by (\ast \ast \ast)}.
\]

The reversal of this inequality (and hence the conclusion of equality) follows from subadditivity, Proposition 2.3. See the comment on page 35 of the text. Hence \(E_1 \cup E_2 \in \mathcal{M}\).
Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since \([A \cap E_1] \cup [A \cap E_1^c \cap E_2] = A \cap (E_1 \cup E_2)\), by subadditivity (Proposition 2.3),

\[
m^*(A \cap [E_1 \cup E_2]) \leq m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2). \quad (\ast \ast \ast)
\]

Therefore

\[
m^*(A) = m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*([A \cap E_1^c] \cap E_2^c) \quad \text{by (\ast)}
\]
\[
= m^*(A \cap E_1) + m^*([A \cap E_1^c] \cap E_2) + m^*(A \cap [E_1 \cup E_2]^c) \quad \text{by (\ast\ast)}
\]
\[
\geq m^*(A \cap (E_1 \cup E_2)) + m^*(A \cap [E_1 \cup E_2]^c) \quad \text{by (\ast \ast \ast)}.
\]

The reversal of this inequality (and hence the conclusion of equality) follows from subadditivity, Proposition 2.3. See the comment on page 35 of the text. Hence \(E_1 \cup E_2 \in \mathcal{M}\). \(\square\)
Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then $m^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \right) = \sum_{k=1}^n m^*(A \cap E_k)$. In particular, when $A = \mathbb{R}$ we see that m^* is finite additive on \mathcal{M}.

Proof. We establish the result for $n = 2$ and the general case follows by induction. Let $E_1, E_2 \in \mathcal{M}$, $E_1 \cap E_2 = \emptyset$ and $A \subset \mathbb{R}$.
Proposition 2.6

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\{E_k\}_{k=1}^n$ be a finite disjoint collection of measurable sets. Then $m^* \left(A \cap \left(\bigcup_{k=1}^n E_k \right) \right) = \sum_{k=1}^n m^*(A \cap E_k)$. In particular, when $A = \mathbb{R}$ we see that m^* is finite additive on \mathcal{M}.

Proof. We establish the result for $n = 2$ and the general case follows by induction. Let $E_1, E_2 \in \mathcal{M}$, $E_1 \cap E_2 = \emptyset$ and $A \subset \mathbb{R}$. Then $A \cap (E_1 \cup E_2) \cap E_2 = A \cap E_2$ and $A \cap (E_1 \cup E_2) \cap E_2^c = A \cap E_1$. Therefore

$$m^*(A \cap (E_1 \cup E_2)) \subset \mathbb{R} = m^*([A \cap (E_1 \cup E_2)] \cap E_2) \subset \mathbb{R} + m^*([A \cap (E_1 \cup E_2)] \cap E_2^c) \subset \mathbb{R}$$

since $E_2 \in \mathcal{M}$

$$= m^*(A \cap E_2) + m^*(A \cap E_1) = \sum_{k=1}^2 m^*(A \cap E_k). \qed$$
Proposition 2.6. Let \(A \subset \mathbb{R} \) and let \(\{E_k\}_{k=1}^n \) be a finite disjoint collection of measurable sets. Then
\[
 m^*(A \cap \left[\bigcup_{k=1}^n E_k \right]) = \sum_{k=1}^n m^*(A \cap E_k).
\]
In particular, when \(A = \mathbb{R} \) we see that \(m^* \) is finite additive on \(\mathcal{M} \).

Proof. We establish the result for \(n = 2 \) and the general case follows by induction. Let \(E_1, E_2 \in \mathcal{M} \), \(E_1 \cap E_2 = \emptyset \) and \(A \subset \mathbb{R} \). Then
\[
 A \cap (E_1 \cup E_2) \cap E_2 = A \cap E_2 \quad \text{and} \quad A \cap (E_1 \cup E_2) \cap E_2^c = A \cap E_1.
\]
Therefore
\[
 m^*(A \cap (E_1 \cup E_2)) = m^*(A \cap (E_1 \cup E_2) \cap E_2) + m^*(A \cap (E_1 \cup E_2) \cap E_2^c) \quad \text{since} \quad E_2 \in \mathcal{M}
\]
\[
 = m^*(A \cap E_2) + m^*(A \cap E_1) = \sum_{k=1}^2 m^*(A \cap E_k). \quad \Box
\]
Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{A_k\}_{k=1}^{\infty} \subset \mathcal{M} \).
Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{A_k\}_{k=1}^{\infty} \subset \mathcal{M} \). Define \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \). Notice that \(\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \). Then the set \(\{E_k\} \) consists of pairwise disjoint sets and since each \(A_k \in \mathcal{M} \), then \(\bigcup_{i=1}^{k-1} A_i \in \mathcal{M} \) by Proposition 2.5 and \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k \right)^c \in \mathcal{M} \) since \(\mathcal{M} \) is closed under complements (notice that \(\mathcal{M} \) is closed under finite intersections by DeMorgan’s Laws; in fact, \(\mathcal{M} \) is an algebra).
Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{A_k\}_{k=1}^{\infty} \subset \mathcal{M} \). Define \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \). Notice that \(\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \). Then the set \(\{E_k\} \) consists of pairwise disjoint sets and since each \(A_k \in \mathcal{M} \), then \(\bigcup_{i=1}^{k-1} A_i \in \mathcal{M} \) by Proposition 2.5 and \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k \right)^c \in \mathcal{M} \) since \(\mathcal{M} \) is closed under complements (notice that \(\mathcal{M} \) is closed under finite intersections by DeMorgan’s Laws; in fact, \(\mathcal{M} \) is an algebra).

Let \(A \subset \mathbb{R} \) and \(n \in \mathbb{N} \). Define \(F_n = \bigcup_{k=1}^{n} E_k \).
Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{A_k\}_{k=1}^\infty \subset \mathcal{M} \). Define \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \). Notice that \(\bigcup_{k=1}^\infty E_k = \bigcup_{k=1}^\infty A_k \). Then the set \(\{E_k\} \) consists of pairwise disjoint sets and since each \(A_k \in \mathcal{M} \), then \(\bigcup_{i=1}^{k-1} A_i \in \mathcal{M} \) by Proposition 2.5 and

\[
E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k \right)^c \in \mathcal{M}
\]

since \(\mathcal{M} \) is closed under complements (notice that \(\mathcal{M} \) is closed under finite intersections by DeMorgan’s Laws; in fact, \(\mathcal{M} \) is an algebra).

Let \(A \subset \mathbb{R} \) and \(n \in \mathbb{N} \). Define \(F_n = \bigcup_{k=1}^n E_k \). Then \(F_n \in \mathcal{M} \) by Proposition 2.5, \(F_n^c \supset (\bigcup_{k=1}^\infty E_k)^c \), and so by monotonicity (Lemma 2.2.A)

\[
m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \geq m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^c).
\]

(*)
Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{A_k\}_{k=1}^{\infty} \subset \mathcal{M} \). Define \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \). Notice that \(\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \). Then the set \(\{E_k\} \) consists of pairwise disjoint sets and since each \(A_k \in \mathcal{M} \), then \(\bigcup_{i=1}^{k-1} A_i \in \mathcal{M} \) by Proposition 2.5 and \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k \right)^c \in \mathcal{M} \) since \(\mathcal{M} \) is closed under complements (notice that \(\mathcal{M} \) is closed under finite intersections by DeMorgan’s Laws; in fact, \(\mathcal{M} \) is an algebra).

Let \(A \subset \mathbb{R} \) and \(n \in \mathbb{N} \). Define \(F_n = \bigcup_{k=1}^{n} E_k \). Then \(F_n \in \mathcal{M} \) by Proposition 2.5, \(F_n^c \supset (\bigcup_{k=1}^{\infty} E_k)^c \), and so by monotonicity (Lemma 2.2.A) \(m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \geq m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \). (*)

By Proposition 2.6,

\[
m^*(A \cap F_n) = \sum_{k=1}^{n} m^*(A \cap E_k). \tag{**}
\]
Proposition 2.7. The union of a countable collection of measurable sets is measurable.

Proof. Let \(\{ A_k \}_{k=1}^\infty \subset \mathcal{M} \). Define \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_i \). Notice that \(\bigcup_{k=1}^\infty E_k = \bigcup_{k=1}^\infty A_k \). Then the set \(\{ E_k \} \) consists of pairwise disjoint sets and since each \(A_k \in \mathcal{M} \), then \(\bigcup_{i=1}^{k-1} A_i \in \mathcal{M} \) by Proposition 2.5 and \(E_k = A_k \setminus \bigcup_{i=1}^{k-1} A_k = A_k \cap \left(\bigcup_{i=1}^{k-1} A_k \right)^c \in \mathcal{M} \) since \(\mathcal{M} \) is closed under complements (notice that \(\mathcal{M} \) is closed under finite intersections by DeMorgan’s Laws; in fact, \(\mathcal{M} \) is an algebra).

Let \(A \subset \mathbb{R} \) and \(n \in \mathbb{N} \). Define \(F_n = \bigcup_{k=1}^n E_k \). Then \(F_n \in \mathcal{M} \) by Proposition 2.5, \(F_n^c \supset (\bigcup_{k=1}^\infty E_k)^c \), and so by monotonicity (Lemma 2.2.A) \(m^*(A) = m^*(A \cap F_n) + m^*(A \cap F_n^c) \geq m^*(A \cap F_n) + m^*(A \cap (\bigcup_{k=1}^\infty E_k)^c) \). \((*)\)

By Proposition 2.6,

\[
m^*(A \cap F_n) = \sum_{k=1}^n m^*(A \cap E_k). \quad (**)
\]
Proposition 2.7 (continued)

Proof (continued). So by (*) and (***) we have

$$m^*(A) \geq \left(\sum_{k=1}^{n} m^*(A \cap E_k) \right) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c)$$

for all $n \in \mathbb{N}$. Therefore

$$m^*(A) \geq \sum_{k=1}^{\infty} m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c)$$

by countable subadditivity

$$= m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c).$$
Proposition 2.7 (continued)

Proof (continued). So by (\ast) and (\ast \ast) we have

\[m^*(A) \geq \left(\sum_{k=1}^{n} m^*(A \cap E_k) \right) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

for all \(n \in \mathbb{N} \). Therefore

\[m^*(A) \geq \sum_{k=1}^{\infty} m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

\[\geq m^*(\bigcup_{k=1}^{\infty} (A \cap E_k)) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

by countable subadditivity

\[= m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c). \]

The reversal of this inequality (and hence the conclusion of equality) follow from subadditivity, Proposition 2.3. See the comment on page 35 of the text. Hence \(\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M} \).
Proposition 2.7 (continued)

Proof (continued). So by (*) and (**) we have

\[m^*(A) \geq \left(\sum_{k=1}^{n} m^*(A \cap E_k) \right) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

for all \(n \in \mathbb{N} \). Therefore

\[m^*(A) \geq \sum_{k=1}^{\infty} m^*(A \cap E_k) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

\[\geq m^*(\bigcup_{k=1}^{\infty} (A \cap E_k)) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c) \]

by countable subadditivity

\[= m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)) + m^*(A \cap (\bigcup_{k=1}^{\infty} E_k)^c). \]

The reversal of this inequality (and hence the conclusion of equality) follow from subadditivity, Proposition 2.3. See the comment on page 35 of the text. Hence \(\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k \in \mathcal{M} \).
Proposition 2.13

Proposition 2.13. (From Section 2.5.) If $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_k are pairwise disjoint, then $m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k)$.

Proof. First, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ by Proposition 2.7.
Proposition 2.13

Proposition 2.13. (From Section 2.5.) If $\{E_k\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_k are pairwise disjoint, then $m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k)$.

Proof. First, $\bigcup_{k=1}^{\infty} E_k \in \mathcal{M}$ by Proposition 2.7. By countable subadditivity (Proposition 2.3),

$$m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)$$

Proposition 2.6 shows that m^* is finite additive on \mathcal{M}, and so for all $n \in \mathbb{N}$, $m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k)$.

Proposition 2.13

Proposition 2.13. (From Section 2.5.) If \(\{E_k\}_{k=1}^{\infty} \subset \mathcal{M} \) and the \(E_k \) are pairwise disjoint, then \(m^*(\bigcup_{k=1}^{\infty} E_k) = \sum_{k=1}^{\infty} m^*(E_k) \).

Proof. First, \(\bigcup_{k=1}^{\infty} E_k \in \mathcal{M} \) by Proposition 2.7. By countable subadditivity (Proposition 2.3),

\[
m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)
\]

Proposition 2.6 shows that \(m^* \) is finite additive on \(\mathcal{M} \), and so for all \(n \in \mathbb{N} \), \(m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k) \). By monotonicity (Lemma 2.2.A) \(m^*(\bigcup_{k=1}^{\infty} E_k) \geq m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k) \) for all \(n \in \mathbb{N} \), and so

\[
m^*(\bigcup_{k=1}^{\infty} E_k) \geq \sum_{k=1}^{\infty} m^*(E_k). \quad (**)\]
Proposition 2.13

Proposition 2.13. (From Section 2.5.) If \(\{E_k\}_{k=1}^{\infty} \subset \mathcal{M} \) and the \(E_k \) are pairwise disjoint, then
\[
m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k). \]

Proof. First, \(\bigcup_{k=1}^{\infty} E_k \in \mathcal{M} \) by Proposition 2.7. By countable subadditivity (Proposition 2.3),
\[
m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)
\]

Proposition 2.6 shows that \(m^* \) is finite additive on \(\mathcal{M} \), and so for all \(n \in \mathbb{N} \),
\[
m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k). \quad (**)
\]
By monotonicity (Lemma 2.2.A) \(m^*(\bigcup_{k=1}^{\infty} E_k) \geq m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k) \) for all \(n \in \mathbb{N} \), and so
\[
m^*(\bigcup_{k=1}^{\infty} E_k) \geq \sum_{k=1}^{\infty} m^*(E_k). \quad (***)
\]
Combining \((*)\) and \((***)\) yields the result.
Proposition 2.13.

Proposition 2.13. (From Section 2.5.) If \(\{ E_k \}_{k=1}^{\infty} \subset \mathcal{M} \) and the \(E_k \) are pairwise disjoint, then \(m^* \left(\bigcup_{k=1}^{\infty} E_k \right) = \sum_{k=1}^{\infty} m^*(E_k) \).

Proof. First, \(\bigcup_{k=1}^{\infty} E_k \in \mathcal{M} \) by Proposition 2.7. By countable subadditivity (Proposition 2.3),

\[
m^*(\bigcup_{k=1}^{\infty} E_k) \leq \sum_{k=1}^{\infty} m^*(E_k). \quad (*)
\]

Proposition 2.6 shows that \(m^* \) is finite additive on \(\mathcal{M} \), and so for all \(n \in \mathbb{N} \), \(m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k) \). By monotonicity (Lemma 2.2.A) \(m^*(\bigcup_{k=1}^{\infty} E_k) \geq m^*(\bigcup_{k=1}^{n} E_k) = \sum_{k=1}^{n} m^*(E_k) \) for all \(n \in \mathbb{N} \), and so

\[
m^*(\bigcup_{k=1}^{\infty} E_k) \geq \sum_{k=1}^{\infty} m^*(E_k). \quad (**)
\]

Combining (*) and (**) yields the result.
Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \(\mathbb{R} \) contains intervals of the form \((a, \infty)\), then it contains all intervals. So we need to only show for all \(a \in \mathbb{R} \) that \((a, \infty) \in \mathcal{M}\).
Proposition 2.8

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \not\in A$ (otherwise, replace A by $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subbadditivity (Proposition 2.3).
Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \not\in A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with (bounded) open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I''_k\}$ are countable open covers of A_1 and A_2, respectively, where $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$ for all k.
Proposition 2.8

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \not\in A$ (otherwise, replace A be $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with (bounded) open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I''_k\}$ are countable open covers of A_1 and A_2, respectively, where $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$ for all k. Therefore, $m^*(A_1) + m^*(A_2) \leq \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an arbitrary cover of set A, we have $m^*(A_1) + m^*(A_2) \leq m^*(A)$.

(*Note: The proof is based on the properties of σ-algebras and the construction of open covers to show the measurability of intervals within these properties.*
Proposition 2.8

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \(\mathbb{R} \) contains intervals of the form \((a, \infty)\), then it contains all intervals. So we need to only show for all \(a \in \mathbb{R} \) that \((a, \infty) \in \mathcal{M}\). Let \(A \subset \mathbb{R} \). Without loss of generality \(a \not\in A \) (otherwise, replace \(A \) be \(A \setminus \{a\} \) and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define \(A_1 = A \cap (-\infty, a] = A \cap (-\infty, a) \) and \(A_2 = A \cap (a, \infty) \). Then \(A = A_1 \cup A_2 \) and \(m^*(A) \leq m^*(A_1) + m^*(A_2) \) by subadditivity (Proposition 2.3). Let \(\{I_k\} \) be a countable open cover of \(A \) with (bounded) open intervals. Define \(I'_k = I_k \cap (-\infty, a) \) and \(I''_k = I_k \cap (a, \infty) \). Then \(\{I'_k\} \) and \(\{I''_k\} \) are countable open covers of \(A_1 \) and \(A_2 \), respectively, where \(\ell(I_k) = \ell(I'_k) + \ell(I''_k) \) for all \(k \). Therefore,
\[
m^*(A_1) + m^*(A_2) \leq \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k).\]
Since \(\{I_k\} \) was an arbitrary cover of set \(A \), we have \(m^*(A_1) + m^*(A_2) \leq m^*(A) \). Therefore \(m^*(A) = m^*(A_1) + m^*(A_2) = m^*(A \cap (-\infty, a]) + m^*(A \cap (a, \infty)) \) and \((a, \infty) \in \mathcal{M}\). \(\square \)
Proposition 2.8

Proposition 2.8. Every interval is measurable.

Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality $a \notin A$ (otherwise, replace A by $A \setminus \{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_1 = A \cap (-\infty, a] = A \cap (-\infty, a)$ and $A_2 = A \cap (a, \infty)$. Then $A = A_1 \cup A_2$ and $m^*(A) \leq m^*(A_1) + m^*(A_2)$ by subadditivity (Proposition 2.3). Let $\{I_k\}$ be a countable open cover of A with (bounded) open intervals. Define $I'_k = I_k \cap (-\infty, a)$ and $I''_k = I_k \cap (a, \infty)$. Then $\{I'_k\}$ and $\{I''_k\}$ are countable open covers of A_1 and A_2, respectively, where $\ell(I_k) = \ell(I'_k) + \ell(I''_k)$ for all k. Therefore, $m^*(A_1) + m^*(A_2) \leq \sum \ell(I'_k) + \sum \ell(I''_k) = \sum \ell(I_k)$. Since $\{I_k\}$ was an arbitrary cover of set A, we have $m^*(A_1) + m^*(A_2) \leq m^*(A)$. Therefore $m^*(A) = m^*(A_1) + m^*(A_2) = m^*(A \cap (-\infty, a]) + m^*(A \cap (a, \infty))$ and $(a, \infty) \in \mathcal{M}$. \qed
Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}$, $y \in \mathbb{R}$, and $A \subset \mathbb{R}$.
Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}$, $y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A - y)$$

by the translation invariance of m^* (Proposition 2.2)

$$= m^*([A - y] \cap E) + m^*([A - y] \cap E^c)$$

because $E \in \mathcal{M}$

$$= m^*(A \cap [E + y]) + m^*(A \cap [E + y]^c).$$

So $E + y \in \mathcal{M}$. \qed
Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}$, $y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$m^*(A) = m^*(A - y) \text{ by the translation invariance of } m^* \text{ (Proposition 2.2)}$$

$$= m^*([A - y] \cap E) + m^*([A - y] \cap E^c) \text{ because } E \in \mathcal{M}$$

$$= m^*(A \cap [E + y]) + m^*(A \cap [E + y]^c).$$

So $E + y \in \mathcal{M}.$