Real Analysis

Chapter 2. Lebesgue Measure

2.3. The σ-Algebra of Lebesgue Measurable Sets—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick

Table of contents

(1) Proposition 2.4
(2) Proposition 2.5
(3) Proposition 2.6
(4) Proposition 2.7
(5) Proposition 2.13
(6) Proposition 2.8
(7) Proposition 2.10

Proposition 2.4

Proposition 2.4. If $m^{*}(E)=0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^{c} \subset A$. So by monotonicity (Lemma 2.2.A), $m^{*}(A \cap E) \leq m^{*}(E)=0$ and $m^{*}\left(A \cap E^{c}\right) \leq m^{*}(A)$. Therefore
$m^{*}(A) \geq m^{*}\left(A \cap E^{c}\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)=m^{*}(A \cap E)+m^{*}(A \backslash E)$.
The reversal of this inequality follows from Note 2.3.A. Hence, E is measurable, as claimed.

Proposition 2.4

Proposition 2.4. If $m^{*}(E)=0$, then E is measurable.

Proof. Let $A \subset \mathbb{R}$. Then $A \cap E \subset E$ and $A \cap E^{c} \subset A$. So by monotonicity (Lemma 2.2.A), $m^{*}(A \cap E) \leq m^{*}(E)=0$ and $m^{*}\left(A \cap E^{c}\right) \leq m^{*}(A)$. Therefore $m^{*}(A) \geq m^{*}\left(A \cap E^{c}\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)=m^{*}(A \cap E)+m^{*}(A \backslash E)$.

The reversal of this inequality follows from Note 2.3.A. Hence, E is measurable, as claimed.

Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_{1}, E_{2} \in \mathcal{M}$ and let $A \subset \mathbb{R}$.

Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_{1}, E_{2} \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

since $E_{2} \in \mathcal{M}$.

Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_{1}, E_{2} \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$
\begin{aligned}
m^{*}(A)= & m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{1}^{c}\right), \text { since } E_{1} \in \mathcal{M} \\
= & m^{*}\left(A \cap E_{1}\right)+\{m^{*}([\underbrace{A \cap E_{1}^{c}}_{\subset \mathbb{R}}] \cap E_{2})+m^{*}([\underbrace{A \cap E_{1}^{c}}_{\subset \mathbb{R}}] \cap E_{2}^{c})\}, \quad(*) \\
& \text { since } E_{2} \in \mathcal{M} .
\end{aligned}
$$

Next, in general,

$$
\left[A \cap E_{1}^{c}\right] \cap E_{2}^{c}=A \cap\left[E_{1}^{c} \cap E_{2}^{c}\right]=A \cap\left[E_{1} \cup E_{2}\right]^{c} . \quad(* *)
$$

Proposition 2.5

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof. We show the result for two measurable sets, and the general result will follow be induction. Let $E_{1}, E_{2} \in \mathcal{M}$ and let $A \subset \mathbb{R}$. Then

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(A \cap E_{1}^{c}\right), \text { since } E_{1} \in \mathcal{M} \\
& =m^{*}\left(A \cap E_{1}\right)+\{m^{*}([\underbrace{A \cap E_{1}^{c}}_{\subset \mathbb{R}}] \cap E_{2})+m^{*}([\underbrace{A \cap E_{1}^{c}}_{\subset \mathbb{R}}] \cap E_{2}^{c})\}, \quad(*)
\end{aligned}
$$ since $E_{2} \in \mathcal{M}$.

Next, in general,

$$
\left[A \cap E_{1}^{c}\right] \cap E_{2}^{c}=A \cap\left[E_{1}^{c} \cap E_{2}^{c}\right]=A \cap\left[E_{1} \cup E_{2}\right]^{c} . \quad(* *)
$$

Proposition 2.5 (continued 1)

We now establish $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.
(1) Let $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(a) If $x \in A \cap E_{1}$ then $x \in A \cap\left(E_{1} \cup E_{2}\right)$.
(b) If $x \in A \cap E_{1}^{c} \cap E_{2}$ then $x \in A \cap E_{2}$ and $x \in A \cap\left(E_{1} \cup E_{2}\right)$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right] \subset A \cap\left(E_{1} \cup E_{2}\right)$.

Proposition 2.5 (continued 1)

We now establish $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.
(1) Let $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(a) If $x \in A \cap E_{1}$ then $x \in A \cap\left(E_{1} \cup E_{2}\right)$.
(b) If $x \in A \cap E_{1}^{c} \cap E_{2}$ then $x \in A \cap E_{2}$ and $x \in A \cap\left(E_{1} \cup E_{2}\right)$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right] \subset A \cap\left(E_{1} \cup E_{2}\right)$.
(2) Let $x \in A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2}\right)$.
(a) If $x \in A \cap E_{1}$ then $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$
(b) If $x \in A \cap E_{2}$ then either $x \in E_{1}$ or $x \in E_{1}^{c}$ and so $x \in A \cap E_{2} \cap E_{1}$ or
$x \in A \cap E_{2} \cap E_{1}^{c}$. Also, $A \cap E_{2} \cap E_{1} \subset A \cap E_{1}$ and hence
$x \in\left[A \cap E_{2} \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right] \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$. So
$A \cap\left(E_{1} \cup E_{2}\right) \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$.

Proposition 2.5 (continued 1)

We now establish $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.
(1) Let $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(a) If $x \in A \cap E_{1}$ then $x \in A \cap\left(E_{1} \cup E_{2}\right)$.
(b) If $x \in A \cap E_{1}^{c} \cap E_{2}$ then $x \in A \cap E_{2}$ and $x \in A \cap\left(E_{1} \cup E_{2}\right)$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right] \subset A \cap\left(E_{1} \cup E_{2}\right)$.
(2) Let $x \in A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2}\right)$.
(a) If $x \in A \cap E_{1}$ then $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(b) If $x \in A \cap E_{2}$ then either $x \in E_{1}$ or $x \in E_{1}^{c}$ and so $x \in A \cap E_{2} \cap E_{1}$ or $x \in A \cap E_{2} \cap E_{1}^{c}$. Also, $A \cap E_{2} \cap E_{1} \subset A \cap E_{1}$ and hence $x \in\left[A \cap E_{2} \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right] \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$. So $A \cap\left(E_{1} \cup E_{2}\right) \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.

Proposition 2.5 (continued 1)

We now establish $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.
(1) Let $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(a) If $x \in A \cap E_{1}$ then $x \in A \cap\left(E_{1} \cup E_{2}\right)$.
(b) If $x \in A \cap E_{1}^{c} \cap E_{2}$ then $x \in A \cap E_{2}$ and $x \in A \cap\left(E_{1} \cup E_{2}\right)$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right] \subset A \cap\left(E_{1} \cup E_{2}\right)$.
(2) Let $x \in A \cap\left(E_{1} \cup E_{2}\right)=\left(A \cap E_{1}\right) \cup\left(A \cap E_{2}\right)$.
(a) If $x \in A \cap E_{1}$ then $x \in\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]$.
(b) If $x \in A \cap E_{2}$ then either $x \in E_{1}$ or $x \in E_{1}^{c}$ and so $x \in A \cap E_{2} \cap E_{1}$ or $x \in A \cap E_{2} \cap E_{1}^{c}$. Also, $A \cap E_{2} \cap E_{1} \subset A \cap E_{1}$ and hence $x \in\left[A \cap E_{2} \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right] \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$. So $A \cap\left(E_{1} \cup E_{2}\right) \subset\left[A \cap E_{1}\right] \cup\left[A \cap E_{2} \cap E_{1}^{c}\right]$.

So $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$.

Proposition 2.5 (continued 2)

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$, by subadditivity (Proposition 2.3),

$$
m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]\right) \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right) . \quad(* * *)
$$

Therefore

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}^{c}\right) \text { by }(*) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* *) \\
& \geq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* * *) .
\end{aligned}
$$

Proposition 2.5 (continued 2)

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$, by subadditivity (Proposition 2.3),

$$
m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]\right) \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right) . \quad(* * *)
$$

Therefore

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}^{c}\right) \text { by }(*) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* *) \\
& \geq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* * *) .
\end{aligned}
$$

The reversal of this inequality follows from Note 2.3.A. Hence $E_{1} \cup E_{2} \in \mathcal{M}$, as claimed.

Proposition 2.5 (continued 2)

Proposition 2.5. The union of a finite collection of measurable sets is measurable.

Proof (continued). Since $\left[A \cap E_{1}\right] \cup\left[A \cap E_{1}^{c} \cap E_{2}\right]=A \cap\left(E_{1} \cup E_{2}\right)$, by subadditivity (Proposition 2.3),

$$
m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]\right) \leq m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right) . \quad(* * *)
$$

Therefore

$$
\begin{aligned}
m^{*}(A) & =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}^{c}\right) \text { by }(*) \\
& =m^{*}\left(A \cap E_{1}\right)+m^{*}\left(\left[A \cap E_{1}^{c}\right] \cap E_{2}\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* *) \\
& \geq m^{*}\left(A \cap\left(E_{1} \cup E_{2}\right)\right)+m^{*}\left(A \cap\left[E_{1} \cup E_{2}\right]^{c}\right) \text { by }(* * *) .
\end{aligned}
$$

The reversal of this inequality follows from Note 2.3.A. Hence $E_{1} \cup E_{2} \in \mathcal{M}$, as claimed.

Proposition 2.6

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\left\{E_{k}\right\}_{k=1}^{n}$ be a finite disjoint collection of measurable sets. Then $m^{*}\left(A \cap\left[\bigcup_{k=1}^{n} E_{k}\right]\right)=\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)$. In particular, when $A=\mathbb{R}$ we see that m^{*} is finite additive on \mathcal{M}.

Proof. We establish the result for $n=2$ and the general case follows by induction. Let $E_{1}, E_{2} \in \mathcal{M}, E_{1} \cap E_{2}=\varnothing$ and $A \subset \mathbb{R}$.

Proposition 2.6

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\left\{E_{k}\right\}_{k=1}^{n}$ be a finite disjoint collection of measurable sets. Then $m^{*}\left(A \cap\left[\bigcup_{k=1}^{n} E_{k}\right]\right)=\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)$. In particular, when $A=\mathbb{R}$ we see that m^{*} is finite additive on \mathcal{M}.

Proof. We establish the result for $n=2$ and the general case follows by induction. Let $E_{1}, E_{2} \in \mathcal{M}, E_{1} \cap E_{2}=\varnothing$ and $A \subset \mathbb{R}$. Then
$A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}=A \cap E_{2}$ and $A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}^{c}=A \cap E_{1}$. Therefore

$+m^{*}([\underbrace{A \cap\left(E_{1} \cup E_{2}\right)}_{\subset \mathbb{R}}] \cap E_{2}^{c})$ since $E_{2} \in \mathcal{M}$

$$
=m^{*}\left(A \cap E_{2}\right)+m^{*}\left(A \cap E_{1}\right)=\sum_{k=1}^{2} m^{*}\left(A \cap E_{k}\right) .
$$

Proposition 2.6

Proposition 2.6. Let $A \subset \mathbb{R}$ and let $\left\{E_{k}\right\}_{k=1}^{n}$ be a finite disjoint collection of measurable sets. Then $m^{*}\left(A \cap\left[\bigcup_{k=1}^{n} E_{k}\right]\right)=\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)$. In particular, when $A=\mathbb{R}$ we see that m^{*} is finite additive on \mathcal{M}.

Proof. We establish the result for $n=2$ and the general case follows by induction. Let $E_{1}, E_{2} \in \mathcal{M}, E_{1} \cap E_{2}=\varnothing$ and $A \subset \mathbb{R}$. Then $A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}=A \cap E_{2}$ and $A \cap\left(E_{1} \cup E_{2}\right) \cap E_{2}^{c}=A \cap E_{1}$. Therefore $m^{*}(\underbrace{A \cap\left(E_{1} \cup E_{2}\right)}_{\subset \mathbb{R}})=m^{*}([\underbrace{A \cap\left(E_{1} \cup E_{2}\right)}_{\subset \mathbb{R}}] \cap E_{2})$ $+m^{*}([\underbrace{A \cap\left(E_{1} \cup E_{2}\right)}_{\subset \mathbb{R}}] \cap E_{2}^{c})$ since $E_{2} \in \mathcal{M}$ $=m^{*}\left(A \cap E_{2}\right)+m^{*}\left(A \cap E_{1}\right)=\sum_{k=1}^{2} m^{*}\left(A \cap E_{k}\right)$.

Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.
Proof. Let $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{i}$. Notice that $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k}$. Then the set $\left\{E_{k}\right\}$ consists of pairwise disjoint sets and since each $A_{k} \in \mathcal{M}$, then $\cup_{i=1}^{k-1} A_{i} \in \mathcal{M}$ by Proposition 2.5 and $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{k}=A_{k} \cap\left(\cup_{i=1}^{k-1} A_{k}\right)^{c} \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).

Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.
Proof. Let $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{i}$. Notice that $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k}$. Then the set $\left\{E_{k}\right\}$ consists of pairwise disjoint sets and since each $A_{k} \in \mathcal{M}$, then $\cup_{i=1}^{k-1} A_{i} \in \mathcal{M}$ by Proposition 2.5 and $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{k}=A_{k} \cap\left(\cup_{i=1}^{k-1} A_{k}\right)^{c} \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).
Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_{n}=\cup_{k=1}^{n} E_{k}$. Then $F_{n} \in \mathcal{M}$ by Proposition 2.5, $F_{n}^{c} \supset\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}$, and so by monotonicity (Lemma 2.2.A) $m^{*}(A)=m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap F_{n}^{c}\right) \geq m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right)$.

Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.
Proof. Let $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{i}$. Notice that $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k}$. Then the set $\left\{E_{k}\right\}$ consists of pairwise disjoint sets and since each $A_{k} \in \mathcal{M}$, then $\cup_{i=1}^{k-1} A_{i} \in \mathcal{M}$ by Proposition 2.5 and $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{k}=A_{k} \cap\left(\cup_{i=1}^{k-1} A_{k}\right)^{c} \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).
Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_{n}=\vdash_{k=1}^{n} E_{k}$. Then $F_{n} \in \mathcal{M}$ by Proposition 2.5, $F_{n}^{c} \supset\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}$, and so by monotonicity (Lemma 2.2.A)
$m^{*}(A)=m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap F_{n}^{c}\right) \geq m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right)$.
By Proposition 2.6,

Proposition 2.7

Proposition 2.7. The union of a countable collection of measurable sets is measurable.
Proof. Let $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$. Define $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{i}$. Notice that $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k}$. Then the set $\left\{E_{k}\right\}$ consists of pairwise disjoint sets and since each $A_{k} \in \mathcal{M}$, then $\cup_{i=1}^{k-1} A_{i} \in \mathcal{M}$ by Proposition 2.5 and $E_{k}=A_{k} \backslash \cup_{i=1}^{k-1} A_{k}=A_{k} \cap\left(\cup_{i=1}^{k-1} A_{k}\right)^{c} \in \mathcal{M}$ since \mathcal{M} is closed under complements (notice that \mathcal{M} is closed under finite intersections by DeMorgan's Laws; in fact, \mathcal{M} is an algebra).
Let $A \subset \mathbb{R}$ and $n \in \mathbb{N}$. Define $F_{n}=\vdash_{k=1}^{n} E_{k}$. Then $F_{n} \in \mathcal{M}$ by Proposition 2.5, $F_{n}^{c} \supset\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}$, and so by monotonicity (Lemma 2.2.A)
$m^{*}(A)=m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap F_{n}^{c}\right) \geq m^{*}\left(A \cap F_{n}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right)$.
By Proposition 2.6,

$$
m^{*}\left(A \cap F_{n}\right)=\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right) . \quad(* *)
$$

Proposition 2.7 (continued)

Proof (continued). So by (*) and ($* *$) we have

$$
m^{*}(A) \geq\left(\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right)
$$

for all $n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
m^{*}(A) & \geq \sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \geq m^{*}\left(\cup_{k=1}^{\infty}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \quad \text { by countable subadditivity }(\text { Proposition 2.3 }) \\
& =m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) .
\end{aligned}
$$

Proposition 2.7 (continued)

Proof (continued). So by ($*$) and $(* *)$ we have

$$
m^{*}(A) \geq\left(\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\vdash_{k=1}^{\infty} E_{k}\right)^{c}\right)
$$

for all $n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
m^{*}(A) & \geq \sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \geq m^{*}\left(\cup_{k=1}^{\infty}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \quad \text { by countable subadditivity }(\text { Proposition 2.3 }) \\
& =m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) .
\end{aligned}
$$

The reversal of this inequality follows from Note 2.3.A. Hence $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k} \in \mathcal{M}$, as claimed.

Proposition 2.7 (continued)

Proof (continued). So by ($*$) and $(* *)$ we have

$$
m^{*}(A) \geq\left(\sum_{k=1}^{n} m^{*}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\biguplus_{k=1}^{\infty} E_{k}\right)^{c}\right)
$$

for all $n \in \mathbb{N}$. Therefore

$$
\begin{aligned}
m^{*}(A) & \geq \sum_{k=1}^{\infty} m^{*}\left(A \cap E_{k}\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \geq m^{*}\left(\cup_{k=1}^{\infty}\left(A \cap E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) \\
& \quad \text { by countable subadditivity }(\text { Proposition 2.3) } \\
& =m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)\right)+m^{*}\left(A \cap\left(\cup_{k=1}^{\infty} E_{k}\right)^{c}\right) .
\end{aligned}
$$

The reversal of this inequality follows from Note 2.3.A. Hence $\cup_{k=1}^{\infty} E_{k}=\cup_{k=1}^{\infty} A_{k} \in \mathcal{M}$, as claimed.

Proposition 2.13

Proposition 2.13. (From Section 2.5.) If $\left\{E_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_{k} are pairwise disjoint, then $m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)$.

Proof. First, $\cup_{k=1}^{\infty} E_{k} \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$
\begin{equation*}
m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right) \tag{*}
\end{equation*}
$$

Proposition 2.6 shows that m^{*} is finite additive on \mathcal{M}, and so for all $n \in \mathbb{N}, m^{*}\left(\cup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} m^{*}\left(E_{k}\right)$.

Proposition 2.13

Proposition 2.13. (From Section 2.5.) If $\left\{E_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_{k} are pairwise disjoint, then $m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)$.

Proof. First, $\cup_{k=1}^{\infty} E_{k} \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$
\begin{equation*}
m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right) \tag{*}
\end{equation*}
$$

Proposition 2.6 shows that m^{*} is finite additive on \mathcal{M}, and so for all $n \in \mathbb{N}, m^{*}\left(\vdash_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} m^{*}\left(E_{k}\right)$. By monotonicity (Lemma 2.2.A) $m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \geq m^{*}\left(\cup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} m^{*}\left(E_{k}\right)$ for all $n \in \mathbb{N}$, and so

$$
m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \geq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)
$$

Proposition 2.13

Proposition 2.13. (From Section 2.5.) If $\left\{E_{k}\right\}_{k=1}^{\infty} \subset \mathcal{M}$ and the E_{k} are pairwise disjoint, then $m^{*}\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)$.

Proof. First, $\cup_{k=1}^{\infty} E_{k} \in \mathcal{M}$ by Proposition 2.7. By countable subbadditivity (Proposition 2.3),

$$
\begin{equation*}
m^{*}\left(\ominus_{k=1}^{\infty} E_{k}\right) \leq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right) \tag{*}
\end{equation*}
$$

Proposition 2.6 shows that m^{*} is finite additive on \mathcal{M}, and so for all $n \in \mathbb{N}, m^{*}\left(\vdash_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} m^{*}\left(E_{k}\right)$. By monotonicity (Lemma 2.2.A) $m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \geq m^{*}\left(\cup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} m^{*}\left(E_{k}\right)$ for all $n \in \mathbb{N}$, and so

$$
m^{*}\left(\cup_{k=1}^{\infty} E_{k}\right) \geq \sum_{k=1}^{\infty} m^{*}\left(E_{k}\right)
$$

Combining $(*)$ and $(* *)$ yields the result.

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$.

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality a $\notin A$ (otherwise, replace A be $A \backslash\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_{1}=A \cap(-\infty, a]=A \cap(-\infty, a)$ and $A_{2}=A \cap(a, \infty)$. Then $A=A_{1} \cup A_{2}$ and $m^{*}(A) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$ by subbadditivity (Proposition 2.3).

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality a $\notin A$ (otherwise, replace A be $A \backslash\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_{1}=A \cap(-\infty, a]=A \cap(-\infty, a)$ and $A_{2}=A \cap(a, \infty)$. Then $A=A_{1} \cup A_{2}$ and $m^{*}(A) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$ by subbadditivity (Proposition 2.3). Let $\left\{I_{k}\right\}$ be a countable open cover of A with bounded open intervals. Define $I_{k}^{\prime}=I_{k} \cap(-\infty, a)$ and $I_{k}^{\prime \prime}=I_{k} \cap(a, \infty)$. Then $\left\{I_{k}^{\prime}\right\}$ and $\left\{I_{k}^{\prime \prime}\right\}$ are countable open covers of A_{1} and A_{2}, respectively, where $\ell\left(I_{k}\right)=\ell\left(I_{k}^{\prime}\right)+\ell\left(I_{k}^{\prime \prime}\right)$ for all k.

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality a $\notin A$ (otherwise, replace A be $A \backslash\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_{1}=A \cap(-\infty, a]=A \cap(-\infty, a)$ and $A_{2}=A \cap(a, \infty)$. Then $A=A_{1} \cup A_{2}$ and $m^{*}(A) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$ by subbadditivity (Proposition 2.3). Let $\left\{I_{k}\right\}$ be a countable open cover of A with bounded open intervals. Define $I_{k}^{\prime}=I_{k} \cap(-\infty, a)$ and $I_{k}^{\prime \prime}=I_{k} \cap(a, \infty)$. Then $\left\{I_{k}^{\prime}\right\}$ and $\left\{I_{k}^{\prime \prime}\right\}$ are countable open covers of A_{1} and A_{2}, respectively, where $\ell\left(I_{k}\right)=\ell\left(I_{k}^{\prime}\right)+\ell\left(I_{k}^{\prime \prime}\right)$ for all k. Therefore,

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality a $\notin A$ (otherwise, replace A be $A \backslash\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_{1}=A \cap(-\infty, a]=A \cap(-\infty, a)$ and $A_{2}=A \cap(a, \infty)$. Then
$A=A_{1} \cup A_{2}$ and $m^{*}(A) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$ by subbadditivity (Proposition 2.3). Let $\left\{I_{k}\right\}$ be a countable open cover of A with bounded open intervals. Define $I_{k}^{\prime}=I_{k} \cap(-\infty, a)$ and $I_{k}^{\prime \prime}=I_{k} \cap(a, \infty)$. Then $\left\{I_{k}^{\prime}\right\}$ and $\left\{I_{k}^{\prime \prime}\right\}$ are countable open covers of A_{1} and A_{2}, respectively, where $\ell\left(I_{k}\right)=\ell\left(I_{k}^{\prime}\right)+\ell\left(I_{k}^{\prime \prime}\right)$ for all k. Therefore, $m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right) \leq \sum \ell\left(I_{k}^{\prime}\right)+\sum \ell\left(I_{k}^{\prime \prime}\right)=\sum \ell\left(I_{k}\right)$. Since $\left\{I_{k}\right\}$ was an arbitrary cover of set A, we have $m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right) \leq m^{*}(A)$. Therefore $m^{*}(A)=m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)=m^{*}(A \cap(-\infty, a])+m^{*}(A \cap(a, \infty))$ and

Proposition 2.8

Proposition 2.8. Every interval is measurable.
Proof. Notice that Exercise 2.11 establishes: If a σ-algebra of subsets of \mathbb{R} contains intervals of the form (a, ∞), then it contains all intervals. So we need to only show for all $a \in \mathbb{R}$ that $(a, \infty) \in \mathcal{M}$. Let $A \subset \mathbb{R}$. Without loss of generality a $\notin A$ (otherwise, replace A be $A \backslash\{a\}$ and all relevant outer measures are unchanged; this follows from Exercise 2.9). Define $A_{1}=A \cap(-\infty, a]=A \cap(-\infty, a)$ and $A_{2}=A \cap(a, \infty)$. Then $A=A_{1} \cup A_{2}$ and $m^{*}(A) \leq m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)$ by subbadditivity (Proposition 2.3). Let $\left\{I_{k}\right\}$ be a countable open cover of A with bounded open intervals. Define $I_{k}^{\prime}=I_{k} \cap(-\infty, a)$ and $I_{k}^{\prime \prime}=I_{k} \cap(a, \infty)$. Then $\left\{I_{k}^{\prime}\right\}$ and $\left\{I_{k}^{\prime \prime}\right\}$ are countable open covers of A_{1} and A_{2}, respectively, where $\ell\left(I_{k}\right)=\ell\left(I_{k}^{\prime}\right)+\ell\left(I_{k}^{\prime \prime}\right)$ for all k. Therefore, $m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right) \leq \sum \ell\left(I_{k}^{\prime}\right)+\sum \ell\left(I_{k}^{\prime \prime}\right)=\sum \ell\left(I_{k}\right)$. Since $\left\{I_{k}\right\}$ was an arbitrary cover of set A, we have $m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right) \leq m^{*}(A)$. Therefore $m^{*}(A)=m^{*}\left(A_{1}\right)+m^{*}\left(A_{2}\right)=m^{*}(A \cap(-\infty, a])+m^{*}(A \cap(a, \infty))$ and $(a, \infty) \in \mathcal{M}$.

Proposition 2.10

Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}, y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$
\begin{aligned}
m^{*}(A)= & m^{*}(A-y) \text { by the translation invariance } \\
& \text { of } m^{*}(\text { Proposition } 2.2) \\
= & m^{*}([A-y] \cap E)+m^{*}\left([A-y] \cap E^{c}\right) \text { because } E \in \mathcal{M} \\
= & m^{*}(A \cap[E+y])+m^{*}\left(A \cap[E+y]^{c}\right),
\end{aligned}
$$

where the last equality holds because $([A-y] \cap E)+y=A \cap[E+y]$, $\left([A-y] \cap E^{c}\right)+y=A \cap[E+y]^{c}$, and the fact that m^{*} is translation invariant (Proposition 2.2). So $E+y \in \mathcal{M}$.

Proposition 2.10

Proposition 2.10. The translate of a measurable set is measurable.

Proof. Let $E \in \mathcal{M}, y \in \mathbb{R}$, and $A \subset \mathbb{R}$. Then

$$
\begin{aligned}
m^{*}(A)= & m^{*}(A-y) \text { by the translation invariance } \\
& \text { of } m^{*}(\text { Proposition } 2.2) \\
= & m^{*}([A-y] \cap E)+m^{*}\left([A-y] \cap E^{c}\right) \text { because } E \in \mathcal{M} \\
= & m^{*}(A \cap[E+y])+m^{*}\left(A \cap[E+y]^{c}\right),
\end{aligned}
$$

where the last equality holds because $([A-y] \cap E)+y=A \cap[E+y]$, $\left([A-y] \cap E^{c}\right)+y=A \cap[E+y]^{c}$, and the fact that m^{*} is translation invariant (Proposition 2.2). So $E+y \in \mathcal{M}$.

