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Lemma 2.2.A. Excision Property

Lemma 2.2.A. The Excision Property.
If A is measurable and m*(A) < oo and A C B then

m*(B\ A) = m*(B) — m*(A).
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Lemma 2.2.A. Excision Property

Lemma 2.2.A. Excision Property

Lemma 2.2.A. The Excision Property.

If A is measurable and m*(A) < oo and A C B then
m*(B\ A) = m*(B) — m*(A).

Proof. Since A is measurable and B C R then by the definition of
measurable,

m*(B) = m*(BNA)+ m*(BnA°)
= m*"(BNA)+m*(B\A)sincce BNA°“=B\A
= m*(A)+ m*(B\ A) since A C B.
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Lemma 2.2.A. Excision Property

Lemma 2.2.A. Excision Property

Lemma 2.2.A. The Excision Property.
If A is measurable and m*(A) < oo and A C B then

m*(B\ A) = m*(B) — m*(A).

Proof. Since A is measurable and B C R then by the definition of
measurable,

m*(B) = m*(BNA)+ m*(BnA°)
= m*"(BNA)+m*(B\A)sincce BNA°“=B\A
= m*(A)+ m*(B\ A) since A C B.

Since m*(A) < oo, then m*(B) — m*(A) = m*(B \ A).
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Theorem 2.11

Theorem 2.11. Let E C R. Then each of the following are equivalent to
the measurability of E:
(i) For each € > 0, there is an open set O containing E for
which m* (O \ E) < e.
(i) There is a G5 set G containing E for which m*(G \ E) = 0.
(iii) For each € > 0, there is a closed set F contained in E for
which m*(E\ F) < e.
(iv) Thereis an F, set F contained in E for which
m*(E'\ F) =0.
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Theorem 2.11

Theorem 2.11. Let E C R. Then each of the following are equivalent to
the measurability of E:
(i) For each € > 0, there is an open set O containing E for
which m* (O \ E) < e.
(i) There is a G5 set G containing E for which m*(G \ E) = 0.
(iii) For each € > 0, there is a closed set F contained in E for
which m*(E\ F) < e.
(iv) Thereis an F, set F contained in E for which
m*(E'\ F) =0.

Proof. measurable = (i)
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Theorem 2.11

Theorem 2.11. Let E C R. Then each of the following are equivalent to
the measurability of E:
(i) For each € > 0, there is an open set O containing E for
which m* (O \ E) < e.
(i) There is a G5 set G containing E for which m*(G \ E) = 0.
(iii) For each € > 0, there is a closed set F contained in E for
which m*(E\ F) < e.
(iv) Thereis an F, set F contained in E for which
m*(E'\ F) =0.

Proof. measurable = (i) Let E € M and £ > 0. First, suppose
m*(E) < 0.
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Theorem 2.11

Theorem 2.11. Let E C R. Then each of the following are equivalent to
the measurability of E:
(i) For each € > 0, there is an open set O containing E for
which m* (O \ E) < e.
(i) There is a G5 set G containing E for which m*(G \ E) = 0.
(iii) For each € > 0, there is a closed set F contained in E for
which m*(E\ F) < e.
(iv) Thereis an F, set F contained in E for which
m*(E'\ F) =0.

Proof. measurable = (i) Let E € M and £ > 0. First, suppose

m*(E) < co. Then from the definition of outer measure, there is an open
cover of intervals {/,}2°, of E for which Y ¢(Ix) < m*(E) + ¢ (by
Theorem 0.3(b)). Define O = Ulx. Then O is open and E C O.
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Theorem 2.11

Theorem 2.11. Let E C R. Then each of the following are equivalent to
the measurability of E:
(i) For each € > 0, there is an open set O containing E for
which m* (O \ E) < e.
(i) There is a G5 set G containing E for which m*(G \ E) = 0.
(iii) For each € > 0, there is a closed set F contained in E for
which m*(E\ F) < e.
(iv) Thereis an F, set F contained in E for which
m*(E'\ F) =0.

Proof. measurable = (i) Let E € M and £ > 0. First, suppose
m*(E) < co. Then from the definition of outer measure, there is an open

cover of intervals {/,}2°, of E for which Y ¢(Ix) < m*(E) + ¢ (by
Theorem 0.3(b)). Define O = Ul,. Then O is open and E C O. Also,
m*(O) <> l(lx) < m*(E) +¢, or m*(O) — m*(E) < e. Now

m*(0) = m*(ONE)+m*(ONE°)since E € M

Real Analysis September 27,2022 4/ 8



Theorem 2.11 (continued 1)

Proof (continued).
..m*(0) =m*"(E)+ m*"(O\ E)

and since m*(E) < oo, we have m*(O \ E) = m*(O) — m*(E).
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Theorem 2.11 (continued 1)

Proof (continued).
..m*(O) =m*(E)+ m*"(O\ E)
and since m*(E) < oo, we have m*(O \ E) = m*(O) — m*(E). That is,

m*(O\ E) = m*(O) — m*(E) < ¢ foralle >0. So E € M and
m*(E) < oo implies (i).
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Theorem 2.11 (continued 1)

Proof (continued).
..m*(0) =m*"(E)+ m*"(O\ E)

and since m*(E) < oo, we have m*(O \ E) = m*(O) — m*(E). That is,
m*(O\ E) = m*(O) — m*(E) < ¢ foralle >0. So E € M and

m*(E) < oo implies (i).

Now suppose m*(E) = oo. Then E = U2 ; Ex where each Ej is
measurable and of finite measure (say, Exx = E N[k — 1, k) and
Eoxt1=EN [—k -1, —k))
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Theorem 2.11 (continued 1)

Proof (continued).
..m*(0) =m*"(E)+ m*"(O\ E)

and since m*(E) < oo, we have m*(O \ E) = m*(O) — m*(E). That is,
m*(O\ E) = m*(O) — m*(E) < ¢ foralle >0. So E € M and

m*(E) < oo implies (i).

Now suppose m*(E) = oo. Then E = U2 ; Ex where each Ej is
measurable and of finite measure (say, Exx = E N[k — 1, k) and

Exkr1 = EN[—k —1,—k)). From the above argument, there is open
Ok D Ex for which m*(Oy \ Ex) < /2%, Define O = UO.
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Theorem 2.11 (continued 1)

Proof (continued).
..m*(0) =m*"(E)+ m*"(O\ E)

and since m*(E) < oo, we have m*(O \ E) = m*(O) — m*(E). That is,
m*(O\ E) = m*(O) — m*(E) < ¢ foralle >0. So E € M and

m*(E) < oo implies (i).

Now suppose m*(E) = oo. Then E = U2 ; Ex where each Ej is
measurable and of finite measure (say, Exx = E N[k — 1, k) and

Exkr1 = EN[—k —1,—k)). From the above argument, there is open
Ok D Ex for which m*(Oy \ Ex) < £/2%. Define O = UOy. Then O is
open, O D E and O\ E =UO, \ E C U(Ok \ Ex) and so

m*(O\E) <> m*(Ox\ Ex) < Y. g/2k =¢. So E € M and m*(E) = oo
implies (i).

Therefore E € M implies (i).
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii)
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii) Suppose (i) holds for E. Then for each
k € N there is open Oy D E where m*(Ox \ E) < 1/k. Define G = NOy.
Then G is Gs and G D E.
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii) Suppose (i) holds for E. Then for each

k € N there is open Oy D E where m*(Ox \ E) < 1/k. Define G = NOy.
Then G is Gs and G D E. Also, since G \ E C Oy \ E, monotonicity
implies m*(G \ E) < m*(Ok \ E) < 1/k for all k € N. Therefore

m*(G \ E) =0 and so (ii) holds.
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii) Suppose (i) holds for E. Then for each

k € N there is open Oy D E where m*(Ox \ E) < 1/k. Define G = NOy.
Then G is Gs and G D E. Also, since G \ E C Oy \ E, monotonicity
implies m*(G \ E) < m*(Ok \ E) < 1/k for all k € N. Therefore

m*(G \ E) =0 and so (ii) holds.

(ii) = measurable
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii) Suppose (i) holds for E. Then for each

k € N there is open Oy D E where m*(Ox \ E) < 1/k. Define G = NOy.
Then G is Gs and G D E. Also, since G \ E C Oy \ E, monotonicity
implies m*(G \ E) < m*(Ok \ E) < 1/k for all k € N. Therefore

m*(G \ E) =0 and so (ii) holds.

(ii) = measurable Suppose (ii) holds for E. Then m*(G \ E) = 0 and so
by Proposition 2.4 G \ E € M and hence (G \ E)¢ € M. Since G is G,
then G € M and hence E = GN (G \ E)° € M since M is a o-algebra.
(So E € M implies (i) implies (ii) implies E € M, and so these three
properties are equivalent.)
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Theorem 2.11 (continued 2)

Proof (continued). (i) = (ii) Suppose (i) holds for E. Then for each

k € N there is open Oy D E where m*(Ox \ E) < 1/k. Define G = NOy.
Then G is Gs and G D E. Also, since G \ E C Oy \ E, monotonicity
implies m*(G \ E) < m*(Ok \ E) < 1/k for all k € N. Therefore

m*(G \ E) =0 and so (ii) holds.

(ii) = measurable Suppose (ii) holds for E. Then m*(G \ E) = 0 and so
by Proposition 2.4 G \ E € M and hence (G \ E)¢ € M. Since G is G,
then G € M and hence E = GN (G \ E)° € M since M is a o-algebra.
(So E € M implies (i) implies (ii) implies E € M, and so these three
properties are equivalent.)

To show that E € M is equivalent to (iii) and (iv) (and hence to (i) and

(ii)), we need to apply DeMorgan's Laws and the facts that if E € M then
E€ € M, a set is open if and only if its complement is closed, and a set is
Fo if and only if its complement is Gs (this is Exercise 2.16). O
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Theorem 2.12

Theorem 2.12. Let £ € M, m*(E) < co. Then for each £ > 0, there is a
finite disjoint collection of open intervals {/,}7_; for which, if
O = U}_1lk, then

m*(EAOQ) = m*(E\ O) + m*(O\ E) < e.
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Theorem 2.12
Theorem 2.12. Let £ € M, m*(E) < co. Then for each £ > 0, there is a

finite disjoint collection of open intervals {/,}7_; for which, if
O = U}_1lk, then

m*(EAO) =m"(E\ O)+ m*"(O\ E) <e.
Proof. Let € > 0 be given. Since E is measurable, by Theorem 2.11 (the

“measurable implies (i)" part), there is an open set U such that E C U
and m*(U \ E) < ¢g/2.
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Theorem 2.12

Theorem 2.12. Let £ € M, m*(E) < co. Then for each £ > 0, there is a
finite disjoint collection of open intervals {/,}7_; for which, if
O = U}_1lk, then

m*(EAO) =m"(E\ O)+ m*"(O\ E) <e.
Proof. Let € > 0 be given. Since E is measurable, by Theorem 2.11 (the
“measurable implies (i)" part), there is an open set U such that E C U
and m*(U \ E) < e/2. Since m*(E) < oo by hypothesis and E C U, by

the Excision Property (Lemma 2.4.A) we have
m*(U\ E) = m*(U) — m*(E) and so

m*(U) =m*"(E)+ m"(U\ E) < m"(E)+¢/2.
So m*(U) < oo.
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Theorem 2.12

Theorem 2.12. Let £ € M, m*(E) < co. Then for each £ > 0, there is a
finite disjoint collection of open intervals {/,}7_; for which, if
O = U}_1lk, then

m*(EAO) =m"(E\ O)+ m*"(O\ E) <e.

Proof. Let € > 0 be given. Since E is measurable, by Theorem 2.11 (the
“measurable implies (i)" part), there is an open set U such that E C U
and m*(U \ E) < e/2. Since m*(E) < oo by hypothesis and E C U, by
the Excision Property (Lemma 2.4.A) we have

m*(U \ E) = m*(U) — m*(E) and so

m*(U) =m*"(E)+ m"(U\ E) < m"(E)+¢/2.

So m*(U) < oo. Since U is an open set of real numbers, then by Theorem
0.7 we have U = g2, I for some set of open intervals {/,}2° . Each
interval is measurable by Proposition 2.8 and the outer measure of an
interval is its length by Proposition 2.1.
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Theorem 2.12 (continued)

Proof (continued). Therefore by finite additivity (Proposition 2.6) and
the monotonicity of outer measure (Lemma 2.2.A) we have for each n € N:

> () = m* (i—ile) < m*(U) < o0.
k=1
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Theorem 2.12 (continued)

Proof (continued). Therefore by finite additivity (Proposition 2.6) and
the monotonicity of outer measure (Lemma 2.2.A) we have for each n € N:

> () = m* (i—ile) < m*(U) < o0.
k=1

Therefore > 72 ¢(Ix) < oo and so {£(/()}52, is a summable sequence of
nonnegative real numbers. So by a property of summable series of
nonnegative real numbers (“the tail must be small”) there is n € N such

that D702 1 (1) < e/2.
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Theorem 2.12 (continued)

Proof (continued). Therefore by finite additivity (Proposition 2.6) and
the monotonicity of outer measure (Lemma 2.2.A) we have for each n € N:

> () = m* (i—ile) < m*(U) < o0.
k=1

Therefore > 72 ¢(Ix) < oo and so {£(/()}52, is a summable sequence of
nonnegative real numbers. So by a property of summable series of
nonnegative real numbers (“the tail must be small”) there is n € N such
that D702 1 U(lk) < /2. Define O = Wj_,lx. Since O\ E CU \ E, then
by monotonicity of outer measure (Lemma 2.2.A) and the fact that
m*(U \ E) < €/2 established above, we have

m*(O\E) < m*(U\ E) <¢e/2.

Real Analysis September 27,2022 8/ 8



Theorem 2.12 (continued)

Proof (continued). Therefore by finite additivity (Proposition 2.6) and
the monotonicity of outer measure (Lemma 2.2.A) we have for each n € N:

> () = m* (i—ile) < m*(U) < o0.
k=1

Therefore > 72 ¢(Ix) < oo and so {£(/()}52, is a summable sequence of
nonnegative real numbers. So by a property of summable series of
nonnegative real numbers (“the tail must be small”) there is n € N such
that D702 1 U(lk) < /2. Define O = Wj_,lx. Since O\ E CU \ E, then
by monotonicity of outer measure (Lemma 2.2.A) and the fact that
m*(U \ E) < €/2 established above, we have
m*(O\ E) < m*(U\ E) < &/2. On the other hand, since E C U,
ENOCU\O=UE, 1k and so by the definition of outer measure (in
terms of an infimum), m*(E\ O) <372 1 (lk) < e/2. Thus
m*(O\E)+ m"(E\O) <e/2+¢/2=¢. O
Real Analysis September 27, 2022 8 /8



	Lemma 2.2.A. Excision Property
	Theorem 2.11
	Theorem 2.12

