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Lemma 2.2.A. Excision Property

Lemma 2.2.A. Excision Property

Lemma 2.2.A. The Excision Property.
If A is measurable and m∗(A) < ∞ and A ⊂ B then

m∗(B \ A) = m∗(B)−m∗(A).

Proof. Since A is measurable and B ⊂ R then by the definition of
measurable,

m∗(B) = m∗(B ∩ A) + m∗(B ∩ Ac)

= m∗(B ∩ A) + m∗(B \ A) since B ∩ Ac = B \ A

= m∗(A) + m∗(B \ A) since A ⊂ B.

Since m∗(A) < ∞, then m∗(B)−m∗(A) = m∗(B \ A).
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Theorem 2.11

Theorem 2.11

Theorem 2.11. Let E ⊂ R. Then each of the following are equivalent to
the measurability of E :

(i) For each ε > 0, there is an open set O containing E for
which m∗(O \ E ) < ε.

(ii) There is a Gδ set G containing E for which m∗(G \ E ) = 0.
(iii) For each ε > 0, there is a closed set F contained in E for

which m∗(E \ F ) < ε.
(iv) There is an Fσ set F contained in E for which

m∗(E \ F ) = 0.

Proof. measurable ⇒ (i)

Let E ∈M and ε > 0. First, suppose
m∗(E ) < ∞. Then from the definition of outer measure, there is an open
cover of intervals {Ik}∞k=1 of E for which

∑
`(Ik) < m∗(E ) + ε (by

Theorem 0.3(b)). Define O = ∪Ik . Then O is open and E ⊂ O. Also,
m∗(O) ≤

∑
`(Ik) < m∗(E ) + ε, or m∗(O)−m∗(E ) < ε. Now

m∗(O) = m∗(O ∩ E ) + m∗(O ∩ E c) since E ∈M
= m∗(E ) + m∗(O \ E )
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Theorem 2.11

Theorem 2.11 (continued 1)

Proof (continued).

. . .m∗(O) = m∗(E ) + m∗(O \ E )

and since m∗(E ) < ∞, we have m∗(O \ E ) = m∗(O)−m∗(E ). That is,
m∗(O \ E ) = m∗(O)−m∗(E ) < ε for all ε > 0. So E ∈M and
m∗(E ) < ∞ implies (i).

Now suppose m∗(E ) = ∞. Then E = ∪·∞k=1Ek where each Ek is
measurable and of finite measure (say, E2k = E ∩ [k − 1, k) and
E2k+1 = E ∩ [−k − 1,−k)). From the above argument, there is open
Ok ⊃ Ek for which m∗(Ok \ Ek) < ε/2k . Define O = ∪Ok . Then O is
open, O ⊃ E and O \ E = ∪Ok \ E ⊂ ∪(Ok \ Ek) and so
m∗(O \ E ) ≤

∑
m∗(Ok \ Ek) <

∑
ε/2k = ε. So E ∈M and m∗(E ) = ∞

implies (i).
Therefore E ∈M implies (i).
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Theorem 2.11

Theorem 2.11 (continued 2)

Proof (continued). (i) ⇒ (ii) Suppose (i) holds for E . Then for each
k ∈ N there is open Ok ⊃ E where m∗(Ok \ E ) < 1/k. Define G = ∩Ok .
Then G is Gδ and G ⊃ E .

Also, since G \ E ⊂ Ok \ E , monotonicity
implies m∗(G \ E ) ≤ m∗(Ok \ E ) < 1/k for all k ∈ N. Therefore
m∗(G \ E ) = 0 and so (ii) holds.

(ii) ⇒ measurable Suppose (ii) holds for E . Then m∗(G \ E ) = 0 and so
by Proposition 2.4 G \ E ∈M and hence (G \ E )c ∈M. Since G is Gδ,
then G ∈M and hence E = G ∩ (G \ E )c ∈M since M is a σ-algebra.
(So E ∈M implies (i) implies (ii) implies E ∈M, and so these three
properties are equivalent.)

To show that E ∈M is equivalent to (iii) and (iv) (and hence to (i) and
(ii)), we need to apply DeMorgan’s Laws and the facts that if E ∈M then
E c ∈M, a set is open if and only if its complement is closed, and a set is
Fσ if and only if its complement is Gδ (this is Exercise 2.16).
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Theorem 2.12

Theorem 2.12

Theorem 2.12. Let E ∈M, m∗(E ) < ∞. Then for each ε > 0, there is a
finite disjoint collection of open intervals {Ik}nk=1 for which, if
O = ∪· nk=1Ik , then

m∗(E∆O) = m∗(E \ O) + m∗(O \ E ) < ε.

Proof. Let ε > 0 be given. Since E is measurable, by Theorem 2.11 (the
“measurable implies (i)” part), there is an open set U such that E ⊂ U
and m∗(U \ E ) < ε/2.

Since m∗(E ) < ∞ by hypothesis and E ⊂ U , by
the Excision Property (Lemma 2.4.A) we have
m∗(U \ E ) = m∗(U)−m∗(E ) and so

m∗(U) = m∗(E ) + m∗(U \ E ) < m∗(E ) + ε/2.

So m∗(U) < ∞. Since U is an open set of real numbers, then by Theorem
0.7 we have U = ∪·∞k=1Ik for some set of open intervals {Ik}∞k=1. Each
interval is measurable by Proposition 2.8 and the outer measure of an
interval is its length by Proposition 2.1.
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Theorem 2.12

Theorem 2.12 (continued)

Proof (continued). Therefore by finite additivity (Proposition 2.6) and
the monotonicity of outer measure (Lemma 2.2.A) we have for each n ∈ N:

n∑
k=1

`(Ik) = m∗ (∪· nk=1Ik) ≤ m∗(U) < ∞.

Therefore
∑∞

k=1 `(Ik) < ∞ and so {`(Ik)}∞k=1 is a summable sequence of
nonnegative real numbers. So by a property of summable series of
nonnegative real numbers (“the tail must be small”) there is n ∈ N such
that

∑∞
k=n+1 `(Ik) < ε/2.

Define O = ∪· nk=1Ik . Since O \ E ⊂ U \ E , then
by monotonicity of outer measure (Lemma 2.2.A) and the fact that
m∗(U \ E ) < ε/2 established above, we have
m∗(O \ E ) ≤ m∗(U \ E ) < ε/2. On the other hand, since E ⊂ U ,
E \ O ⊂ U \ O = ∪∞k=n+1Ik , and so by the definition of outer measure (in
terms of an infimum), m∗(E \ O) ≤

∑∞
k=n+1 `(Ik) < ε/2. Thus

m∗(O \ E ) + m∗(E \ O) < ε/2 + ε/2 = ε.
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