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Theorem 2.15

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:
(i) If {Ak}22, is an ascending collection of measurable sets (i.e.,
A C Ak+1), then
m(UiozlAk) = m(Iimk_,oo Ak) = limy_oo m(Ak)
(i) If {Bx}72 is a descending collection of measurable sets (i.e.,
B, D Bk+1) and m(Bl) < 00, then
m(ﬂleBk) = m(Iimk_wo Bk) = limg_ oo m(Bk)
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Theorem 2.15

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(i) If {Ak}22, is an ascending collection of measurable sets (i.e.,

Ak C Ak+1), then
m(U22 ;1 Ak) = m(limg_o0 Ax) = limy_oo m(Ag).

(i) If {Bx}72 is a descending collection of measurable sets (i.e.,

By D Byy1) and m(Bi) < oo, then
m(N224 Bi) = m(limg_00 Bi) = limy_,oo m(By).

Proof of (i). If m(Ay,) = oo for some kg, then the result holds trivially.
So suppose, without loss of generality, that m(Ax) < oo for all k.
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Theorem 2.15

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(i) If {Ak}22, is an ascending collection of measurable sets (i.e.,
A C Ak+1), then
m(UiozlAk) = m(Iimk_,oo Ak) = limy_oo m(Ak)

(i) If {Bx}72 is a descending collection of measurable sets (i.e.,
B, D Bk+1) and m(Bl) < 00, then
m(ﬂiO:IBk) = m(Iimk_>OO Bk) = limg_ oo m(Bk)

Proof of (i). If m(Ay,) = oo for some kg, then the result holds trivially.
So suppose, without loss of generality, that m(Ax) < oo for all k. Define
Ao = & and Cx = Ak \ Ak_1 for k > 1. Since {Ax} is ascending, the Cy's
are disjoint and U2 ; Ay = U2, Ck. Since m is countably additive by
Proposition 2.6,

MU A) = MU, G = S5, m(Ce) = 338 A\ Acr).
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Theorem 2.15 (continued 1)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

L. If {Ac}72; is an ascending collection of measurable sets (i.e.
Ak C Ak41), then
m(UZ2 ;1 Ax) = m(limy_o0 Ax) = limy_oo m(Ay).

Proof (continued). By the Excision Property of measure (Lemma 2.4.A),

Uk 1Ak Zm Ak\Ak 1 Z[m Ak Ak 1)]
k=1

= lim (Z[m Ar) — m(Ax_ 1)]) = lim [m(Aq) —m(Ag)] = lim m(A,),

n—oo n—oo

since m(Ag) = m(@) = 0. Therefore
m(U2 1 Ak) = m(limy_oo Ax) = limy_.oo m(Ax), as claimed.
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Theorem 2.15 (continued 2)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(i) If {Bk}72; is a descending collection of measurable sets (i.e.,
By D Bk+1) and m(Bl) < 00, then
m(ﬂleBk) = m(limk_>oo Bk) = limg_oo m(Bk)

Proof of (ii). Define D, = By \ By for k € N. Since {By}32, is a
descending sequence of sets, then {D,}?° ; is an ascending sequence of
sets.
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Theorem 2.15 (continued 2)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(i) If {Bk}72; is a descending collection of measurable sets (i.e.,
By D Bk+1) and m(Bl) < 00, then
m(ﬂleBk) = m(limk_>oo Bk) = limg_oo m(Bk)

Proof of (ii). Define D, = By \ By for k € N. Since {By}32, is a
descending sequence of sets, then {D,}?° ; is an ascending sequence of
sets. Applying (i) to {Dx}?2, gives

m (U1 Dk) = kILmOO m(Dy). (%)

By De Morgan's Laws (Theorem 0.1, applied to relative complements)

Ukz1 Dk = URZ1(B1 \ Bx) = URZ1(BiN Bg) = B \ N1 Bk (*%)
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Theorem 2.15 (continued 3)

Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since
m(By) < oo and By C Bj, we have
m(Dy) = m(Bi1 \ Bx) = m(B1) — m(By) for all k € N.
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Theorem 2.15 (continued 3)

Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since
m(By) < oo and By C Bj, we have
m(Dy) = m(By \ Bx) = m(B1) — m(By) for all k € N. So
m (Ui Dk) = m(Bu\ M1 Bk) by (+x)
m(Bi1) — m (N3, Bxk) by the Excision Property
= klim m(Dy) by (x)
= klim (m(B1) — m(Bx)) by the definition of Dy

= m(B1) — kILmoo m(By).

Hence, since m(B1) < oo, m(N2,Bx) = limg_o m(By), as claimed. [
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let {Ex}2°, be a countable collection of measurable sets for which

Y ey m(Ex) < oo. Then almost all x € R belong to at most finitely many
of the Ej’s.
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let {Ex}2°, be a countable collection of measurable sets for which

Y ey m(Ex) < oo. Then almost all x € R belong to at most finitely many
of the Ej’s.

Proof. By countable subadditivity m(U2 Ex) < > 72, m(Ex) < co. So
m(Ny21[Ue  Ex]) = lim m(Uz2, Ex) by Theorem 2.15(ii)

o0

<
< nIer;OkZ m(Eg) as above
n

= Osmcez (Ex) < oo.
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let {Ex}2°, be a countable collection of measurable sets for which

Y ey m(Ex) < oo. Then almost all x € R belong to at most finitely many
of the Ej’s.

Proof. By countable subadditivity m(U2 Ex) < > 72, m(Ex) < co. So
m(Ny21[Ue  Ex]) = lim m(Uz2, Ex) by Theorem 2.15(ii)

o0

<
< nIer;OkZ m(Eg) as above
n

= Osmcez (Ex) < oo.

Now N92 4 [UR, Ex] is the set of all points which are in infinitely many

E.'s. Smce the measure of this set is zero, almost all real numbers belong

to finitely many Ex’s, as claimed. Ol
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