Real Analysis

Chapter 2. Lebesgue Measure

2.5. Countable Additivity, Continuity, and the Borel-Cantelli Lemma—Proofs of Theorems

Real Analysis

Table of contents

Theorem 2.15

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

Proof of (i). If $m(A_{k_0}) = \infty$ for some k_0 , then the result holds trivially. So suppose, without loss of generality, that $m(A_k) < \infty$ for all k.

Theorem 2.15

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

Proof of (i). If $m(A_{k_0}) = \infty$ for some k_0 , then the result holds trivially. So suppose, without loss of generality, that $m(A_k) < \infty$ for all k. Define $A_0 = \emptyset$ and $C_k = A_k \setminus A_{k-1}$ for $k \ge 1$. Since $\{A_k\}$ is ascending, the C_k 's are disjoint and $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} C_k$. Since m is countably additive by Proposition 2.6,

 $m(\bigcup_{k=1}^{\infty}A_k)=m(\bigcup_{k=1}^{\infty}C_k)=\sum_{k=1}^{\infty}m(C_k)=\sum_{k=1}^{\infty}m(A_k\setminus A_{k-1}).$

Theorem 2.15

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

Proof of (i). If $m(A_{k_0}) = \infty$ for some k_0 , then the result holds trivially. So suppose, without loss of generality, that $m(A_k) < \infty$ for all k. Define $A_0 = \emptyset$ and $C_k = A_k \setminus A_{k-1}$ for $k \ge 1$. Since $\{A_k\}$ is ascending, the C_k 's are disjoint and $\bigcup_{k=1}^{\infty} A_k = \bigcup_{k=1}^{\infty} C_k$. Since m is countably additive by Proposition 2.6,

$$m(\bigcup_{k=1}^{\infty}A_k)=m(\bigcup_{k=1}^{\infty}C_k)=\sum_{k=1}^{\infty}m(C_k)=\sum_{k=1}^{\infty}m(A_k\setminus A_{k-1}).$$

Theorem 2.15 (continued 1)

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

1. If
$$\{A_k\}_{k=1}^{\infty}$$
 is an ascending collection of measurable sets (i.e., $A_k \subset A_{k+1}$), then $m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k\to\infty} A_k) = \lim_{k\to\infty} m(A_k)$.

Proof (continued). By the Excision Property of measure (Lemma 2.4.A),

$$m(\cup_{k=1}^{\infty}A_k) = \sum_{k=1}^{\infty}m(A_k \setminus A_{k-1}) = \sum_{k=1}^{\infty}[m(A_k) - m(A_{k-1})]$$

$$=\lim_{n\to\infty}\left(\sum_{k=1}^n [m(A_k)-m(A_{k-1})]\right)=\lim_{n\to\infty} [m(A_n)-m(A_0)]=\lim_{n\to\infty} m(A_n),$$

since $m(A_0) = m(\emptyset) = 0$. Therefore $m(\bigcup_{k=1}^{\infty} A_k) = m(\lim_{k\to\infty} A_k) = \lim_{k\to\infty} m(A_k)$, as claimed.

Theorem 2.15 (continued 2)

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(ii) If
$$\{B_k\}_{k=1}^{\infty}$$
 is a descending collection of measurable sets (i.e., $B_k \supset B_{k+1}$) and $m(B_1) < \infty$, then $m(\bigcap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k)$.

Proof of (ii). Define $D_k = B_1 \setminus B_k$ for $k \in \mathbb{N}$. Since $\{B_k\}_{k=1}^{\infty}$ is a descending sequence of sets, then $\{D_k\}_{k=1}^{\infty}$ is an ascending sequence of sets. Applying (i) to $\{D_k\}_{k=1}^{\infty}$ gives

$$m(\cup_{k=1}^{\infty}D_k) = \lim_{k\to\infty}m(D_k). \quad (*)$$

By De Morgan's Laws (Theorem 0.1, applied to relative complements)

 $\cup_{k=1}^{\infty} D_k = \bigcup_{k=1}^{\infty} (B_1 \setminus B_k) = \bigcup_{k=1}^{\infty} (B_1 \cap B_k^c) = B_1 \setminus \bigcap_{k=1}^{\infty} B_k.$ (**)

Theorem 2.15 (continued 2)

Theorem 2.15. Measure is Continuous.

Lebesgue measure satisfies:

(ii) If
$$\{B_k\}_{k=1}^{\infty}$$
 is a descending collection of measurable sets (i.e., $B_k \supset B_{k+1}$) and $m(B_1) < \infty$, then $m(\bigcap_{k=1}^{\infty} B_k) = m(\lim_{k \to \infty} B_k) = \lim_{k \to \infty} m(B_k)$.

Proof of (ii). Define $D_k = B_1 \setminus B_k$ for $k \in \mathbb{N}$. Since $\{B_k\}_{k=1}^{\infty}$ is a descending sequence of sets, then $\{D_k\}_{k=1}^{\infty}$ is an ascending sequence of sets. Applying (i) to $\{D_k\}_{k=1}^{\infty}$ gives

$$m(\cup_{k=1}^{\infty}D_k) = \lim_{k\to\infty}m(D_k). \quad (*)$$

By De Morgan's Laws (Theorem 0.1, applied to relative complements)

$$\cup_{k=1}^{\infty} D_k = \cup_{k=1}^{\infty} (B_1 \setminus B_k) = \cup_{k=1}^{\infty} (B_1 \cap B_k^c) = B_1 \setminus \cap_{k=1}^{\infty} B_k. \quad (**)$$

Theorem 2.15 (continued 3)

Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since $m(B_k) < \infty$ and $B_k \subset B_1$, we have $m(D_k) = m(B_1 \setminus B_k) = m(B_1) - m(B_k)$ for all $k \in \mathbb{N}$. So $m(\bigcup_{k=1}^{\infty} D_k) = m(B_1 \setminus \bigcap_{k=1}^{\infty} B_k) \text{ by } (**)$ $= m(B_1) - m(\bigcap_{k=1}^{\infty} B_k) \text{ by the Excision Property}$ $= \lim_{k \to \infty} m(D_k) \text{ by } (*)$

$$= \lim_{k \to \infty} (m(B_1) - m(B_k)) \text{ by the definition of } D_k$$
$$= m(B_1) - \lim_{k \to \infty} m(B_k).$$

Hence, since $m(B_1) < \infty$, $m(\bigcap_{k=1}^{\infty} B_k) = \lim_{k \to \infty} m(B_k)$, as claimed.

Theorem 2.15 (continued 3)

Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since $m(B_k) < \infty$ and $B_k \subset B_1$, we have $m(D_k) = m(B_1 \setminus B_k) = m(B_1) - m(B_k)$ for all $k \in \mathbb{N}$. So $m(\bigcup_{k=1}^{\infty}D_k) = m(B_1 \setminus \bigcap_{k=1}^{\infty}B_k)$ by (**) $= m(B_1) - m(\bigcap_{k=1}^{\infty} B_k)$ by the Excision Property $= \lim_{k \to \infty} m(D_k)$ by (*) $= \lim_{k \to \infty} (m(B_1) - m(B_k))$ by the definition of D_k $= m(B_1) - \lim_{k\to\infty} m(B_k).$

Hence, since $m(B_1) < \infty$, $m(\bigcap_{k=1}^{\infty} B_k) = \lim_{k \to \infty} m(B_k)$, as claimed.

The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of measurable sets for which $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the E_k 's.

Proof. By countable subadditivity $m(\bigcup_{k=n}^{\infty} E_k) \leq \sum_{k=n}^{\infty} m(E_k) < \infty$. So

$$\begin{split} n(\bigcap_{n=1}^{\infty}[\cup_{k=n}^{\infty}E_k]) &= \lim_{n \to \infty} m(\bigcup_{k=n}^{\infty}E_k) \text{ by Theorem 2.15(ii)} \\ &\leq \lim_{n \to \infty}\sum_{k=n}^{\infty}m(E_k) \text{ as above} \\ &= 0 \text{ since } \sum_{n=1}^{\infty}m(E_k) < \infty. \end{split}$$

The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of measurable sets for which $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the E_k 's.

Proof. By countable subadditivity $m(\bigcup_{k=n}^{\infty} E_k) \leq \sum_{k=n}^{\infty} m(E_k) < \infty$. So

$$\begin{split} m(\bigcap_{n=1}^{\infty}[\cup_{k=n}^{\infty}E_{k}]) &= \lim_{n \to \infty} m(\cup_{k=n}^{\infty}E_{k}) \text{ by Theorem 2.15(ii)} \\ &\leq \lim_{n \to \infty}\sum_{k=n}^{\infty}m(E_{k}) \text{ as above} \\ &= 0 \text{ since } \sum_{n=1}^{\infty}m(E_{k}) < \infty. \end{split}$$

Now $\bigcap_{n=1}^{\infty} [\bigcup_{k=n}^{\infty} E_k]$ is the set of all points which are in infinitely many E_k 's. Since the measure of this set is zero, almost all real numbers belong to finitely many E_k 's, as claimed.

- 0

1

The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.

Let $\{E_k\}_{k=1}^{\infty}$ be a countable collection of measurable sets for which $\sum_{k=1}^{\infty} m(E_k) < \infty$. Then almost all $x \in \mathbb{R}$ belong to at most finitely many of the E_k 's.

Proof. By countable subadditivity $m(\bigcup_{k=n}^{\infty} E_k) \leq \sum_{k=n}^{\infty} m(E_k) < \infty$. So

$$\begin{array}{ll} m(\cap_{n=1}^{\infty}[\cup_{k=n}^{\infty}E_{k}]) & = & \lim_{n \to \infty} m(\cup_{k=n}^{\infty}E_{k}) \text{ by Theorem 2.15(ii)} \\ & \leq & \lim_{n \to \infty}\sum_{k=n}^{\infty}m(E_{k}) \text{ as above} \\ & = & 0 \text{ since } \sum_{n=1}^{\infty}m(E_{k}) < \infty. \end{array}$$

Now $\bigcap_{n=1}^{\infty} [\bigcup_{k=n}^{\infty} E_k]$ is the set of all points which are in infinitely many E_k 's. Since the measure of this set is zero, almost all real numbers belong to finitely many E_k 's, as claimed.

1