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Theorem 2.15

Theorem 2.15

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(i) If {Ak}∞k=1 is an ascending collection of measurable sets (i.e.,
Ak ⊂ Ak+1), then
m(∪∞k=1Ak) = m(limk→∞ Ak) = limk→∞m(Ak).

(ii) If {Bk}∞k=1 is a descending collection of measurable sets (i.e.,
Bk ⊃ Bk+1) and m(B1) < ∞, then
m(∩∞k=1Bk) = m(limk→∞ Bk) = limk→∞m(Bk).

Proof of (i). If m(Ak0) = ∞ for some k0, then the result holds trivially.
So suppose, without loss of generality, that m(Ak) < ∞ for all k.

Define
A0 = ∅ and Ck = Ak \ Ak−1 for k ≥ 1. Since {Ak} is ascending, the Ck ’s
are disjoint and ∪∞k=1Ak = ∪·∞k=1Ck . Since m is countably additive by
Proposition 2.6,
m(∪∞k=1Ak) = m(∪·∞k=1Ck) =

∑∞
k=1 m(Ck) =

∑∞
k=1 m(Ak \ Ak−1).
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Theorem 2.15

Theorem 2.15 (continued 1)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

1. If {Ak}∞k=1 is an ascending collection of measurable sets (i.e.,
Ak ⊂ Ak+1), then
m(∪∞k=1Ak) = m(limk→∞ Ak) = limk→∞m(Ak).

Proof (continued). By the Excision Property of measure (Lemma 2.4.A),

m(∪∞k=1Ak) =
∞∑

k=1

m(Ak \ Ak−1) =
∞∑

k=1

[m(Ak)−m(Ak−1)]

= lim
n→∞

(
n∑

k=1

[m(Ak)−m(Ak−1)]

)
= lim

n→∞
[m(An)−m(A0)] = lim

n→∞
m(An),

since m(A0) = m(∅) = 0. Therefore
m(∪∞k=1Ak) = m(limk→∞ Ak) = limk→∞m(Ak), as claimed.
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Theorem 2.15

Theorem 2.15 (continued 2)

Theorem 2.15. Measure is Continuous.
Lebesgue measure satisfies:

(ii) If {Bk}∞k=1 is a descending collection of measurable sets (i.e.,
Bk ⊃ Bk+1) and m(B1) < ∞, then
m(∩∞k=1Bk) = m(limk→∞ Bk) = limk→∞m(Bk).

Proof of (ii). Define Dk = B1 \ Bk for k ∈ N. Since {Bk}∞k=1 is a
descending sequence of sets, then {Dk}∞k=1 is an ascending sequence of
sets. Applying (i) to {Dk}∞k=1 gives

m (∪∞k=1Dk) = lim
k→∞

m(Dk). (∗)

By De Morgan’s Laws (Theorem 0.1, applied to relative complements)

∪∞k=1Dk = ∪∞k=1(B1 \ Bk) = ∪∞k=1(B1 ∩ Bc
k ) = B1 \ ∩∞k=1Bk . (∗∗)
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Theorem 2.15

Theorem 2.15 (continued 3)

Proof (continued). Next, by the Excision Property (Lemma 2.4.A), since
m(Bk) < ∞ and Bk ⊂ B1, we have
m(Dk) = m(B1 \ Bk) = m(B1)−m(Bk) for all k ∈ N. So

m (∪∞k=1Dk) = m (B1 \ ∩∞k=1Bk) by (∗∗)
= m(B1)−m (∩∞k=1Bk) by the Excision Property

= lim
k→∞

m(Dk) by (∗)

= lim
k→∞

(m(B1)−m(Bk)) by the definition of Dk

= m(B1)− lim
k→∞

m(Bk).

Hence, since m(B1) < ∞, m (∩∞k=1Bk) = limk→∞m(Bk), as claimed.
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The Borel-Cantelli Lemma

The Borel-Cantelli Lemma

The Borel-Cantelli Lemma.
Let {Ek}∞k=1 be a countable collection of measurable sets for which∑∞

k=1 m(Ek) < ∞. Then almost all x ∈ R belong to at most finitely many
of the Ek ’s.

Proof. By countable subadditivity m(∪∞k=nEk) ≤
∑∞

k=n m(Ek) < ∞. So

m(∩∞n=1[∪∞k=nEk ]) = lim
n→∞

m(∪∞k=nEk) by Theorem 2.15(ii)

≤ lim
n→∞

∞∑
k=n

m(Ek) as above

= 0 since
∞∑

n=1

m(Ek) < ∞.

Now ∩∞n=1[∪∞k=nEk ] is the set of all points which are in infinitely many
Ek ’s. Since the measure of this set is zero, almost all real numbers belong
to finitely many Ek ’s, as claimed.
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