Real Analysis J

Chapter 2. Lebesgue Measure
2.6. Nonmeasurable Sets (4th Ed.)—Proofs of Theorems

REAT
ANALYSIS

H.L. Royden » P.M. Fitzpatrick Fourth
Edition

Real Analysis September 28,2020 1/ 6



R —
Table of contents

© Lemma 2.16

© Theorem 2.17. The Vitali Construction of a Nonmeasurable Set

© Theorem 2.18

Real Analysis September 28,2020 2 /6



Lemma 2.16

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real humbers.
Suppose there is a bounded countably infinite set of real numbers A for

which the collection of translates of E, {E + A}xea is disjoint. Then
m(E) = 0.
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Lemma 2.16

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real humbers.
Suppose there is a bounded countably infinite set of real numbers A for

which the collection of translates of E, {E + A}xea is disjoint. Then
m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition
2.10. So by countable additivity (Proposition 2.13)
m (Unen(E +A)) = 2 onep m(E + A).
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Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers.
Suppose there is a bounded countably infinite set of real numbers A for
which the collection of translates of E, {E + A}xea is disjoint. Then
m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition
2.10. So by countable additivity (Proposition 2.13)

m (Uxen(E + X)) = > yepn M(E 4 X). Since both E and A are bounded
sets, then the set WUyea(E 4 A) is also bounded (below by a sum of lower
bounds of E and A and above by a sum of upper bounds of E and A) and
so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is
translation invariant (Proposition 2.2), m(E + \) = m(E) > 0.
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Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers.
Suppose there is a bounded countably infinite set of real numbers A for
which the collection of translates of E, {E + A}xea is disjoint. Then
m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition
2.10. So by countable additivity (Proposition 2.13)

m (Uxen(E + X)) = > yepn M(E 4 X). Since both E and A are bounded
sets, then the set WUyea(E 4 A) is also bounded (below by a sum of lower
bounds of E and A and above by a sum of upper bounds of E and A) and
so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is
translation invariant (Proposition 2.2), m(E + \) = m(E) > 0. Then

00 > m(Uhea(E+ X)) =D m(E+X)=> m(E)
AEN AEA
and so m(E) = 0 (otherwise, > 5 m(E) = 00). O
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Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.
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Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer
measure, so without loss of generality we may suppose that E is bounded.
Let Cg be a choice set for the rational equivalence relation on E. We now
show Cg is not measurable.
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Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer
measure, so without loss of generality we may suppose that E is bounded.
Let Cg be a choice set for the rational equivalence relation on E. We now
show Cg is not measurable.

ASSUME Cg is measurable. Let Ag be any bounded countably infinite set
of rational numbers. Since Cg is measurable and collection {Cg + A}xen,
is disjoint, then by Lemma 2.16 we have m(Cg) = 0.
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Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer
measure, so without loss of generality we may suppose that E is bounded.
Let Cg be a choice set for the rational equivalence relation on E. We now
show Cg is not measurable.

ASSUME Cg is measurable. Let Ag be any bounded countably infinite set
of rational numbers. Since Cg is measurable and collection {Cg + A}xen,
is disjoint, then by Lemma 2.16 we have m(Cg) = 0. So by the translation
invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

m(L-J,\E/\O(CE + )\)) = Z m(CE + )\) = Z m(CE) =0.

AeNg A€o
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Theorem 2.17. The Vitali Construction of a Nonmeasurable Set

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.

Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof (continued). Since E is bounded, then E C [—b, b] for some

b € R. Define Ag = [—2b,2b] N Q. Then Ag is bounded and countably
infinite.
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Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof (continued). Since E is bounded, then E C [—b, b] for some

b € R. Define Ag = [—2b,2b] N Q. Then Ag is bounded and countably
infinite. Let x € E. Then there is some ¢ € Cg such that x = ¢ + g with
g € Q. But x and ¢ belong to [—b, b] and so x = ¢+ g € [—b, b]. So
x=c+ q € Cg+ X\ where A = g € [-2b,2b]. Since x is an arbitrary
element of E then E C Uxepa,(CE + ).
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Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof (continued). Since E is bounded, then E C [—b, b] for some

b € R. Define Ag = [—2b,2b] N Q. Then Ag is bounded and countably
infinite. Let x € E. Then there is some ¢ € Cg such that x = ¢ + g with
g € Q. But x and ¢ belong to [—b, b] and so x = ¢+ g € [—b, b]. So
x=c+ q € Cg+ X\ where A = g € [-2b,2b]. Since x is an arbitrary
element of E then E C Wxepa,(Ce + A). But m*(E) > 0 and so as shown
above m*(WUxep,(Ce + A)) =0, so we have a CONTRADICTION by
monotonicity (Lemma 2.2.A):

0< m*(E) < m*(U)\e/\O(CE + /\)) =0.

This contradiction shows that the assumption that Cg is measurable is
false. O
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Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

m* (AU B) < m*(A) + m*(B).
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Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

m* (AU B) < m*(A) + m*(B).

Proof. ASSUME m*(AJ B) = m*(A) + m*(B) for every disjoint pair of
sets A and B.
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Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which
m* (AU B) < m*(A) + m*(B).
Proof. ASSUME m*(AJ B) = m*(A) + m*(B) for every disjoint pair of
sets A and B. Then for any A, E C R we have
m* (A)=m* (ANE)U(ANE®)=m"(ANE)+ m* (ANE®)

and so every E C R is measurable, a CONTRADICTION to Theorem 2.17.
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Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

m* (AU B) < m*(A) + m*(B).

Proof. ASSUME m*(AJ B) = m*(A) + m*(B) for every disjoint pair of
sets A and B. Then for any A, E C R we have

m*(A) = m*((AN E) W (AN ES)) = m*(AN E) + m*(An EF)

and so every E C R is measurable, a CONTRADICTION to Theorem 2.17.
So for some disjoint A, B C R we have m*(AJ B) # m*(A) + m*(B). By
subadditivity (Proposition 2.3) m* (AW B) < m*(A) + m*(B), so it must
be that for some disjoint A, B C R we have

m*(AY B) < m*(A) + m*(B). O
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