Real Analysis

Chapter 2. Lebesgue Measure

2.6. Nonmeasurable Sets (4th Ed.)—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick

Table of contents

(1) Lemma 2.16
(2) Theorem 2.17. The Vitali Construction of a Nonmeasurable Set
(3) Theorem 2.18

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers Λ for which the collection of translates of $E,\{E+\lambda\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m\left(\cup_{\lambda \in \Lambda}(E+\lambda)\right)=\sum_{\lambda \in \Lambda} m(E+\lambda)$.

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers Λ for which the collection of translates of $E,\{E+\lambda\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m\left(\cup_{\lambda \in \Lambda}(E+\lambda)\right)=\sum_{\lambda \in \Lambda} m(E+\lambda)$. Since both E and Λ are bounded sets, then the set $\cup_{\lambda \in \Lambda}(E+\lambda)$ is also bounded (below by a sum of lower bounds of E and Λ and above by a sum of upper bounds of E and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E+\lambda)=m(E) \geq 0$.

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers Λ for which the collection of translates of $E,\{E+\lambda\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m\left(\cup_{\lambda \in \Lambda}(E+\lambda)\right)=\sum_{\lambda \in \Lambda} m(E+\lambda)$. Since both E and Λ are bounded sets, then the set $\cup_{\lambda \in \Lambda}(E+\lambda)$ is also bounded (below by a sum of lower bounds of E and Λ and above by a sum of upper bounds of E and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E+\lambda)=m(E) \geq 0$. Then

and so $m(E)=0$ (otherwise, $\sum_{\lambda \in \Lambda} m(E)=\infty$).

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers. Suppose there is a bounded countably infinite set of real numbers Λ for which the collection of translates of $E,\{E+\lambda\}_{\lambda \in \Lambda}$ is disjoint. Then $m(E)=0$.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m\left(\cup_{\lambda \in \Lambda}(E+\lambda)\right)=\sum_{\lambda \in \Lambda} m(E+\lambda)$. Since both E and Λ are bounded sets, then the set $\cup_{\lambda \in \Lambda}(E+\lambda)$ is also bounded (below by a sum of lower bounds of E and Λ and above by a sum of upper bounds of E and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E+\lambda)=m(E) \geq 0$. Then

$$
\infty>m\left(\cup_{\lambda \in \Lambda}(E+\lambda)\right)=\sum_{\lambda \in \Lambda} m(E+\lambda)=\sum_{\lambda \in \Lambda} m(E)
$$

and so $m(E)=0$ (otherwise, $\sum_{\lambda \in \Lambda} m(E)=\infty$).

Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer measure, so without loss of generality we may suppose that E is bounded. Let \mathcal{C}_{E} be a choice set for the rational equivalence relation on E. We now show \mathcal{C}_{E} is not measurable.

Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer measure, so without loss of generality we may suppose that E is bounded. Let \mathcal{C}_{E} be a choice set for the rational equivalence relation on E. We now show \mathcal{C}_{E} is not measurable.

ASSUME \mathcal{C}_{E} is measurable. Let Λ_{0} be any bounded countably infinite set of rational numbers. Since \mathcal{C}_{E} is measurable and collection $\left\{\mathcal{C}_{E}+\lambda\right\}_{\lambda \in \Lambda_{0}}$ is disjoint, then by Lemma 2.16 we have $m\left(\mathcal{C}_{E}\right)=0$.

Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer measure, so without loss of generality we may suppose that E is bounded. Let \mathcal{C}_{E} be a choice set for the rational equivalence relation on E. We now show \mathcal{C}_{E} is not measurable.

ASSUME \mathcal{C}_{E} is measurable. Let Λ_{0} be any bounded countably infinite set of rational numbers. Since \mathcal{C}_{E} is measurable and collection $\left\{\mathcal{C}_{E}+\lambda\right\}_{\lambda \in \Lambda_{0}}$ is disjoint, then by Lemma 2.16 we have $m\left(\mathcal{C}_{E}\right)=0$. So by the translation invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer measure, so without loss of generality we may suppose that E is bounded. Let \mathcal{C}_{E} be a choice set for the rational equivalence relation on E. We now show \mathcal{C}_{E} is not measurable.

ASSUME \mathcal{C}_{E} is measurable. Let Λ_{0} be any bounded countably infinite set of rational numbers. Since \mathcal{C}_{E} is measurable and collection $\left\{\mathcal{C}_{E}+\lambda\right\}_{\lambda \in \Lambda_{0}}$ is disjoint, then by Lemma 2.16 we have $m\left(\mathcal{C}_{E}\right)=0$. So by the translation invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

$$
m\left(\cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)\right)=\sum_{\lambda \in \Lambda_{0}} m\left(\mathcal{C}_{E}+\lambda\right)=\sum_{\lambda \in \Lambda_{0}} m\left(\mathcal{C}_{E}\right)=0
$$

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since E is bounded, then $E \subset[-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_{0}=[-2 b, 2 b] \cap \mathbb{Q}$. Then Λ_{0} is bounded and countably infinite. Let $x \in E$. Then there is some $c \in C_{E}$ such that $x=c+q$ with $q \in \mathbb{Q}$. But x and c belong to $[-b, b]$ and so $x=c+q \in[-b, b]$. So $x=c+q \in \mathcal{C}_{E}+\lambda$ where $\lambda=q \in[-2 b, 2 b]$. Since x is an arbitrary element of E then $E \subset \cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)$.

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since E is bounded, then $E \subset[-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_{0}=[-2 b, 2 b] \cap \mathbb{Q}$. Then Λ_{0} is bounded and countably infinite. Let $x \in E$. Then there is some $c \in \mathcal{C}_{E}$ such that $x=c+q$ with $q \in \mathbb{Q}$. But x and c belong to $[-b, b]$ and so $x=c+q \in[-b, b]$. So $x=c+q \in \mathcal{C}_{E}+\lambda$ where $\lambda=q \in[-2 b, 2 b]$. Since x is an arbitrary element of E then $E \subset \uplus_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)$. But $m^{*}(E)>0$ and so as shown above $m^{*}\left(\cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)\right)=0$, so we have a CONTRADICTION by monotonicity (Lemma 2.2.A):

$$
0<m^{*}(E) \leq m^{*}\left(\cup_{\lambda \in \Lambda_{0}}\left(C_{E}+\lambda\right)\right)=0 .
$$

This contradiction shows that the assumption that \mathcal{C}_{E} is measurable is false.

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since E is bounded, then $E \subset[-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_{0}=[-2 b, 2 b] \cap \mathbb{Q}$. Then Λ_{0} is bounded and countably infinite. Let $x \in E$. Then there is some $c \in \mathcal{C}_{E}$ such that $x=c+q$ with $q \in \mathbb{Q}$. But x and c belong to $[-b, b]$ and so $x=c+q \in[-b, b]$. So $x=c+q \in \mathcal{C}_{E}+\lambda$ where $\lambda=q \in[-2 b, 2 b]$. Since x is an arbitrary element of E then $E \subset \cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)$. But $m^{*}(E)>0$ and so as shown above $m^{*}\left(\cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)\right)=0$, so we have a CONTRADICTION by monotonicity (Lemma 2.2.A):

$$
0<m^{*}(E) \leq m^{*}\left(\cup_{\lambda \in \Lambda_{0}}\left(\mathcal{C}_{E}+\lambda\right)\right)=0 .
$$

This contradiction shows that the assumption that \mathcal{C}_{E} is measurable is false.

Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B.

Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17.

Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17. So for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B) \neq m^{*}(A)+m^{*}(B)$. By subadditivity (Proposition 2.3) $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$, so it must be that for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$.

Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17. So for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B) \neq m^{*}(A)+m^{*}(B)$. By subadditivity (Proposition 2.3) $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$, so it must be that for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$.

