Real Analysis

Chapter 2. Lebesgue Measure 2.6. Nonmeasurable Sets (4th Ed.)—Proofs of Theorems

2 Theorem 2.17. The Vitali Construction of a Nonmeasurable Set

3 Theorem 2.18

Lemma 2.16. Let *E* be a <u>bounded</u> measurable set of real numbers. Suppose there is a <u>bounded</u> countably infinite set of real numbers Λ for which the collection of translates of *E*, $\{E + \lambda\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m(\bigcup_{\lambda \in \Lambda} (E + \lambda)) = \sum_{\lambda \in \Lambda} m(E + \lambda).$

Lemma 2.16. Let *E* be a <u>bounded</u> measurable set of real numbers. Suppose there is a <u>bounded</u> countably infinite set of real numbers Λ for which the collection of translates of *E*, $\{E + \lambda\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m(\bigcup_{\lambda \in \Lambda}(E + \lambda)) = \sum_{\lambda \in \Lambda} m(E + \lambda)$. Since both *E* and Λ are bounded sets, then the set $\bigcup_{\lambda \in \Lambda} (E + \lambda)$ is also bounded (below by a sum of lower bounds of *E* and Λ and above by a sum of upper bounds of *E* and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E + \lambda) = m(E) \ge 0$.

Lemma 2.16. Let *E* be a <u>bounded</u> measurable set of real numbers. Suppose there is a <u>bounded</u> countably infinite set of real numbers Λ for which the collection of translates of *E*, $\{E + \lambda\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m(\bigcup_{\lambda \in \Lambda}(E + \lambda)) = \sum_{\lambda \in \Lambda} m(E + \lambda)$. Since both *E* and Λ are bounded sets, then the set $\bigcup_{\lambda \in \Lambda} (E + \lambda)$ is also bounded (below by a sum of lower bounds of *E* and Λ and above by a sum of upper bounds of *E* and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E + \lambda) = m(E) \ge 0$. Then

$$\infty > m(\cup_{\lambda \in \Lambda}(E + \lambda)) = \sum_{\lambda \in \Lambda} m(E + \lambda) = \sum_{\lambda \in \Lambda} m(E)$$

and so m(E) = 0 (otherwise, $\sum_{\lambda \in \Lambda} m(E) = \infty$).

Lemma 2.16. Let *E* be a <u>bounded</u> measurable set of real numbers. Suppose there is a <u>bounded</u> countably infinite set of real numbers Λ for which the collection of translates of *E*, $\{E + \lambda\}_{\lambda \in \Lambda}$ is disjoint. Then m(E) = 0.

Proof. The translate of a measurable set is measurable by Proposition 2.10. So by countable additivity (Proposition 2.13) $m(\bigcup_{\lambda \in \Lambda}(E + \lambda)) = \sum_{\lambda \in \Lambda} m(E + \lambda)$. Since both *E* and Λ are bounded sets, then the set $\bigcup_{\lambda \in \Lambda}(E + \lambda)$ is also bounded (below by a sum of lower bounds of *E* and Λ and above by a sum of upper bounds of *E* and Λ) and so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is translation invariant (Proposition 2.2), $m(E + \lambda) = m(E) \ge 0$. Then

$$\infty > m(\cup_{\lambda \in \Lambda}(E+\lambda)) = \sum_{\lambda \in \Lambda} m(E+\lambda) = \sum_{\lambda \in \Lambda} m(E)$$

and so
$$m(E) = 0$$
 (otherwise, $\sum_{\lambda \in \Lambda} m(E) = \infty$).

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer measure, so without loss of generality we may suppose that E is bounded. Let C_E be a choice set for the rational equivalence relation on E. We now show C_E is not measurable.

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, *E* has a bounded subset of positive outer measure, so without loss of generality we may suppose that *E* is bounded. Let C_E be a choice set for the rational equivalence relation on *E*. We now show C_E is not measurable.

ASSUME C_E is measurable. Let Λ_0 be *any* bounded countably infinite set of rational numbers. Since C_E is measurable and collection $\{C_E + \lambda\}_{\lambda \in \Lambda_0}$ is disjoint, then by Lemma 2.16 we have $m(C_E) = 0$.

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, *E* has a bounded subset of positive outer measure, so without loss of generality we may suppose that *E* is bounded. Let C_E be a choice set for the rational equivalence relation on *E*. We now show C_E is not measurable.

ASSUME C_E is measurable. Let Λ_0 be *any* bounded countably infinite set of rational numbers. Since C_E is measurable and collection $\{C_E + \lambda\}_{\lambda \in \Lambda_0}$ is disjoint, then by Lemma 2.16 we have $m(C_E) = 0$. So by the translation invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

$$m(\cup_{\lambda\in\Lambda_0}(\mathcal{C}_E+\lambda))=\sum_{\lambda\in\Lambda_0}m(\mathcal{C}_E+\lambda)=\sum_{\lambda\in\Lambda_0}m(\mathcal{C}_E)=0.$$

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof. By Exercise 2.14, *E* has a bounded subset of positive outer measure, so without loss of generality we may suppose that *E* is bounded. Let C_E be a choice set for the rational equivalence relation on *E*. We now show C_E is not measurable.

ASSUME C_E is measurable. Let Λ_0 be *any* bounded countably infinite set of rational numbers. Since C_E is measurable and collection $\{C_E + \lambda\}_{\lambda \in \Lambda_0}$ is disjoint, then by Lemma 2.16 we have $m(C_E) = 0$. So by the translation invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

$$m(\cup_{\lambda\in\Lambda_0}(\mathcal{C}_E+\lambda))=\sum_{\lambda\in\Lambda_0}m(\mathcal{C}_E+\lambda)=\sum_{\lambda\in\Lambda_0}m(\mathcal{C}_E)=0.$$

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since *E* is bounded, then $E \subset [-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_0 = [-2b, 2b] \cap \mathbb{Q}$. Then Λ_0 is bounded and countably infinite. Let $x \in E$. Then there is some $c \in C_E$ such that x = c + q with $q \in \mathbb{Q}$. But *x* and *c* belong to [-b, b] and so $x = c + q \in [-b, b]$. So $x = c + q \in C_E + \lambda$ where $\lambda = q \in [-2b, 2b]$. Since *x* is an arbitrary element of *E* then $E \subset \bigcup_{\lambda \in \Lambda_0} (C_E + \lambda)$.

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since *E* is bounded, then $E \subset [-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_0 = [-2b, 2b] \cap \mathbb{Q}$. Then Λ_0 is bounded and countably infinite. Let $x \in E$. Then there is some $c \in C_E$ such that x = c + q with $q \in \mathbb{Q}$. But *x* and *c* belong to [-b, b] and so $x = c + q \in [-b, b]$. So $x = c + q \in C_E + \lambda$ where $\lambda = q \in [-2b, 2b]$. Since *x* is an arbitrary element of *E* then $E \subset \bigcup_{\lambda \in \Lambda_0} (C_E + \lambda)$. But $m^*(E) > 0$ and so as shown above $m^*(\bigcup_{\lambda \in \Lambda_0} (C_E + \lambda)) = 0$, so we have a CONTRADICTION by monotonicity (Lemma 2.2.A):

$$0 < m^*(E) \le m^*(\cup_{\lambda \in \Lambda_0}(\mathcal{C}_E + \lambda)) = 0.$$

This contradiction shows that the assumption that $\mathcal{C}_{\textit{E}}$ is measurable is false.

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set. Any set E of real numbers with positive outer measure contains a subset that fails to be measurable.

Proof (continued). Since *E* is bounded, then $E \subset [-b, b]$ for some $b \in \mathbb{R}$. Define $\Lambda_0 = [-2b, 2b] \cap \mathbb{Q}$. Then Λ_0 is bounded and countably infinite. Let $x \in E$. Then there is some $c \in C_E$ such that x = c + q with $q \in \mathbb{Q}$. But *x* and *c* belong to [-b, b] and so $x = c + q \in [-b, b]$. So $x = c + q \in C_E + \lambda$ where $\lambda = q \in [-2b, 2b]$. Since *x* is an arbitrary element of *E* then $E \subset \bigcup_{\lambda \in \Lambda_0} (C_E + \lambda)$. But $m^*(E) > 0$ and so as shown above $m^*(\bigcup_{\lambda \in \Lambda_0} (C_E + \lambda)) = 0$, so we have a CONTRADICTION by monotonicity (Lemma 2.2.A):

$$0 < m^*(E) \leq m^*(\cup_{\lambda \in \Lambda_0}(\mathcal{C}_E + \lambda)) = 0.$$

This contradiction shows that the assumption that $\mathcal{C}_{\textit{E}}$ is measurable is false.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

 $m^*(A \cup B) < m^*(A) + m^*(B).$

Proof. ASSUME $m^*(A \cup B) = m^*(A) + m^*(B)$ for every disjoint pair of sets A and B.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

 $m^*(A \cup B) < m^*(A) + m^*(B).$

Proof. ASSUME $m^*(A \cup B) = m^*(A) + m^*(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

 $m^{*}(A) = m^{*}((A \cap E) \cup (A \cap E^{c})) = m^{*}(A \cap E) + m^{*}(A \cap E^{c})$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$m^*(A \cup B) < m^*(A) + m^*(B).$$

Proof. ASSUME $m^*(A \cup B) = m^*(A) + m^*(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$m^*(A) = m^*((A \cap E) \cup (A \cap E^c)) = m^*(A \cap E) + m^*(A \cap E^c)$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17. So for some disjoint $A, B \subset \mathbb{R}$ we have $m^*(A \cup B) \neq m^*(A) + m^*(B)$. By subadditivity (Proposition 2.3) $m^*(A \cup B) \leq m^*(A) + m^*(B)$, so it must be that for some disjoint $A, B \subset \mathbb{R}$ we have $m^*(A \cup B) < m^*(A) + m^*(B)$.

Theorem 2.18. There are disjoint sets of real numbers A and B for which

$$m^*(A \cup B) < m^*(A) + m^*(B).$$

Proof. ASSUME $m^*(A \cup B) = m^*(A) + m^*(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$m^*(A) = m^*((A \cap E) \cup (A \cap E^c)) = m^*(A \cap E) + m^*(A \cap E^c)$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Theorem 2.17. So for some disjoint $A, B \subset \mathbb{R}$ we have $m^*(A \cup B) \neq m^*(A) + m^*(B)$. By subadditivity (Proposition 2.3) $m^*(A \cup B) \leq m^*(A) + m^*(B)$, so it must be that for some disjoint $A, B \subset \mathbb{R}$ we have $m^*(A \cup B) < m^*(A) + m^*(B)$.