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Lemma 2.16

Lemma 2.16

Lemma 2.16. Let E be a bounded measurable set of real numbers.
Suppose there is a bounded countably infinite set of real numbers Λ for
which the collection of translates of E , {E + λ}λ∈Λ is disjoint. Then
m(E ) = 0.

Proof. The translate of a measurable set is measurable by Proposition
2.10. So by countable additivity (Proposition 2.13)
m (∪· λ∈Λ(E + λ)) =

∑
λ∈Λ m(E + λ).

Since both E and Λ are bounded
sets, then the set ∪· λ∈Λ(E + λ) is also bounded (below by a sum of lower
bounds of E and Λ and above by a sum of upper bounds of E and Λ) and
so (by monotonicity, Lemma 2.2.A) has finite measure. Since measure is
translation invariant (Proposition 2.2), m(E + λ) = m(E ) ≥ 0. Then

∞ > m (∪· λ∈Λ(E + λ)) =
∑
λ∈Λ

m(E + λ) =
∑
λ∈Λ

m(E )

and so m(E ) = 0 (otherwise,
∑

λ∈Λ m(E ) = ∞).
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Theorem 2.17. The Vitali Construction of a Nonmeasurable Set

Theorem 2.17

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof. By Exercise 2.14, E has a bounded subset of positive outer
measure, so without loss of generality we may suppose that E is bounded.
Let CE be a choice set for the rational equivalence relation on E . We now
show CE is not measurable.

ASSUME CE is measurable. Let Λ0 be any bounded countably infinite set
of rational numbers. Since CE is measurable and collection {CE + λ}λ∈Λ0

is disjoint, then by Lemma 2.16 we have m(CE ) = 0. So by the translation
invariance (Proposition 2.2) and countable additivity (Proposition 2.13),

m (∪· λ∈Λ0(CE + λ)) =
∑
λ∈Λ0

m(CE + λ) =
∑
λ∈Λ0

m(CE ) = 0.
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Theorem 2.17. The Vitali Construction of a Nonmeasurable Set

Theorem 2.17 (continued)

Theorem 2.17. The Vitali Construction of a Nonmeasurable Set.
Any set E of real numbers with positive outer measure contains a subset
that fails to be measurable.

Proof (continued). Since E is bounded, then E ⊂ [−b, b] for some
b ∈ R. Define Λ0 = [−2b, 2b] ∩Q. Then Λ0 is bounded and countably
infinite. Let x ∈ E . Then there is some c ∈ CE such that x = c + q with
q ∈ Q. But x and c belong to [−b, b] and so x = c + q ∈ [−b, b]. So
x = c + q ∈ CE + λ where λ = q ∈ [−2b, 2b]. Since x is an arbitrary
element of E then E ⊂ ∪· λ∈Λ0(CE + λ).

But m∗(E ) > 0 and so as shown
above m∗(∪· λ∈Λ0(CE + λ)) = 0, so we have a CONTRADICTION by
monotonicity (Lemma 2.2.A):

0 < m∗(E ) ≤ m∗(∪· λ∈Λ0(CE + λ)) = 0.

This contradiction shows that the assumption that CE is measurable is
false.
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Theorem 2.18

Theorem 2.18. There are disjoint sets of real numbers A and B for which

m∗(A ∪· B) < m∗(A) + m∗(B).

Proof. ASSUME m∗(A ∪· B) = m∗(A) + m∗(B) for every disjoint pair of
sets A and B.

Then for any A,E ⊂ R we have

m∗(A) = m∗((A ∩ E ) ∪· (A ∩ E c)) = m∗(A ∩ E ) + m∗(A ∩ E c)

and so every E ⊂ R is measurable, a CONTRADICTION to Theorem 2.17.
So for some disjoint A,B ⊂ R we have m∗(A ∪· B) 6= m∗(A) + m∗(B). By
subadditivity (Proposition 2.3) m∗(A ∪· B) ≤ m∗(A) + m∗(B), so it must
be that for some disjoint A,B ⊂ R we have
m∗(A ∪· B) < m∗(A) + m∗(B).
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