false and so \(f \neq 0 \) is not measurable.

\[a \leq f \leq b \] for all \(x \in \mathbb{R} \).

Therefore the assumption that \(f \) is measurable is

\[\{0\} \cap \mathbb{N} = \{0\} \]

since \(\mathbb{N} \) is a countable set.

By the proposition of additivity, \(\mathbb{N} \) is the union of two countable sets.

Therefore, \(\mathbb{N} \) is measurable.

Hence \(\mathbb{N} \) is measurable.

\[\{0\} \cap \mathbb{N} = \{0\} \]

and so \(\mathbb{N} \) is measurable.

\[\mathbb{N} \]

Theorem 2.6.B (continued)

Proof.

First, we establish some set theoretic results. Let \(\{1, 2, 3\} \) be an enumeration of \(\mathbb{N} \).

For every \(\mathbb{N} \) in \(\{1, 2, 3\} \), define \(\mathbb{N} \) as follows:

\[\mathbb{N} \]

Lemma 2.6.A.

Set \(f \) is not measurable.

Lemma 2.6.A.
\(A, B \subseteq \mathbb{R} \) we have \(m^* (A \cup B) = m^* (A) + m^* (B) \), so it must be that for some disjoint

\(m^* (A \cap B) \neq m^* (A) + m^* (B) \). By subadditivity (Proposition 2.3),

so for some disjoint \(A, B \subseteq \mathbb{R} \) we have

and so every \(E \subseteq \mathbb{R} \) is measurable. A CONTRADICATION to Corollary

\(\forall \epsilon \exists \delta \forall E \subseteq \mathbb{R} \) we have

sets \(A \) and \(B \). Then for any \(A, E \subseteq \mathbb{R} \) we have

Proof. Assume \(m^* (A \cup B) = m^* (A) + m^* (B) \) for every disjoint pair of

There are disjoint sets of real numbers \(A \) and \(B \) for which

Theorem 2.18