Real Analysis

Chapter 2. Lebesgue Measure

2.6. Nonmeasurable Sets (3rd Ed.)—Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick Fourth
Edition

Table of contents

(1) Lemma 2.6.A
(2) Theorem 2.6.B
(3) Theorem 2.18

Lemma 2.6.A

Lemma 2.6.A. Let $E \subset[0,1)$ and $E \in \mathcal{M}$. Then for all $y \in[0,1), E+$\begin{tabular}{c}

+

\hline
\end{tabular} is measurable and $m(E+y)=m(E)$.

Proof. Define $E_{1}=E \cap[0,1-y)$ and $E_{2}=E \cap[1-y, 1)$. Then $E_{1} \cap E_{2}=\varnothing, E=E_{1} \cup E_{2}$, and $E_{1}, E_{2} \in \mathcal{M}$. So $m(E)=m\left(E_{1}\right)+m\left(E_{2}\right)$ by countable additivity (Proposition 2.13).

Lemma 2.6.A

Lemma 2.6.A. Let $E \subset[0,1)$ and $E \in \mathcal{M}$. Then for all $y \in[0,1), E+$\begin{tabular}{c}

+

\hline
\end{tabular} is measurable and $m(E+y)=m(E)$.

Proof. Define $E_{1}=E \cap[0,1-y)$ and $E_{2}=E \cap[1-y, 1)$. Then $E_{1} \cap E_{2}=\varnothing, E=E_{1} \cup E_{2}$, and $E_{1}, E_{2} \in \mathcal{M}$. So $m(E)=m\left(E_{1}\right)+m\left(E_{2}\right)$ by countable additivity (Proposition 2.13). Now $E_{1}+y=E_{1}+y$ and so $E_{1}+y \in \mathcal{M}$ and $m\left(E_{1}+y\right)=m\left(E_{1}\right)$ since m is translation invariant (Proposition 2.2). Also, $E_{2}+y=\left(E_{2}+y\right)-1=E_{2}+(y-1)$ and so $E_{2}+y \in \mathcal{M}$ and $m\left(E_{2}+y\right)=m\left(E_{2}\right)$.

Lemma 2.6.A

Lemma 2.6.A. Let $E \subset[0,1)$ and $E \in \mathcal{M}$. Then for all $y \in[0,1), E+\begin{array}{r}+ \\ \hline\end{array}$ is measurable and $m(E+y)=m(E)$.

Proof. Define $E_{1}=E \cap[0,1-y)$ and $E_{2}=E \cap[1-y, 1)$. Then $E_{1} \cap E_{2}=\varnothing, E=E_{1} \cup E_{2}$, and $E_{1}, E_{2} \in \mathcal{M}$. So $m(E)=m\left(E_{1}\right)+m\left(E_{2}\right)$ by countable additivity (Proposition 2.13). Now $E_{1}+y=E_{1}+y$ and so $E_{1} \dot{+} y \in \mathcal{M}$ and $m\left(E_{1}+y\right)=m\left(E_{1}\right)$ since m is translation invariant (Proposition 2.2). Also, $E_{2}+y=\left(E_{2}+y\right)-1=E_{2}+(y-1)$ and so $E_{2}+y \in \mathcal{M}$ and $m\left(E_{2}+y\right)=m\left(E_{2}\right)$. Next, $E+y=\left(E_{1}+y\right) \cup\left(E_{2}+y\right)$, so

$$
m\left(E+\frac{+}{y}\right)=m\left(E_{1} \dot{+} y\right)+m\left(E_{2}+y\right)=m\left(E_{1}\right)+m\left(E_{2}\right)=m(E) .
$$

Lemma 2.6.A

Lemma 2.6.A. Let $E \subset[0,1)$ and $E \in \mathcal{M}$. Then for all $y \in[0,1), E+\begin{array}{r}+ \\ \hline\end{array}$ is measurable and $m(E+y)=m(E)$.

Proof. Define $E_{1}=E \cap[0,1-y)$ and $E_{2}=E \cap[1-y, 1)$. Then $E_{1} \cap E_{2}=\varnothing, E=E_{1} \cup E_{2}$, and $E_{1}, E_{2} \in \mathcal{M}$. So $m(E)=m\left(E_{1}\right)+m\left(E_{2}\right)$ by countable additivity (Proposition 2.13). Now $E_{1}+y=E_{1}+y$ and so $E_{1} \dot{+} y \in \mathcal{M}$ and $m\left(E_{1}+y\right)=m\left(E_{1}\right)$ since m is translation invariant (Proposition 2.2). Also, $E_{2}+\dot{+} y=\left(E_{2}+y\right)-1=E_{2}+(y-1)$ and so $E_{2} \dot{+} y \in \mathcal{M}$ and $m\left(E_{2}+y\right)=m\left(E_{2}\right)$. Next, $E+\dot{+} y=\left(E_{1}+y\right) \cup\left(E_{2}+y\right)$, so $E^{+}+y \in \mathcal{M}$ and so by countable additivity (Proposition 2.13):

$$
m(E \dot{+} y)=m\left(E_{1}+y\right)+m\left(E_{2}+y\right)=m\left(E_{1}\right)+m\left(E_{2}\right)=m(E) .
$$

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let $\left\{r_{i}\right\}_{i=0}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ where $r_{0}=0$. Define $P_{i}=P+r_{i}$. Then $P_{0}=P$.

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let $\left\{r_{i}\right\}_{i=0}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ where $r_{0}=0$. Define $P_{i}=P+r_{i}$. Then $P_{0}=P$.

If $x \in P_{i} \cap P_{j}$, then $x=p_{i}+r_{i}=p_{j}+r_{j}$ where $p_{i}, p_{j} \in P$. But then $p_{i}+\left(-p_{j}\right)=r_{j}+\left(-r_{i}\right) \in \mathbb{Q}$ and so $p_{i} \sim p_{j}$. So p_{i} and p_{j} are from the same equivalence class under \sim and since P contains only one representative from each equivalence class, then $p_{i}=p_{j}$ and $P_{i}=P_{j}$. Therefore $P_{i} \cap P_{j}=\varnothing$ if $i \neq j$ and so the P_{i} 's are disjoint and $\cup_{i=1}^{\infty} P_{i} \subset[0,1)$.

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let $\left\{r_{i}\right\}_{i=0}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ where $r_{0}=0$. Define $P_{i}=P+r_{i}$. Then $P_{0}=P$. If $x \in P_{i} \cap P_{j}$, then $x=p_{i}+r_{i}=p_{j}+r_{j}$ where $p_{i}, p_{j} \in P$. But then $p_{i}+\left(-p_{j}\right)=r_{j}+\left(-r_{i}\right) \in \mathbb{Q}$ and so $p_{i} \sim p_{j}$. So p_{i} and p_{j} are from the same equivalence class under \sim and since P contains only one representative from each equivalence class, then $p_{i}=p_{j}$ and $P_{i}=P_{j}$. Therefore $P_{i} \cap P_{j}=\varnothing$ if $i \neq j$ and so the P_{i} 's are disjoint and $\cup_{i=1}^{\infty} P_{i} \subset[0,1)$.

Let $x \in[0,1)$. Then x is in some equivalence class E_{x}. Let $p_{x} \in P$ be the representative of class E_{x} (i.e., $f\left(E_{x}\right)=p_{x}$ for choice function f).

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let $\left\{r_{i}\right\}_{i=0}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ where $r_{0}=0$. Define $P_{i}=P+r_{i}$. Then $P_{0}=P$. If $x \in P_{i} \cap P_{j}$, then $x=p_{i}+r_{i}=p_{j}+r_{j}$ where $p_{i}, p_{j} \in P$. But then $p_{i}+\left(-p_{j}\right)=r_{j}+\left(-r_{i}\right) \in \mathbb{Q}$ and so $p_{i} \sim p_{j}$. So p_{i} and p_{j} are from the same equivalence class under \sim and since P contains only one representative from each equivalence class, then $p_{i}=p_{j}$ and $P_{i}=P_{j}$. Therefore $P_{i} \cap P_{j}=\varnothing$ if $i \neq j$ and so the P_{i} 's are disjoint and $\cup_{i=1}^{\infty} P_{i} \subset[0,1)$.

Let $x \in[0,1)$. Then x is in some equivalence class E_{x}. Let $p_{x} \in P$ be the representative of class E_{X} (i.e., $f\left(E_{x}\right)=p_{x}$ for choice function f).

Hence, since x is an arbitrary element of $[0,1)$ then $[0,1) \subset \vdash_{i=1}^{\infty} P_{i}$. Therefore, $\cup_{i=1}^{\infty} P_{i}=[0,1)$.

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let $\left\{r_{i}\right\}_{i=0}^{\infty}$ be an enumeration of $\mathbb{Q} \cap[0,1)$ where $r_{0}=0$. Define $P_{i}=P+r_{i}$. Then $P_{0}=P$. If $x \in P_{i} \cap P_{j}$, then $x=p_{i}+r_{i}=p_{j}+r_{j}$ where $p_{i}, p_{j} \in P$. But then $p_{i}+\left(-p_{j}\right)=r_{j}+\left(-r_{i}\right) \in \mathbb{Q}$ and so $p_{i} \sim p_{j}$. So p_{i} and p_{j} are from the same equivalence class under \sim and since P contains only one representative from each equivalence class, then $p_{i}=p_{j}$ and $P_{i}=P_{j}$. Therefore $P_{i} \cap P_{j}=\varnothing$ if $i \neq j$ and so the P_{i} 's are disjoint and $\cup_{i=1}^{\infty} P_{i} \subset[0,1)$.

Let $x \in[0,1)$. Then x is in some equivalence class E_{x}. Let $p_{x} \in P$ be the representative of class E_{x} (i.e., $f\left(E_{x}\right)=p_{x}$ for choice function f). Then $p_{x}+q=x$ for some $q \in \mathbb{Q} \cap[0,1)$ and so $x \in \cup_{i=1}^{\infty}\left(P+r_{i}\right)=\cup_{i=1}^{\infty} P_{i}$. Hence, since x is an arbitrary element of $[0,1)$ then $[0,1) \subset \vdash_{i=1}^{\infty} P_{i}$. Therefore, $\cup_{i=1}^{\infty} P_{i}=[0,1)$.

Theorem 2.6.B (continued)

Theorem 2.6.B. Set P is not measurable. Proof (continued). ASSUME P is measurable. Then by Lemma 2.6.A, each P_{i} is measurable and $m\left(P_{i}\right)=m(P)$.

Theorem 2.6.B (continued)

Theorem 2.6.B. Set P is not measurable.
Proof (continued). ASSUME P is measurable. Then by Lemma 2.6.A, each P_{i} is measurable and $m\left(P_{i}\right)=m(P)$. Hence

$$
\begin{aligned}
1 & =m([0,1)) \text { by Propositions } 2.1 \text { and } 2.8 \\
& =m\left(\cup_{i=1}^{\infty} P_{i}\right) \text { since }[0,1)=\cup_{i=1}^{\infty} P_{i} \\
& =\sum_{i=1}^{\infty} m\left(P_{i}\right) \text { by countable additivity (Proposition 2.13) } \\
& =\sum_{i=1}^{\infty} m(P) \text { since } m(P)=m\left(P_{i}\right) \text { for all } i \in \mathbb{N} \cup\{0\} \\
& =\left\{\begin{array}{cc}
0 & \text { if } m(P)=0 \\
\infty & \text { if } m(P)>0,
\end{array}\right.
\end{aligned}
$$

a CONTRADICTION.

Theorem 2.6.B (continued)

Theorem 2.6.B. Set P is not measurable.
Proof (continued). ASSUME P is measurable. Then by Lemma 2.6.A, each P_{i} is measurable and $m\left(P_{i}\right)=m(P)$. Hence

$$
\begin{aligned}
1 & =m([0,1)) \text { by Propositions } 2.1 \text { and } 2.8 \\
& =m\left(\cup_{i=1}^{\infty} P_{i}\right) \text { since }[0,1)=\cup_{i=1}^{\infty} P_{i} \\
& =\sum_{i=1}^{\infty} m\left(P_{i}\right) \text { by countable additivity (Proposition 2.13) } \\
& =\sum_{i=1}^{\infty} m(P) \text { since } m(P)=m\left(P_{i}\right) \text { for all } i \in \mathbb{N} \cup\{0\} \\
& =\left\{\begin{array}{cc}
0 & \text { if } m(P)=0 \\
\infty & \text { if } m(P)>0
\end{array}\right.
\end{aligned}
$$

a CONTRADICTION. Therefore the assumption that P is measurable is
false and so P is not measurable.

Theorem 2.6.B (continued)

Theorem 2.6.B. Set P is not measurable.
Proof (continued). ASSUME P is measurable. Then by Lemma 2.6.A, each P_{i} is measurable and $m\left(P_{i}\right)=m(P)$. Hence

$$
\begin{aligned}
1 & =m([0,1)) \text { by Propositions } 2.1 \text { and } 2.8 \\
& =m\left(\cup_{i=1}^{\infty} P_{i}\right) \text { since }[0,1)=\cup_{i=1}^{\infty} P_{i} \\
& =\sum_{i=1}^{\infty} m\left(P_{i}\right) \text { by countable additivity (Proposition 2.13) } \\
& =\sum_{i=1}^{\infty} m(P) \text { since } m(P)=m\left(P_{i}\right) \text { for all } i \in \mathbb{N} \cup\{0\} \\
& =\left\{\begin{array}{cl}
0 & \text { if } m(P)=0 \\
\infty & \text { if } m(P)>0
\end{array}\right.
\end{aligned}
$$

a CONTRADICTION. Therefore the assumption that P is measurable is false and so P is not measurable.

Theorem 2.18

Theorem 2.18.
There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B.

Theorem 2.18

Theorem 2.18.
There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Corollary 2.6.C.

Theorem 2.18

Theorem 2.18.
There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Corollary 2.6.C. So for some disjoint $A, B \subset \mathbb{R}$ we have
$m^{*}(A \cup B) \neq m^{*}(A)+m^{*}(B)$. By subadditivity (Proposition 2.3)
$m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$, so it must be that for some disjoint
$A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$.

Theorem 2.18

Theorem 2.18.
There are disjoint sets of real numbers A and B for which

$$
m^{*}(A \cup B)<m^{*}(A)+m^{*}(B) .
$$

Proof. ASSUME $m^{*}(A \cup B)=m^{*}(A)+m^{*}(B)$ for every disjoint pair of sets A and B. Then for any $A, E \subset \mathbb{R}$ we have

$$
m^{*}(A)=m^{*}\left((A \cap E) \cup\left(A \cap E^{c}\right)\right)=m^{*}(A \cap E)+m^{*}\left(A \cap E^{c}\right)
$$

and so every $E \subset \mathbb{R}$ is measurable, a CONTRADICTION to Corollary 2.6.C. So for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B) \neq m^{*}(A)+m^{*}(B)$. By subadditivity (Proposition 2.3) $m^{*}(A \cup B) \leq m^{*}(A)+m^{*}(B)$, so it must be that for some disjoint $A, B \subset \mathbb{R}$ we have $m^{*}(A \cup B)<m^{*}(A)+m^{*}(B)$.

