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Lemma 2.6.A

Lemma 2.6.A

Lemma 2.6.A. Let E ⊂ [0, 1) and E ∈M. Then for all y ∈ [0, 1), E +̊y
is measurable and m(E +̊y) = m(E ).

Proof. Define E1 = E ∩ [0, 1− y) and E2 = E ∩ [1− y , 1). Then
E1 ∩ E2 = ∅, E = E1 ∪· E2, and E1,E2 ∈M. So m(E ) = m(E1) + m(E2)
by countable additivity (Proposition 2.13).

Now E1+̊y = E1 + y and so
E1+̊y ∈M and m(E1+̊y) = m(E1) since m is translation invariant
(Proposition 2.2). Also, E2+̊y = (E2 + y)− 1 = E2 + (y − 1) and so
E2+̊y ∈M and m(E2+̊y) = m(E2). Next, E +̊y = (E1+̊y) ∪· (E2+̊y), so
E +̊y ∈M and so by countable additivity (Proposition 2.13):

m(E +̊y) = m(E1+̊y) + m(E2+̊y) = m(E1) + m(E2) = m(E ).
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Theorem 2.6.B

Theorem 2.6.B

Theorem 2.6.B. Set P is not measurable.

Proof. First, we establish some set theoretic results. Let {ri}∞i=0 be an
enumeration of Q ∩ [0, 1) where r0 = 0. Define Pi = P+̊ri . Then P0 = P.

If x ∈ Pi ∩ Pj , then x = pi +̊ri = pj+̊rj where pi , pj ∈ P. But then
pi +̊(−pj) = rj+̊(−ri ) ∈ Q and so pi ∼ pj . So pi and pj are from the same
equivalence class under ∼ and since P contains only one representative
from each equivalence class, then pi = pj and Pi = Pj . Therefore
Pi ∩ Pj = ∅ if i 6= j and so the Pi ’s are disjoint and ∪·∞i=1Pi ⊂ [0, 1).

Let x ∈ [0, 1). Then x is in some equivalence class Ex . Let px ∈ P be the
representative of class Ex (i.e., f (Ex) = px for choice function f ). Then
px+̊q = x for some q ∈ Q ∩ [0, 1) and so x ∈ ∪·∞i=1(P+̊ri ) = ∪·∞i=1Pi .
Hence, since x is an arbitrary element of [0, 1) then [0, 1) ⊂ ∪·∞i=1Pi .
Therefore, ∪·∞i=1Pi = [0, 1).
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Theorem 2.6.B

Theorem 2.6.B (continued)

Theorem 2.6.B. Set P is not measurable.

Proof (continued). ASSUME P is measurable. Then by Lemma 2.6.A,
each Pi is measurable and m(Pi ) = m(P).

Hence

1 = m([0, 1)) by Propositions 2.1 and 2.8

= m(∪·∞i=1Pi ) since [0, 1) = ∪·∞i=1Pi

=
∞∑
i=1

m(Pi ) by countable additivity (Proposition 2.13)

=
∞∑
i=1

m(P) since m(P) = m(Pi ) for all i ∈ N ∪ {0}

=

{
0 if m(P) = 0
∞ if m(P) > 0,

a CONTRADICTION. Therefore the assumption that P is measurable is
false and so P is not measurable.
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Theorem 2.18

Theorem 2.18

Theorem 2.18.
There are disjoint sets of real numbers A and B for which

m∗(A ∪· B) < m∗(A) + m∗(B).

Proof. ASSUME m∗(A ∪· B) = m∗(A) + m∗(B) for every disjoint pair of
sets A and B.

Then for any A,E ⊂ R we have

m∗(A) = m∗((A ∩ E ) ∪· (A ∩ E c)) = m∗(A ∩ E ) + m∗(A ∩ E c)

and so every E ⊂ R is measurable, a CONTRADICTION to Corollary
2.6.C. So for some disjoint A,B ⊂ R we have
m∗(A ∪· B) 6= m∗(A) + m∗(B). By subadditivity (Proposition 2.3)
m∗(A ∪· B) ≤ m∗(A) + m∗(B), so it must be that for some disjoint
A,B ⊂ R we have m∗(A ∪· B) < m∗(A) + m∗(B).
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