Chapter 2. Lebesgue Measure
2.7. The Cantor Set and the Cantor-Lebesgue Function—Proofs of Theorems
Table of contents

1. Proposition 2.19
2. Proposition 2.20
3. Proposition 2.21
4. Proposition 2.22
Proposition 2.19. The Cantor set \mathcal{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathcal{C} = \bigcap_{k=1}^{\infty} C_k$ where each C_k is closed, then \mathcal{C} is closed (and so measurable).
Proposition 2.19. The Cantor set C is a closed, uncountable set of measure zero.

Proof. Since $C = \bigcap_{k=1}^{\infty} C_k$ where each C_k is closed, then C is closed (and so measurable).

Each C_k is the disjoint union of 2^k intervals each of length $1/3^k$, so by countable additivity (Proposition 2.13) $m(C_k) = (2/3)^k$. By monotonicity of measure (Lemma 2.2.A), $m(C) \leq m(C_k) = (2/3)^k$ for all $k \in \mathbb{N}$, therefore $m(C) = 0$.
Proposition 2.19. The Cantor set C is a closed, uncountable set of measure zero.

Proof. Since $C = \bigcap_{k=1}^{\infty} C_k$ where each C_k is closed, then C is closed (and so measurable).

Each C_k is the disjoint union of 2^k intervals each of length $1/3^k$, so by countable additivity (Proposition 2.13) $m(C_k) = (2/3)^k$. By monotonicity of measure (Lemma 2.2.A), $m(C) \leq m(C_k) = (2/3)^k$ for all $k \in \mathbb{N}$, therefore $m(C) = 0$.

ASSUME C is countable. Let $\{c_k\}_{k=1}^{\infty}$ be an enumeration of C. Now C_1 consists of two disjoint closed intervals, so one of them fails to contain point c_1; denote it F_1.

Proposition 2.19. The Cantor set C is a closed, uncountable set of measure zero.

Proof. Since $C = \bigcap_{k=1}^{\infty} C_k$ where each C_k is closed, then C is closed (and so measurable).

Each C_k is the disjoint union of 2^k intervals each of length $\frac{1}{3^k}$, so by countable additivity (Proposition 2.13) $m(C_k) = \left(\frac{2}{3}\right)^k$. By monotonicity of measure (Lemma 2.2.A), $m(C) \leq m(C_k) = \left(\frac{2}{3}\right)^k$ for all $k \in \mathbb{N}$, therefore $m(C) = 0$.

Assume C is countable. Let $\{c_k\}_{k=1}^{\infty}$ be an enumeration of C. Now C_1 consists of two disjoint closed intervals, so one of them fails to contain point c_1; denote it F_1. In C_2, there are two disjoint closed intervals which are subsets of F_1. One of these fails to contain point c_2; denote it F_2. Similarly, recursively define sequence of sets $\{F_k\}_{k=1}^{\infty}$.

Proposition 2.19

Proposition 2.19. The Cantor set C is a closed, uncountable set of measure zero.

Proof. Since $C = \bigcap_{k=1}^{\infty} C_k$ where each C_k is closed, then C is closed (and so measurable).

Each C_k is the disjoint union of 2^k intervals each of length $1/3^k$, so by countable additivity (Proposition 2.13) $m(C_k) = (2/3)^k$. By monotonicity of measure (Lemma 2.2.A), $m(C) \leq m(C_k) = (2/3)^k$ for all $k \in \mathbb{N}$, therefore $m(C) = 0$.

ASSUME C is countable. Let $\{c_k\}_{k=1}^{\infty}$ be an enumeration of C. Now C_1 consists of two disjoint closed intervals, so one of them fails to contain point c_1; denote it F_1. In C_2, there are two disjoint closed intervals which are subsets of F_1. One of these fails to contain point c_2; denote it F_2. Similarly, recursively define sequence of sets $\{F_k\}_{k=1}^{\infty}$.
Proposition 2.19. The Cantor set \mathbb{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_k is closed and $F_{k+1} \subset F_k$, (ii) $F_k \subset C_k$, and (iii) $c_k \not\in F_k$.

From property (i) and the Nested Set Theorem (see page 19) we have that $\bigcap_{k=1}^{\infty} F_k$ is nonempty, so let $x \in \bigcap_{k=1}^{\infty} F_k$. By property (ii), $\bigcap_{k=1}^{\infty} F_k \subset \bigcap_{k=1}^{\infty} C_k = C$, so $x \in C$. But $\{c_k\}_{k=1}^{\infty} = C$ so $x = c_n$ for some $n \in \mathbb{N}$. Thus $c_n = x \in \bigcap_{k=1}^{\infty} F_k \subset F_n$ and so $c_n \in F_n$, a contradiction.

So the assumption that C is countable is false and therefore C is uncountable.
Proposition 2.19. The Cantor set C is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_k is closed and $F_{k+1} \subset F_k$, (ii) $F_k \subset C_k$, and (iii) $c_k \not\in F_k$. From property (i) and the Nested Set Theorem (see page 19) we have that $\bigcap_{k=1}^{\infty} F_k$ is nonempty, so let $x \in \bigcap_{k=1}^{\infty} F_k$. By property (ii), $\bigcap_{k=1}^{\infty} F_k \subset \bigcap_{k=1}^{\infty} C_k = C$, so $x \in C$.
Proposition 2.19. The Cantor set \(C \) is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) \(F_k \) is closed and \(F_{k+1} \subset F_k \), (ii) \(F_k \subset C_k \), and (iii) \(c_k \notin F_k \). From property (i) and the Nested Set Theorem (see page 19) we have that \(\cap_{k=1}^{\infty} F_k \) is nonempty, so let \(x \in \cap_{k=1}^{\infty} F_k \). By property (ii), \(\cap_{k=1}^{\infty} F_k \subset \cap_{k=1}^{\infty} C_k = C \), so \(x \in C \). But \(\{c_k\}_{k=1}^{\infty} = C \) so \(x = c_n \) for some \(n \in \mathbb{N} \). Thus \(c_n = x = \cap_{k=1}^{\infty} F_k \subset F_n \) and so \(c_n \in F_n \), a CONTRADICTION.
Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_k is closed and $F_{k+1} \subset F_k$, (ii) $F_k \subset C_k$, and (iii) $c_k \notin F_k$. From property (i) and the Nested Set Theorem (see page 19) we have that $\bigcap_{k=1}^{\infty} F_k$ is nonempty, so let $x \in \bigcap_{k=1}^{\infty} F_k$. By property (ii), $\bigcap_{k=1}^{\infty} F_k \subset \bigcap_{k=1}^{\infty} C_k = \mathbf{C}$, so $x \in \mathbf{C}$. But $\{c_k\}_{k=1}^{\infty} = \mathbf{C}$ so $x = c_n$ for some $n \in \mathbb{N}$. Thus $c_n = x = \bigcap_{k=1}^{\infty} F_k \subset F_n$ and so $c_n \in F_n$, a CONTRADICTION. So the assumption that \mathbf{C} is countable is false and therefore \mathbf{C} is uncountable. \qed
Proposition 2.19. The Cantor set \mathcal{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_k is closed and $F_{k+1} \subset F_k$, (ii) $F_k \subset C_k$, and (iii) $c_k \not\in F_k$. From property (i) and the Nested Set Theorem (see page 19) we have that $\bigcap_{k=1}^{\infty} F_k$ is nonempty, so let $x \in \bigcap_{k=1}^{\infty} F_k$. By property (ii), $\bigcap_{k=1}^{\infty} F_k \subset \bigcap_{k=1}^{\infty} C_k = \mathcal{C}$, so $x \in \mathcal{C}$. But $\{c_k\}_{k=1}^{\infty} = \mathcal{C}$ so $x = c_n$ for some $n \in \mathbb{N}$. Thus $c_n = x = \bigcap_{k=1}^{\infty} F_k \subset F_n$ and so $c_n \in F_n$, a CONTRADICTION. So the assumption that \mathcal{C} is countable is false and therefore \mathcal{C} is uncountable. \qed
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $O = [0, 1] \setminus C$ and $\varphi'(x) = 0$ for $x \in O$.

Proof. Since φ is increasing on O, then for any $u, v \in O$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$.
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $\mathcal{O} = [0, 1] \setminus \mathcal{C}$ and $\varphi'(x) = 0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathcal{C} \setminus \{0\}$ we have $\varphi(u) \leq \varphi(v) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, v)\}$ since $u \in \mathcal{O} \cap [0, v)$.
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $\mathcal{O} = [0, 1] \setminus \mathbf{C}$ and $\varphi'(x) = 0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbf{C} \setminus \{0\}$ we have $\varphi(u) \leq \varphi(v) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, v)\}$ since $u \in \mathcal{O} \cap [0, v)$. For $u \leq v$ with $u \in \mathbf{C} \setminus \{0\}$ and $v \in \mathcal{O}$ we have $\varphi(u) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, u)\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap [0, u)$ since for such t we have $t < u \leq v$ and φ is increasing on \mathcal{O}.
Proposition 2.20. The Cantor-Lebesgue function \(\varphi \) is an increasing continuous function that maps \([0, 1]\) into \([0, 1]\). Its derivative exists on the open set \(\mathcal{O} = [0, 1] \setminus \mathcal{C} \) and \(\varphi'(x) = 0 \) for \(x \in \mathcal{O} \).

Proof. Since \(\varphi \) is increasing on \(\mathcal{O} \), then for any \(u, v \in \mathcal{O} \) with \(u \leq v \) we have \(\varphi(u) \leq \varphi(v) \). Now for \(u \leq v \) with \(u \in \mathcal{O} \) and \(v \in \mathcal{C} \setminus \{0\} \) we have

\[
\varphi(u) \leq \varphi(v) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, v)\} \quad \text{since} \quad u \in \mathcal{O} \cap [0, v).
\]

For \(u \leq v \) with \(u \in \mathcal{C} \setminus \{0\} \) and \(v \in \mathcal{O} \) we have

\[
\varphi(u) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, u)\} \leq \varphi(v) \quad \text{since} \quad \varphi(t) \leq \varphi(v) \quad \text{for all} \quad t \in \mathcal{O} \cap [0, u)
\]

since for such \(t \) we have \(t < u \leq v \) and \(\varphi \) is increasing on \(\mathcal{O} \). For \(u < v \) with \(u, v \in \mathcal{C} \setminus \{0\} \) we have that there is some \(w \in \mathcal{O} \) with \(u < w < v \) and so \(\varphi(u) \leq \varphi(w) \leq \varphi(v) \) by the above arguments. Therefore, \(\varphi \) is an increasing function on \([0, 1]\).
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $\mathcal{O} = [0, 1] \setminus C$ and $\varphi'(x) = 0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in C \setminus \{0\}$ we have $\varphi(u) \leq \varphi(v) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, v]\}$ since $u \in \mathcal{O} \cap [0, v)$. For $u \leq v$ with $u \in C \setminus \{0\}$ and $v \in \mathcal{O}$ we have $\varphi(u) = \sup\{\varphi(t) \mid t \in \mathcal{O} \cap [0, u]\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap [0, u)$ since for such t we have $t < u \leq v$ and φ is increasing on \mathcal{O}. For $u < v$ with $u, v \in C \setminus \{0\}$ we have that there is some $w \in \mathcal{O}$ with $u < w < v$ and so $\varphi(u) \leq \varphi(w) \leq \varphi(v)$ by the above arguments. Therefore, φ is an increasing function on $[0, 1]$.
Proposition 2.20 (continued 1)

Proof (continued). Next, for continuity. \(\phi \) is continuous at each point of \(\mathcal{O} \) since \(\phi \) is constant on each constituent open interval component of \(\mathcal{O} \). Now consider \(x_0 \in C \) with \(x_0 \neq 0, 1 \). For \(k \in \mathbb{N} \) sufficiently large, we have that \(x_0 \) lies between two consecutive open intervals in \([0, 1] \setminus C_k \). Let \(a_k \) lie in the lower of these two components and \(b_k \) lie in the upper of these two components.
Proposition 2.20 (continued 1)

Proof (continued). Next, for continuity. \(\varphi \) is continuous at each point of \(O \) since \(\varphi \) is constant on each constituent open interval component of \(O \). Now consider \(x_0 \in C \) with \(x_0 \neq 0, 1 \). For \(k \in \mathbb{N} \) sufficiently large, we have that \(x_0 \) lies between two consecutive open intervals in \([-1, 1] \setminus C_k \). Let \(a_k \) lie in the lower of these two components and \(b_k \) lie in the upper of these two components. Function \(\varphi \) is defined to increase by \(1/2^k \) across consecutive intervals in \([-1, 1] \setminus C_k \), therefore \(a_k < x_0 < b_k \) and \(\varphi(b_k) - \varphi(a_k) = 1/2^k \). Now \(k \) can be arbitrarily large and such open interval components exist, so for given \(\varepsilon > 0 \) it \(k \in \mathbb{N} \) is chosen such that \(\varepsilon < 1/2^k \) then for \(\delta > 0 \) such that \(\delta < \min\{x_0 - a_k, b_k = x_0 \mid a_k \text{ and } b_k \text{ are as described above as elements of } [-1, 1] \setminus C_k\} \) then we have \(|x_0 - x| < \delta \) implies \(|\varphi(x_0) - \varphi(x)| \leq |\varphi(b_k) - \varphi(a_k)| = 1/2^k < \varepsilon \) (we are using the fact that \(\varphi \) is increasing here) and so \(\varphi \) takes on the value \(1/2^k \) for \(x \in C \) and \(x \) “near” 0 and so \(\varphi \) is continuous at \(x_0 = 0 \) where \(\varphi(0) = 0 \);
Proposition 2.20 (continued 1)

Proof (continued). Next, for continuity. \(\varphi \) is continuous at each point of \(\mathcal{O} \) since \(\varphi \) is constant on each constituent open interval component of \(\mathcal{O} \). Now consider \(x_0 \in \mathbb{C} \) with \(x_0 \neq 0, 1 \). For \(k \in \mathbb{N} \) sufficiently large, we have that \(x_0 \) lies between two consecutive open intervals in \([0, 1] \setminus C_k \). Let \(a_k \) lie in the lower of these two components and \(b_k \) lie in the upper of these two components. Function \(\varphi \) is defined to increase by \(1/2^k \) across consecutive intervals in \([0, 1] \setminus C_k \), therefore \(a_k < x_0 < b_k \) and \(\varphi(b_k) - \varphi(a_k) = 1/2^k \).

Now \(k \) can be arbitrarily large and such open interval components exist, so for given \(\varepsilon > 0 \) it \(k \in \mathbb{N} \) is chosen such that \(\varepsilon < 1/2^k \) then for \(\delta > 0 \) such that \(\delta < \min\{x_0 - a_k, b_k = x_0 \mid a_k \text{ and } b_k \text{ are as described above as elements of } [0, 1] \setminus C_k\} \) then we have \(|x_0 - x| < \delta \) implies \(|\varphi(x_0) - \varphi(x)| \leq \varphi(b_k) - \varphi(a_k) = 1/2^k < \varepsilon \) (we are using the fact that \(\varphi \) is increasing here) and so \(\varphi \) takes on the value \(1/2^k \) for \(x \in \mathbb{C} \) and \(x \) “near” 0 and so \(\varphi \) is continuous at \(x_0 = 0 \) where \(\varphi(0) = 0 \); if \(x_0 = 1 \) then we know that \(\varphi \) takes on the values \(1 - 1/2^k \) for \(x \in \mathbb{C} \) and \(x \) “near” 1 and so \(f \) is continuous at \(x_0 = 1 \) where \(\varphi(1) = 1 \).
Proposition 2.20 (continued 1)

Proof (continued). Next, for continuity. \(\varphi \) is continuous at each point of \(\mathcal{O} \) since \(\varphi \) is constant on each constituent open interval component of \(\mathcal{O} \). Now consider \(x_0 \in \mathbb{C} \) with \(x_0 \neq 0, 1 \). For \(k \in \mathbb{N} \) sufficiently large, we have that \(x_0 \) lies between two consecutive open intervals in \([0, 1] \setminus C_k\). Let \(a_k \) lie in the lower of these two components and \(b_k \) lie in the upper of these two components. Function \(\varphi \) is defined to increase by \(1/2^k \) across consecutive intervals in \([0, 1] \setminus C_k\), therefore \(a_k < x_0 < b_k \) and \(\varphi(b_k) - \varphi(a_k) = 1/2^k \).

Now \(k \) can be arbitrarily large and such open interval components exist, so for given \(\varepsilon > 0 \) it \(k \in \mathbb{N} \) is chosen such that \(\varepsilon < 1/2^k \) then for \(\delta > 0 \) such that \(\delta < \min \{ x_0 - a_k, b_k - x_0 \mid a_k \text{ and } b_k \text{ are as described} \} \) then we have \(|x_0 - x| < \delta \) implies \(|\varphi(x_0) - \varphi(x)| \leq \varphi(b_k) - \varphi(a_k) = 1/2^k < \varepsilon \) (we are using the fact that \(\varphi \) is increasing here) and so \(\varphi \) takes on the value \(1/2^k \) for \(x \in \mathbb{C} \) and \(x \) “near” 0 and so \(\varphi \) is continuous at \(x_0 = 0 \) where \(\varphi(0) = 0 \); if \(x_0 = 1 \) then we know that \(\varphi \) takes on the values \(1 - 1/2^k \) for \(x \in \mathbb{C} \) and \(x \) “near” 1 and so \(f \) is continuous at \(x_0 = 1 \) where \(\varphi(1) = 1 \).
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $\mathcal{O} = [0, 1] \setminus \mathbf{C}$ and $\varphi'(x) = 0$ for $x \in \mathcal{O}$.

Proof (continued). Since φ is constant on each of the open intervals in \mathcal{O}, then $\varphi'(x) = 0$ for all $x \in \mathcal{O}$. Since \mathbf{C} has measure zero by Proposition 2.19 and so by the Excision Property (Lemma 2.4.A)

$$m(\mathcal{O}) = m([0, 1] \setminus \mathbf{C}) = m([0, 1]) - m(\mathbf{C}) = 1.$$

Finally, since $\varphi(0) = 0$, $\varphi(1) = 1$, φ is increasing, and φ is continuous, then by the intermediate Value Theorem, φ maps $[0, 1]$ onto $[0, 1]$. \square
Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0, 1]$ into $[0, 1]$. Its derivative exists on the open set $\mathcal{O} = [0, 1] \setminus C$ and $\varphi'(x) = 0$ for $x \in \mathcal{O}$.

Proof (continued). Since φ is constant on each of the open intervals in \mathcal{O}, then $\varphi'(x) = 0$ for all $x \in \mathcal{O}$. Since C has measure zero by Proposition 2.19 and so by the Excision Property (Lemma 2.4.A)

$$m(\mathcal{O}) = m([0, 1] \setminus C) = m([0, 1]) - m(C) = 1.$$

Finally, since $\varphi(0) = 0$, $\varphi(1) = 1$, φ is increasing, and φ is continuous, then by the intermediate Value Theorem, φ maps $[0, 1]$ onto $[0, 1]$. \qed
Proposition 2.21. Let \(\varphi \) be the Cantor-Lebesgue function and define the function \(\psi \) on \([0, 1]\) by \(\psi(x) = \varphi(x) + x \). Then \(\psi \) is a strictly increasing continuous function that maps \([0, 1]\) onto \([0, 2]\),

(i) maps the Cantor set \(C \) onto a measurable set of positive measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof. Since \(\psi \) is the sum of two continuous increasing functions, one of which is strictly increasing, then \(\psi \) is continuous and strictly increasing. Since \(\psi(0) = 0 \) and \(\psi(1) = 2 \) then \(\psi([0, 1]) = [0, 2] \).
Proposition 2.21. Let \(\varphi \) be the Cantor-Lebesgue function and define the function \(\psi \) on \([0, 1]\) by \(\psi(x) = \varphi(x) + x \). Then \(\psi \) is a strictly increasing continuous function that maps \([0, 1]\) onto \([0, 2]\),

(i) maps the Cantor set \(C \) onto a measurable set of positive measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof. Since \(\psi \) is the sum of two continuous increasing functions, one of which is strictly increasing, then \(\psi \) is continuous and strictly increasing. Since \(\psi(0) = 0 \) and \(\psi(1) = 2 \) then \(\psi([0, 1]) = [0, 2] \). Now \([0, 1] = C \cup \mathcal{O}\) and since \(\psi \) is one to one then \([0, 2] = \psi(C \cup \psi(\mathcal{O})\). Now a strictly increasing continuous function defined on an interval has a continuous inverse (see Theorem 4-16 of my Analysis 1 [MATH 4217/5217] notes for Section 4.2). Therefore \(\psi(C) \) is closed and \(\psi(\mathcal{O}) \) is open (inverse images of open/closed sets under a continuous function is open/closed; see Proposition 1.22) and so both are measurable.
Proposition 2.21

Proposition 2.21. Let \(\varphi \) be the Cantor-Lebesgue function and define the function \(\psi \) on \([0, 1]\) by \(\psi(x) = \varphi(x) + x \). Then \(\psi \) is a strictly increasing continuous function that maps \([0, 1]\) onto \([0, 2]\),

(i) maps the Cantor set \(C \) onto a measurable set of positive measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof. Since \(\psi \) is the sum of two continuous increasing functions, one of which is strictly increasing, then \(\psi \) is continuous and strictly increasing. Since \(\psi(0) = 0 \) and \(\psi(1) = 2 \) then \(\psi([0, 1]) = [0, 2] \). Now \([0, 1] = C \cup O \) and since \(\psi \) is one to one then \([0, 2] = \psi(C \cup \psi(O)) \). Now a strictly increasing continuous function defined on an interval has a continuous inverse (see Theorem 4-16 of my Analysis 1 [MATH 4217/5217] notes for Section 4.2). Therefore \(\psi(C) \) is closed and \(\psi(O) \) is open (inverse images of open/closed sets under a continuous function is open/closed; see Proposition 1.22) and so both are measurable.
Proposition 2.21 (continued 1)

Proof (continued). Let \(\mathcal{O} = \bigcup_{k=1}^{\infty} I_k \) where the \(I_k \) are the connected components of \(\mathcal{O} \). Then \(\varphi \) is constant on each \(I_k \) and so \(\varphi \) maps \(I_k \) onto a translated copy of itself (translated by the constant given by \(\varphi \) on \(I_k \)) of the same length (the “+x” part of \(\psi \) is the identity function).

Since \(\psi \) is one to one, the collection \(\{\psi(I_k)\}_{k=1}^{\infty} \) is disjoint. By countable additivity (Proposition 2.13),

\[
m(\psi(\mathcal{O})) = m(\psi(\bigcup_{k=1}^{\infty} I_k)) = m(\bigcup_{k=1}^{\infty} \psi(I_k)) = \sum_{k=1}^{\infty} m(\psi(I_k))
\]

\[
= \sum_{k=1}^{\infty} \ell(\psi(I_k)) = \sum_{k=1}^{\infty} + \sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} m(I_k) = m(\bigcup_{k=1}^{\infty} I_k) = m(\mathcal{O}).
\]
Proposition 2.21 (continued 1)

Proof (continued). Let \(\mathcal{O} = \bigcup_{k=1}^{\infty} I_k \) where the \(I_k \) are the connected components of \(\mathcal{O} \). Then \(\varphi \) is constant on each \(I_k \) and so \(\varphi \) maps \(I_k \) onto a translated translated copy of itself (translated by the constant given by \(\varphi \) on \(I_k \)) of the same length (the “+\(\chi \)” part of \(\psi \) is the identity function). Since \(\psi \) is one to one, the collection \(\{\psi(I_k)\}_{k=1}^{\infty} \) is disjoint. By countable additivity (Proposition 2.13),

\[
m(\psi(\mathcal{O})) = m(\psi(\bigcup_{k=1}^{\infty} I_k)) = m(\bigcup_{k=1}^{\infty} \psi(I_k)) = \sum_{k=1}^{\infty} m(\psi(I_k))
\]

\[
= \sum_{k=1}^{\infty} \ell(\psi(I_k)) = \sum_{k=1}^{\infty} +\chi(I_k) = \sum_{k=1}^{\infty} m(I_k) = m(\bigcup_{k=1}^{\infty} I_k) = m(\mathcal{O}).
\]

But \(m(C) = 0 \) and so \(m(\mathcal{O}) = 1 \), so \(m(\psi(\mathcal{O})) = 1 \). Hence, since \([0, 2] = \psi(\mathcal{O}) \cup \psi(C) \), then \(m(\psi(C)) = 1 \) and (i) follows.
Proposition 2.21 (continued 1)

Proof (continued). Let $\mathcal{O} = \bigcup_{k=1}^{\infty} I_k$ where the I_k are the connected components of \mathcal{O}. Then φ is constant on each I_k and so φ maps I_k onto a translated translated copy of itself (translated by the constant given by φ on I_k) of the same length (the “$+x$” part of ψ is the identity function). Since ψ is one to one, the collection $\{\psi(I_k)\}_{k=1}^{\infty}$ is disjoint. By countable additivity (Proposition 2.13),

$$m(\psi(\mathcal{O})) = m(\psi(\bigcup_{k=1}^{\infty} I_k)) = m(\bigcup_{k=1}^{\infty} \psi(I_k)) = \sum_{k=1}^{\infty} m(\psi(I_k))$$

$$= \sum_{k=1}^{\infty} \ell(\psi(I_k)) = \sum_{k=1}^{\infty} \ell(I_k) = \sum_{k=1}^{\infty} m(I_k) = m(\bigcup_{k=1}^{\infty} I_k) = m(\mathcal{O}).$$

But $m(C) = 0$ and so $m(\mathcal{O}) = 1$, so $m(\psi(\mathcal{O})) = 1$. Hence, since $[0, 2] = \psi(\mathcal{O}) \cup \psi(C)$, then $m(\psi(C)) = 1$ and (i) follows.
Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x) = \varphi(x) + x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,

(i) maps the Cantor set \mathbb{C} onto a measurable set of positive measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof (continued). To verify (ii), notice that Vitali’s Construction of a Nonmeasurable Set (Theorem 2.17) implies that $\psi(\mathbb{C})$ contains a nonmeasurable subset W. The set $\psi^{-1}(W)$ is measurable by Proposition 2.4 since $\psi^{-1}(W) \subset \mathbb{C}$ and \mathbb{C} has measure 0 (so by monotonicity $\psi^{-1}(W)$ has measure 0). So $\psi^{-1}(W)$ is a measurable subset of \mathbb{C} which is mapped by ψ onto a nonmeasurable set.
Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x) = \varphi(x) + x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,

(i) maps the Cantor set \mathcal{C} onto a measurable set of positive measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof (continued). To verify (ii), notice that Vitali’s Construction of a Nonmeasurable Set (Theorem 2.17) implies that $\psi(\mathcal{C})$ contains a nonmeasurable subset W. The set $\psi^{-1}(W)$ is measurable by Proposition 2.4 since $\psi^{-1}(W) \subset \mathcal{C}$ and \mathcal{C} has measure 0 (so by monotonicity $\psi^{-1}(W)$ has measure 0). So $\psi^{-1}(W)$ is a measurable subset of \mathcal{C} which is mapped by ψ onto a nonmeasurable set.
Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set A ($A = \psi^{-1}(W)$ in the notation of the proof of Proposition 2.21) onto a measurable set B ($B = W$ in the proof of Proposition 2.21).
Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set A ($A = \psi^{-1}(W)$ in the notation of the proof of Proposition 2.21) onto a measurable set B ($B = W$ in the proof of Proposition 2.21). By Exercise 2.47, a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets. So set A is not Borel, or else $B = \psi(A)$ would be Borel and so measurable. \hfill \blacksquare
Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set A ($A = \psi^{-1}(W)$ in the notation of the proof of Proposition 2.21) onto a measurable set B ($B = W$ in the proof of Proposition 2.21). By Exercise 2.47, a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets. So set A is not Borel, or else $B = \psi(A)$ would be Borel and so measurable. \qed