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Proposition 2.19

Proposition 2.19

Proposition 2.19. The Cantor set C is a closed, uncountable set of
measure zero.

Proof. Since C = ∩∞k=1Ck where each Ck is closed, then C is closed (and
so measurable).

Each Ck is the disjoint union of 2k intervals each of length 1/3k , so by
countable additivity (Proposition 2.13) m(Ck) = (2/3)k . By monotonicity
of measure (Lemma 2.2.A), m(C) ≤ m(Ck) = (2/3)k for all k ∈ N,
therefore m(C) = 0.

ASSUME C is countable. Let {ck}∞k=1 be an enumeration of C. Now C1

consists of two disjoint closed intervals, so one of them fails to contain
point c1; denote it F1. In C2, there are two disjoint closed intervals which
are subsets of F1. One of these fails to contain point c2; denote it F2.
Similarly, recursively define sequence of sets {Fk}∞k=1.
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Proposition 2.19

Proposition 2.19

Proposition 2.19. The Cantor set C is a closed, uncountable set of
measure zero.

Proof. These sets satisfy: (i) Fk is closed and Fk+1 ⊂ Fk , (ii) Fk ⊂ Ck ,
and (iii) ck 6∈ Fk .

From property (i) and the Nested Set Theorem (see
page 19 of the book) we have that ∩∞k=1Fk is nonempty, so let
x ∈ ∩∞k=1Fk . By property (ii), ∩∞k=1Fk ⊂ ∩∞k=1Ck = C, so x ∈ C. But
{ck}∞k=1 = C so x = cn for some n ∈ N. Thus cn = x ∈ ∩∞k=1Fk ⊂ Fn and
so cn ∈ Fn, a CONTRADICTION. So the assumption that C is countable
is false and therefore C is uncountable.
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Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v).

Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v). For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O. For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].
Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v). Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v).

For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O. For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].
Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v). Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v). For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O.

For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].
Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v). Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v). For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O. For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].

Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v). Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v). For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O. For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].
Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof. Since ϕ is increasing on O, then for any u, v ∈ O with u ≤ v we
have ϕ(u) ≤ ϕ(v). Now for u ≤ v with u ∈ O and v ∈ C \ {0} we have
ϕ(u) ≤ ϕ(v) = sup{ϕ(t) | t ∈ O ∩ [0, v)} since u ∈ O ∩ [0, v). For u ≤ v
with u ∈ C \ {0} and v ∈ O we have
ϕ(u) = sup{ϕ(t) | t ∈ O ∩ [0, u)} ≤ ϕ(v) since ϕ(t) ≤ ϕ(v) for all
t ∈ O ∩ [0, u), because for such t we have t < u ≤ v and ϕ is increasing
on O. For u < v with u, v ∈ C \ {0} we have that there is some w ∈ O
with u < w < v and so ϕ(u) ≤ ϕ(w) ≤ ϕ(v) by the above arguments.
Therefore, ϕ is an increasing function on [0, 1].
Next, continuity. . .

() Real Analysis October 6, 2020 5 / 11



Proposition 2.20

Proposition 2.20 (continued 1)

Proof (continued). ϕ is continuous at each point of O since ϕ is
constant on each open interval component of O. Now consider x0 ∈ C
with x0 6= 0, 1. For k ∈ N sufficiently large, we have that x0 lies between
two consecutive open intervals in [0, 1] \ Ck . Let ak lie in the lower of
these two components and bk lie in the upper of these two components.
Function ϕ is defined to increase by 1/2k across consecutive intervals in
[0, 1] \ Ck , therefore ak < x0 < bk and ϕ(bk)− ϕ(ak) = 1/2k . Now k can
be arbitrarily large and such open interval components exist, so for given
ε > 0 if k ∈ N is chosen such that ε < 1/2k then for δ > 0 such that
δ < min{x0 − ak , bk − x0 | ak and bk are as described above as elements
of [0, 1] \ Ck} then we have |x0 − x | < δ implies |ϕ(x0)− ϕ(x)|
≤ ϕ(bk)− ϕ(ak) = 1/2k < ε (we are using the fact that ϕ is increasing
here) and so ϕ is continuous at x0 ∈ C \ {0, 1}. Next, ϕ takes on the value
1/2k for x ∈ C and x “near” 0 and so ϕ is continuous at x0 = 0 where
ϕ(0) = 0;

if x0 = 1 then we know that ϕ takes on the values 1− 1/2k for
x ∈ C and x “near” 1 and so f is continuous at x0 = 1 where ϕ(1) = 1.
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Proposition 2.20

Proposition 2.20 (continued 2)

Proposition 2.20. The Cantor-Lebesgue function ϕ is an increasing
continuous function that maps [0, 1] onto [0, 1]. Its derivative exists on the
open set O = [0, 1] \ C and ϕ′(x) = 0 for x ∈ O.

Proof (continued). Since ϕ is constant on each of the open intervals in
O, then ϕ′(x) = 0 for all x ∈ O. Since C has measure zero by Proposition
2.19 and so by the Excision Property (Lemma 2.4.A)
m(O) = m([0, 1] \ C) = m([0, 1])−m(C) = 1.

Finally, since ϕ(0) = 0, ϕ(1) = 1, ϕ is increasing, and ϕ is continuous,
then by the Intermediate Value Theorem, ϕ maps [0, 1] onto [0, 1].
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Proposition 2.21

Proposition 2.21

Proposition 2.21. Let ϕ be the Cantor-Lebesgue function and define the
function ψ on [0, 1] by ψ(x) = ϕ(x) + x . Then ψ is a strictly increasing
continuous function that maps [0, 1] onto [0, 2],

(i) maps the Cantor set C onto a measurable set of positive
measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a
nonmeasurable set.

Proof. Since ψ is the sum of two continuous increasing functions, one of
which is strictly increasing, then ψ is continuous and strictly increasing.
Since ψ(0) = 0 and ψ(1) = 2 then ψ([0, 1]) = [0, 2].

Now [0, 1] = C ∪· O
and since ψ is one to one then [0, 2] = ψ(C) ∪· ψ(O). Now a strictly
increasing continuous function defined on an interval has a continuous
inverse (see Theorem 4-16 of my Analysis 1 [MATH 4217/5217] notes on
4.2. Monotone and Inverse Functions). Therefore ψ(C) is closed and ψ(O)
is open (inverse images of open/closed sets under a continuous function is
open/closed; see Proposition 1.22) and so both are measurable.
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Proposition 2.21

Proposition 2.21 (continued 1)

Proof (continued). Let O = ∪·∞k=1Ik where the Ik are the connected
components of O. Then ϕ is constant on each Ik and so ψ maps Ik onto a
translated copy of itself (translated by the constant given by ϕ on Ik) of
the same length (the “+x” part of ψ is the identity function). Since ψ is
one to one, the collection {ψ(Ik)}∞k=1 is disjoint. By countable additivity
(Proposition 2.13),

m(ψ(O)) = m(ψ(∪·∞k=1Ik)) = m(∪·∞k=1ψ(Ik)) =
∞∑

k=1

m(ψ(Ik))

=
∞∑

k=1

`(ψ(Ik)) =
∞∑

k=1

`(Ik) =
∞∑

k=1

m(Ik) = m(∪·∞k=1Ik) = m(O).

But m(C) = 0 and m(O) = 1, so m(ψ(O)) = 1. Hence, since
[0, 2] = ψ(O) ∪· ψ(C), then m(ψ(C)) = 1 and (i) follows.
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Proposition 2.21

Proposition 2.21 (continued 2)

Proposition 2.21. Let ϕ be the Cantor-Lebesgue function and define the
function ψ on [0, 1] by ψ(x) = ϕ(x) + x . Then ψ is a strictly increasing
continuous function that maps [0, 1] onto [0, 2],

(i) maps the Cantor set C onto a measurable set of positive
measure and

(ii) maps a measurable set, a subset of the Cantor set, onto a
nonmeasurable set.

Proof (continued). To verify (ii), notice that Vitali’s Construction of a
Nonmeasurable Set (Theorem 2.17) implies that ψ(C) contains a
nonmeasurable subset W . The set ψ−1(W ) is measurable by Proposition
2.4 since ψ−1(W ) ⊂ C and C has measure 0 (so by monotonicity ψ−1(W )
has measure 0). So ψ−1(W ) is a measurable subset of C which is mapped
by ψ onto a nonmeasurable set.
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Proposition 2.22

Proposition 2.22

Proposition 2.22. There is a measurable set, a subset of the Cantor set,
that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21
maps a measurable set A (A = ψ−1(W ) in the notation of the proof of
Proposition 2.21) onto a nonmeasurable set B (B = W in the proof of
Proposition 2.21).

By Exercise 2.47, a continuous strictly increasing
function that is defined on an interval maps Borel sets to Borel sets. So set
A is not Borel, or else B = ψ(A) would be Borel and so measurable.
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