Real Analysis

Chapter 2. Lebesgue Measure

2.7. The Cantor Set and the Cantor-Lebesgue Function-Proofs of Theorems

REAL ANALYSIS

H.L. Royden • P.M. Fitzpatrick

Table of contents

(1) Proposition 2.19
(2) Proposition 2.20
(3) Proposition 2.21
(4) Proposition 2.22

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathbf{C}=\cap_{k=1}^{\infty} C_{k}$ where each C_{k} is closed, then \mathbf{C} is closed (and so measurable).

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathbf{C}=\cap_{k=1}^{\infty} C_{k}$ where each C_{k} is closed, then \mathbf{C} is closed (and so measurable).

Each C_{k} is the disjoint union of 2^{k} intervals each of length $1 / 3^{k}$, so by countable additivity (Proposition 2.13) $m\left(C_{k}\right)=(2 / 3)^{k}$. By monotonicity of measure (Lemma 2.2.A), $m(\mathbf{C}) \leq m\left(C_{k}\right)=(2 / 3)^{k}$ for all $k \in \mathbb{N}$, therefore $m(C)=0$.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathbf{C}=\cap_{k=1}^{\infty} C_{k}$ where each C_{k} is closed, then \mathbf{C} is closed (and so measurable).

Each C_{k} is the disjoint union of 2^{k} intervals each of length $1 / 3^{k}$, so by countable additivity (Proposition 2.13) $m\left(C_{k}\right)=(2 / 3)^{k}$. By monotonicity of measure (Lemma 2.2.A), $m(\mathbf{C}) \leq m\left(C_{k}\right)=(2 / 3)^{k}$ for all $k \in \mathbb{N}$, therefore $m(\mathbf{C})=0$.

ASSUME C is countable. Let $\left\{c_{k}\right\}_{k=1}^{\infty}$ be an enumeration of C. Now C_{1} consists of two disjoint closed intervals, so one of them fails to contain point c_{1}; denote it F_{1}.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathbf{C}=\cap_{k=1}^{\infty} C_{k}$ where each C_{k} is closed, then \mathbf{C} is closed (and so measurable).

Each C_{k} is the disjoint union of 2^{k} intervals each of length $1 / 3^{k}$, so by countable additivity (Proposition 2.13) $m\left(C_{k}\right)=(2 / 3)^{k}$. By monotonicity of measure (Lemma 2.2.A), $m(\mathbf{C}) \leq m\left(C_{k}\right)=(2 / 3)^{k}$ for all $k \in \mathbb{N}$, therefore $m(\mathbf{C})=0$.

ASSUME C is countable. Let $\left\{c_{k}\right\}_{k=1}^{\infty}$ be an enumeration of \mathbf{C}. Now C_{1} consists of two disjoint closed intervals, so one of them fails to contain point c_{1}; denote it F_{1}. In C_{2}, there are two disjoint closed intervals which are subsets of F_{1}. One of these fails to contain point c_{2}; denote it F_{2}. Similarly, recursively define sequence of sets $\left\{F_{k}\right\}_{k=1}^{\infty}$

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. Since $\mathbf{C}=\cap_{k=1}^{\infty} C_{k}$ where each C_{k} is closed, then \mathbf{C} is closed (and so measurable).

Each C_{k} is the disjoint union of 2^{k} intervals each of length $1 / 3^{k}$, so by countable additivity (Proposition 2.13) $m\left(C_{k}\right)=(2 / 3)^{k}$. By monotonicity of measure (Lemma 2.2.A), $m(\mathbf{C}) \leq m\left(C_{k}\right)=(2 / 3)^{k}$ for all $k \in \mathbb{N}$, therefore $m(\mathbf{C})=0$.

ASSUME C is countable. Let $\left\{c_{k}\right\}_{k=1}^{\infty}$ be an enumeration of \mathbf{C}. Now C_{1} consists of two disjoint closed intervals, so one of them fails to contain point c_{1}; denote it F_{1}. In C_{2}, there are two disjoint closed intervals which are subsets of F_{1}. One of these fails to contain point c_{2}; denote it F_{2}. Similarly, recursively define sequence of sets $\left\{F_{k}\right\}_{k=1}^{\infty}$.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_{k} is closed and $F_{k+1} \subset F_{k}$, (ii) $F_{k} \subset C_{k}$, and (iii) $c_{k} \notin F_{k}$.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_{k} is closed and $F_{k+1} \subset F_{k}$, (ii) $F_{k} \subset C_{k}$, and (iii) $c_{k} \notin F_{k}$. From property (i) and the Nested Set Theorem (see page 19 of the book) we have that $\cap_{k=1}^{\infty} F_{k}$ is nonempty, so let $x \in \cap_{k=1}^{\infty} F_{k}$. By property (ii), $\cap_{k=1}^{\infty} F_{k} \subset \cap_{k=1}^{\infty} C_{k}=\mathbf{C}$, so $x \in \mathbf{C}$.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_{k} is closed and $F_{k+1} \subset F_{k}$, (ii) $F_{k} \subset C_{k}$, and (iii) $c_{k} \notin F_{k}$. From property (i) and the Nested Set Theorem (see page 19 of the book) we have that $\cap_{k=1}^{\infty} F_{k}$ is nonempty, so let $x \in \cap_{k=1}^{\infty} F_{k}$. By property (ii), $\cap_{k=1}^{\infty} F_{k} \subset \cap_{k=1}^{\infty} C_{k}=\mathbf{C}$, so $x \in \mathbf{C}$. But $\left\{c_{k}\right\}_{k=1}^{\infty}=\mathrm{C}$ so $x=c_{n}$ for some $n \in \mathbb{N}$. Thus $c_{n}=x \in \cap_{k=1}^{\infty} F_{k} \subset F_{n}$ and so $c_{n} \in F_{n}$, a CONTRADICTION.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_{k} is closed and $F_{k+1} \subset F_{k}$, (ii) $F_{k} \subset C_{k}$, and (iii) $c_{k} \notin F_{k}$. From property (i) and the Nested Set Theorem (see page 19 of the book) we have that $\cap_{k=1}^{\infty} F_{k}$ is nonempty, so let $x \in \cap_{k=1}^{\infty} F_{k}$. By property (ii), $\cap_{k=1}^{\infty} F_{k} \subset \cap_{k=1}^{\infty} C_{k}=\mathbf{C}$, so $x \in \mathbf{C}$. But $\left\{c_{k}\right\}_{k=1}^{\infty}=\mathbf{C}$ so $x=c_{n}$ for some $n \in \mathbb{N}$. Thus $c_{n}=x \in \cap_{k=1}^{\infty} F_{k} \subset F_{n}$ and so $c_{n} \in F_{n}$, a CONTRADICTION. So the assumption that C is countable
is false and therefore C is uncountable.

Proposition 2.19

Proposition 2.19. The Cantor set \mathbf{C} is a closed, uncountable set of measure zero.

Proof. These sets satisfy: (i) F_{k} is closed and $F_{k+1} \subset F_{k}$, (ii) $F_{k} \subset C_{k}$, and (iii) $c_{k} \notin F_{k}$. From property (i) and the Nested Set Theorem (see page 19 of the book) we have that $\cap_{k=1}^{\infty} F_{k}$ is nonempty, so let $x \in \cap_{k=1}^{\infty} F_{k}$. By property (ii), $\cap_{k=1}^{\infty} F_{k} \subset \cap_{k=1}^{\infty} C_{k}=\mathbf{C}$, so $x \in \mathbf{C}$. But $\left\{c_{k}\right\}_{k=1}^{\infty}=\mathbf{C}$ so $x=c_{n}$ for some $n \in \mathbb{N}$. Thus $c_{n}=x \in \cap_{k=1}^{\infty} F_{k} \subset F_{n}$ and so $c_{n} \in F_{n}$, a CONTRADICTION. So the assumption that \mathbf{C} is countable is false and therefore \mathbf{C} is uncountable.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbb{C} \backslash\{0\}$ we have $\varphi(u) \leq \varphi(v)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, v)\}$ since $u \in \mathcal{O} \cap[0, v)$.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbf{C} \backslash\{0\}$ we have $\varphi(u) \leq \varphi(v)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, v)\}$ since $u \in \mathcal{O} \cap[0, v)$. For $u \leq v$ with $u \in \mathbb{C} \backslash\{0\}$ and $v \in \mathcal{O}$ we have
$\varphi(u)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, u)\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap[0, u)$, because for such t we have $t<u \leq v$ and φ is increasing on \mathcal{O}.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbf{C} \backslash\{0\}$ we have $\varphi(u) \leq \varphi(v)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, v)\}$ since $u \in \mathcal{O} \cap[0, v)$. For $u \leq v$ with $u \in \mathbf{C} \backslash\{0\}$ and $v \in \mathcal{O}$ we have $\varphi(u)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, u)\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap[0, u)$, because for such t we have $t<u \leq v$ and φ is increasing on \mathcal{O}. For $u<v$ with $u, v \in \mathbb{C} \backslash\{0\}$ we have that there is some $w \in \mathcal{O}$ with $u<w<v$ and so $\varphi(u) \leq \varphi(w) \leq \varphi(v)$ by the above arguments. Therefore, φ is an increasing function on $[0,1]$.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbf{C} \backslash\{0\}$ we have $\varphi(u) \leq \varphi(v)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, v)\}$ since $u \in \mathcal{O} \cap[0, v)$. For $u \leq v$ with $u \in \mathbf{C} \backslash\{0\}$ and $v \in \mathcal{O}$ we have $\varphi(u)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, u)\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap[0, u)$, because for such t we have $t<u \leq v$ and φ is increasing on \mathcal{O}. For $u<v$ with $u, v \in \mathbf{C} \backslash\{0\}$ we have that there is some $w \in \mathcal{O}$ with $u<w<v$ and so $\varphi(u) \leq \varphi(w) \leq \varphi(v)$ by the above arguments. Therefore, φ is an increasing function on $[0,1]$.

Proposition 2.20

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof. Since φ is increasing on \mathcal{O}, then for any $u, v \in \mathcal{O}$ with $u \leq v$ we have $\varphi(u) \leq \varphi(v)$. Now for $u \leq v$ with $u \in \mathcal{O}$ and $v \in \mathbf{C} \backslash\{0\}$ we have $\varphi(u) \leq \varphi(v)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, v)\}$ since $u \in \mathcal{O} \cap[0, v)$. For $u \leq v$ with $u \in \mathbf{C} \backslash\{0\}$ and $v \in \mathcal{O}$ we have $\varphi(u)=\sup \{\varphi(t) \mid t \in \mathcal{O} \cap[0, u)\} \leq \varphi(v)$ since $\varphi(t) \leq \varphi(v)$ for all $t \in \mathcal{O} \cap[0, u)$, because for such t we have $t<u \leq v$ and φ is increasing on \mathcal{O}. For $u<v$ with $u, v \in \mathbf{C} \backslash\{0\}$ we have that there is some $w \in \mathcal{O}$ with $u<w<v$ and so $\varphi(u) \leq \varphi(w) \leq \varphi(v)$ by the above arguments. Therefore, φ is an increasing function on $[0,1]$.
Next, continuity...

Proposition 2.20 (continued 1)

Proof (continued). φ is continuous at each point of \mathcal{O} since φ is constant on each open interval component of \mathcal{O}. Now consider $x_{0} \in \mathbf{C}$ with $x_{0} \neq 0,1$. For $k \in \mathbb{N}$ sufficiently large, we have that x_{0} lies between two consecutive open intervals in $[0,1] \backslash C_{k}$. Let a_{k} lie in the lower of these two components and b_{k} lie in the upper of these two components.
Function φ is defined to increase by $1 / 2^{k}$ across consecutive intervals in $[0,1] \backslash C_{k}$, therefore $a_{k}<x_{0}<b_{k}$ and $\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}$. Now k can be arbitrarily large and such open interval components exist, so for given $\varepsilon>0$ if $k \in \mathbb{N}$ is chosen such that $\varepsilon<1 / 2^{k}$ then for $\delta>0$ such that $\delta<\min \left\{x_{0}-a_{k}, b_{k}-x_{0} \mid a_{k}\right.$ and b_{k} are as described above as elements of $\left.[0,1] \backslash C_{k}\right\}$ then we have $\left|x_{0}-x\right|<\delta$ implies $\left|\varphi\left(x_{0}\right)-\varphi(x)\right|$ $\leq \varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}<\varepsilon$ (we are using the fact that φ is increasing here) and so φ is continuous at $x_{0} \in \mathbf{C} \backslash\{0,1\}$. Next, φ takes on the value $1 / 2^{k}$ for $x \in \mathbf{C}$ and x "near" 0 and so φ is continuous at $x_{0}=0$ where $\varphi(0)=0$;

Proposition 2.20 (continued 1)

Proof (continued). φ is continuous at each point of \mathcal{O} since φ is constant on each open interval component of \mathcal{O}. Now consider $x_{0} \in \mathbf{C}$ with $x_{0} \neq 0,1$. For $k \in \mathbb{N}$ sufficiently large, we have that x_{0} lies between two consecutive open intervals in $[0,1] \backslash C_{k}$. Let a_{k} lie in the lower of these two components and b_{k} lie in the upper of these two components. Function φ is defined to increase by $1 / 2^{k}$ across consecutive intervals in $[0,1] \backslash C_{k}$, therefore $a_{k}<x_{0}<b_{k}$ and $\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}$. Now k can be arbitrarily large and such open interval components exist, so for given $\varepsilon>0$ if $k \in \mathbb{N}$ is chosen such that $\varepsilon<1 / 2^{k}$ then for $\delta>0$ such that $\delta<\min \left\{x_{0}-a_{k}, b_{k}-x_{0} \mid a_{k}\right.$ and b_{k} are as described above as elements of $\left.[0,1] \backslash C_{k}\right\}$ then we have $\left|x_{0}-x\right|<\delta$ implies $\left|\varphi\left(x_{0}\right)-\varphi(x)\right|$ $\leq \varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}<\varepsilon$ (we are using the fact that φ is increasing here) and so φ is continuous at $x_{0} \in \mathbf{C} \backslash\{0,1\}$. Next, φ takes on the value $1 / 2^{k}$ for $x \in \mathbf{C}$ and x "near" 0 and so φ is continuous at $x_{0}=0$ where $\varphi(0)=0$; if $x_{0}=1$ then we know that φ takes on the values $1-1 / 2^{k}$ for $x \in \mathbb{C}$ and x "near" 1 and so f is continuous at $x_{0}=1$ where $\varphi(1)=1$.

Proposition 2.20 (continued 1)

Proof (continued). φ is continuous at each point of \mathcal{O} since φ is constant on each open interval component of \mathcal{O}. Now consider $x_{0} \in \mathbf{C}$ with $x_{0} \neq 0,1$. For $k \in \mathbb{N}$ sufficiently large, we have that x_{0} lies between two consecutive open intervals in $[0,1] \backslash C_{k}$. Let a_{k} lie in the lower of these two components and b_{k} lie in the upper of these two components. Function φ is defined to increase by $1 / 2^{k}$ across consecutive intervals in $[0,1] \backslash C_{k}$, therefore $a_{k}<x_{0}<b_{k}$ and $\varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}$. Now k can be arbitrarily large and such open interval components exist, so for given $\varepsilon>0$ if $k \in \mathbb{N}$ is chosen such that $\varepsilon<1 / 2^{k}$ then for $\delta>0$ such that $\delta<\min \left\{x_{0}-a_{k}, b_{k}-x_{0} \mid a_{k}\right.$ and b_{k} are as described above as elements of $\left.[0,1] \backslash C_{k}\right\}$ then we have $\left|x_{0}-x\right|<\delta$ implies $\left|\varphi\left(x_{0}\right)-\varphi(x)\right|$ $\leq \varphi\left(b_{k}\right)-\varphi\left(a_{k}\right)=1 / 2^{k}<\varepsilon$ (we are using the fact that φ is increasing here) and so φ is continuous at $x_{0} \in \mathbf{C} \backslash\{0,1\}$. Next, φ takes on the value $1 / 2^{k}$ for $x \in \mathbf{C}$ and x "near" 0 and so φ is continuous at $x_{0}=0$ where $\varphi(0)=0$; if $x_{0}=1$ then we know that φ takes on the values $1-1 / 2^{k}$ for $x \in \mathbf{C}$ and x "near" 1 and so f is continuous at $x_{0}=1$ where $\varphi(1)=1$.

Proposition 2.20 (continued 2)

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof (continued). Since φ is constant on each of the open intervals in \mathcal{O}, then $\varphi^{\prime}(x)=0$ for all $x \in \mathcal{O}$. Since \mathbf{C} has measure zero by Proposition 2.19 and so by the Excision Property (Lemma 2.4.A) $m(\mathcal{O})=m([0,1] \backslash \mathbf{C})=m([0,1])-m(\mathbf{C})=1$.

Finally, since $\varphi(0)=0, \varphi(1)=1, \varphi$ is increasing, and φ is continuous, then by the Intermediate Value Theorem, φ maps $[0,1]$ onto $[0,1]$.

Proposition 2.20 (continued 2)

Proposition 2.20. The Cantor-Lebesgue function φ is an increasing continuous function that maps $[0,1]$ onto $[0,1]$. Its derivative exists on the open set $\mathcal{O}=[0,1] \backslash \mathbf{C}$ and $\varphi^{\prime}(x)=0$ for $x \in \mathcal{O}$.

Proof (continued). Since φ is constant on each of the open intervals in \mathcal{O}, then $\varphi^{\prime}(x)=0$ for all $x \in \mathcal{O}$. Since \mathbf{C} has measure zero by Proposition 2.19 and so by the Excision Property (Lemma 2.4.A) $m(\mathcal{O})=m([0,1] \backslash \mathbf{C})=m([0,1])-m(\mathbf{C})=1$.

Finally, since $\varphi(0)=0, \varphi(1)=1, \varphi$ is increasing, and φ is continuous, then by the Intermediate Value Theorem, φ maps $[0,1]$ onto $[0,1]$.

Proposition 2.21

Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x)=\varphi(x)+x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,
(i) maps the Cantor set \mathbf{C} onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.
Proof. Since ψ is the sum of two continuous increasing functions, one of which is strictly increasing, then ψ is continuous and strictly increasing. Since $\psi(0)=0$ and $\psi(1)=2$ then $\psi([0,1])=[0,2]$

Proposition 2.21

Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x)=\varphi(x)+x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,
(i) maps the Cantor set \mathbf{C} onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.
Proof. Since ψ is the sum of two continuous increasing functions, one of which is strictly increasing, then ψ is continuous and strictly increasing. Since $\psi(0)=0$ and $\psi(1)=2$ then $\psi([0,1])=[0,2]$.

Proposition 2.21

Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x)=\varphi(x)+x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,
(i) maps the Cantor set \mathbf{C} onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.
Proof. Since ψ is the sum of two continuous increasing functions, one of which is strictly increasing, then ψ is continuous and strictly increasing. Since $\psi(0)=0$ and $\psi(1)=2$ then $\psi([0,1])=[0,2]$. Now $[0,1]=\mathbf{C} \cup \mathcal{O}$ and since ψ is one to one then $[0,2]=\psi(\mathbf{C}) \cup \psi(\mathcal{O})$. Now a strictly increasing continuous function defined on an interval has a continuous inverse (see Theorem 4-16 of my Analysis 1 [MATH 4217/5217] notes on 4.2. Monotone and Inverse Functions). Therefore $\psi(\mathbf{C})$ is closed and $\psi(\mathcal{O})$ is open (inverse images of open/closed sets under a continuous function is open/closed; see Proposition 1.22) and so both are measurable.

Proposition 2.21 (continued 1)

Proof (continued). Let $\mathcal{O}=\vdash_{k=1}^{\infty} I_{k}$ where the I_{k} are the connected components of \mathcal{O}. Then φ is constant on each I_{k} and so ψ maps I_{k} onto a translated copy of itself (translated by the constant given by φ on I_{k}) of the same length (the " $+x$ " part of ψ is the identity function). Since ψ is one to one, the collection $\left\{\psi\left(I_{k}\right)\right\}_{k=1}^{\infty}$ is disjoint. By countable additivity (Proposition 2.13),

$$
\begin{aligned}
& m(\psi(\mathcal{O}))=m\left(\psi\left(\cup_{k=1}^{\infty} I_{k}\right)\right)=m\left(\cup_{k=1}^{\infty} \psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} m\left(\psi\left(I_{k}\right)\right) \\
& =\sum_{k=1}^{\infty} \ell\left(\psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)=\sum_{k=1}^{\infty} m\left(I_{k}\right)=m\left(\cup_{k=1}^{\infty} I_{k}\right)=m(\mathcal{O}) .
\end{aligned}
$$

Proposition 2.21 (continued 1)

Proof (continued). Let $\mathcal{O}=\vdash_{k=1}^{\infty} I_{k}$ where the I_{k} are the connected components of \mathcal{O}. Then φ is constant on each I_{k} and so ψ maps I_{k} onto a translated copy of itself (translated by the constant given by φ on I_{k}) of the same length (the " $+x$ " part of ψ is the identity function). Since ψ is one to one, the collection $\left\{\psi\left(I_{k}\right)\right\}_{k=1}^{\infty}$ is disjoint. By countable additivity (Proposition 2.13),

$$
\begin{aligned}
& m(\psi(\mathcal{O}))=m\left(\psi\left(\cup_{k=1}^{\infty} I_{k}\right)\right)=m\left(\cup_{k=1}^{\infty} \psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} m\left(\psi\left(I_{k}\right)\right) \\
& =\sum_{k=1}^{\infty} \ell\left(\psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)=\sum_{k=1}^{\infty} m\left(I_{k}\right)=m\left(\vdash_{k=1}^{\infty} I_{k}\right)=m(\mathcal{O}) .
\end{aligned}
$$

But $m(\mathbf{C})=0$ and $m(\mathcal{O})=1$, so $m(\psi(\mathcal{O}))=1$. Hence, since $[0,2]=\psi(\mathcal{O}) \cup \psi(\mathbf{C})$, then $m(\psi(\mathbf{C}))=1$ and (i) follows.

Proposition 2.21 (continued 1)

Proof (continued). Let $\mathcal{O}=\cup_{k=1}^{\infty} I_{k}$ where the I_{k} are the connected components of \mathcal{O}. Then φ is constant on each I_{k} and so ψ maps I_{k} onto a translated copy of itself (translated by the constant given by φ on I_{k}) of the same length (the " $+x$ " part of ψ is the identity function). Since ψ is one to one, the collection $\left\{\psi\left(I_{k}\right)\right\}_{k=1}^{\infty}$ is disjoint. By countable additivity (Proposition 2.13),

$$
\begin{aligned}
& m(\psi(\mathcal{O}))=m\left(\psi\left(\cup_{k=1}^{\infty} I_{k}\right)\right)=m\left(\cup_{k=1}^{\infty} \psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} m\left(\psi\left(I_{k}\right)\right) \\
& =\sum_{k=1}^{\infty} \ell\left(\psi\left(I_{k}\right)\right)=\sum_{k=1}^{\infty} \ell\left(I_{k}\right)=\sum_{k=1}^{\infty} m\left(I_{k}\right)=m\left(\cup_{k=1}^{\infty} I_{k}\right)=m(\mathcal{O}) .
\end{aligned}
$$

But $m(\mathbf{C})=0$ and $m(\mathcal{O})=1$, so $m(\psi(\mathcal{O}))=1$. Hence, since $[0,2]=\psi(\mathcal{O}) \cup \psi(\mathbf{C})$, then $m(\psi(\mathbf{C}))=1$ and (i) follows.

Proposition 2.21 (continued 2)

Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x)=\varphi(x)+x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,
(i) maps the Cantor set \mathbf{C} onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof (continued). To verify (ii), notice that Vitali's Construction of a Nonmeasurable Set (Theorem 2.17) implies that $\psi(\mathbf{C})$ contains a nonmeasurable subset W. The set $\psi^{-1}(W)$ is measurable by Proposition 2.4 since $\psi^{-1}(W) \subset \mathbf{C}$ and \mathbf{C} has measure 0 (so by monotonicity $\psi^{-1}(W)$ has measure 0). So $\psi^{-1}(W)$ is a measurable subset of \mathbf{C} which is mapped by ψ onto a nonmeasurable set.

Proposition 2.21 (continued 2)

Proposition 2.21. Let φ be the Cantor-Lebesgue function and define the function ψ on $[0,1]$ by $\psi(x)=\varphi(x)+x$. Then ψ is a strictly increasing continuous function that maps $[0,1]$ onto $[0,2]$,
(i) maps the Cantor set \mathbf{C} onto a measurable set of positive measure and
(ii) maps a measurable set, a subset of the Cantor set, onto a nonmeasurable set.

Proof (continued). To verify (ii), notice that Vitali's Construction of a Nonmeasurable Set (Theorem 2.17) implies that $\psi(\mathbf{C})$ contains a nonmeasurable subset W. The set $\psi^{-1}(W)$ is measurable by Proposition 2.4 since $\psi^{-1}(W) \subset \mathbf{C}$ and \mathbf{C} has measure 0 (so by monotonicity $\psi^{-1}(W)$ has measure 0). So $\psi^{-1}(W)$ is a measurable subset of \mathbf{C} which is mapped by ψ onto a nonmeasurable set.

Proposition 2.22

Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set $A\left(A=\psi^{-1}(W)\right.$ in the notation of the proof of Proposition 2.21) onto a nonmeasurable set $B(B=W$ in the proof of Proposition 2.21)

Proposition 2.22

Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set $A\left(A=\psi^{-1}(W)\right.$ in the notation of the proof of Proposition 2.21) onto a nonmeasurable set $B(B=W$ in the proof of Proposition 2.21). By Exercise 2.47, a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets. So set A is not Borel, or else $B=\psi(A)$ would be Borel and so measurable.

Proposition 2.22

Proposition 2.22. There is a measurable set, a subset of the Cantor set, that is not a Borel set.

Proof. The strictly increasing continuous function ψ of Proposition 2.21 maps a measurable set $A\left(A=\psi^{-1}(W)\right.$ in the notation of the proof of Proposition 2.21) onto a nonmeasurable set $B(B=W$ in the proof of Proposition 2.21). By Exercise 2.47, a continuous strictly increasing function that is defined on an interval maps Borel sets to Borel sets. So set A is not Borel, or else $B=\psi(A)$ would be Borel and so measurable.

