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Lemma 20.1

Lemma 20.1

Lemma 20.1. Let {Ak × Bk}∞k=1 be a countable disjoint collection of
measurable rectangles whose union also is a measurable rectangle A× B.
Notice that index k ranges over ALL of the rectangles which compose
A× B (so there is no Ai × B+j where i 6= j). Then

µ(A) · ν(B) =
∞∑

k=1

µ(Ak) · ν(Bk).

Proof. Fix a point x ∈ A. For each y ∈ B, the point (x , y) ∈ A× B and
since {Ak × Bk}∞k=1 is a disjoint collection, then (x , y) is in exactly one
Ak × Bk .

So we can write B as the following disjoint union:
B = ∪· {k|x∈Ak}Bk (here x is a fixed element of A). By the countable
additivity of measure ν, ν(B) =

∑
{k|x∈Ak} ν(Bk) (here x is a fixed

element of A).
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Lemma 20.1

Lemma 20.1 (continued 1)

Proof (continued).

Equivalently, we have ν(B) =
∑

x∈Ak
ν(B)χAk

(x) for x ∈ A. So both for
x ∈ A and x 6∈ A we have ν(B)χA(x) =

∑∞
k=1 ν(Bk)χAk

(x) for all x ∈ X .
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Lemma 20.1

Lemma 20.1 (continued 2)

Lemma 20.1. Let {Ak × Bk}∞k=1 be a countable disjoint collection of
measurable rectangles whose union also is a measurable rectangle A× B.
Notice that index k ranges over ALL of the rectangles which compose
A× B (so there is no Ai × B+j where i 6= j). Then

µ(A) · ν(B) =
∞∑

k=1

µ(Ak) · ν(Bk).

Proof (continued). Now
∑∞

k=1 ν(Bk)χAk
(x) has partial sums which form

a monotone increasing sequence of nonnegative functions. So by the
Monotone Convergence Theorem for general measurable spaces (see page
370),

∫
X

ν(B)χA(x) dµ = ν(B)µ(A) =

∫
X

( ∞∑
k=1

ν(Bk)χA

)
dµ =

∞∑
k=1

(∫
X

ν(Bk)χA(x) dµ

)
=

∞∑
k=1

ν(Bk)µ(Ak). �
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Proposition 20.2

Proposition 20.2

Proposition 20.2. Let R be the collection of measurable rectangles in
X × Y and for a measurable rectangle A× B define
λ(A× B) = µ(A) · ν(B). Then R is a semiring and λ : R→ [0,∞] is a
premeasure.

Proof. To show R is a semiring, we need to show that it is closed under
finite intersections and that relative complements of R are finite disjoint
unions of elements of R. Let A1 × B1 and A2 × B2 be measurable
rectangles.

Then (A1 × B1) ∩ (A2 × B2) = (A1 ∩ A2)× (B1 ∩ B2) so R is
closed under intersections (since A and B are σ-algebras).
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Proposition 20.2

Proposition 20.2 (continued 1)

Proof (continued). Next,
(A1 × B1) \ (A2 × B2) = [(A1 \ A2)× B1] ∪· [(A1 ∩ A2)× (B1 \ B2)].

So the relative complement of elements of R is the union of two disjoint
elements of R (again, we have A and B are σ-algebras. so A1 \ A2 ∈ A,
A1 ∪ A2 ∈ A, B1 \ B2 ∈ B). So R is a semiring.
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Proposition 20.2

Proposition 20.2 (continued 2)

Proof (continued). To show λ is a premeasure, we must show that λ is
finite additive and countably monotone (and that λ(∅) = 0 which follows
from the fact that λ(∅) = λ(∅×∅) = µ(∅)ν(∅ = 0). Lemma 20.1 gives
countable additivity. For countable monotonicity. let E ∈ R be covered by
{Ek}∞k=1 ⊂ R. Since R is a semiring we can assume WLOG that the Ek

are disjoint and that E = ∪·∞k=1(E ∩ Ek) where each E ∩ Ek is a
measurable rectangle.

We then have

λ(E ) =
∞∑

k=1

λ(E ∩ Ek) by Lemma 20.1

≤
∞∑

k=1

λ(Ek) since λ is monotone (because µ and ν are monotone).

So λ is countable monotone and λ is a premeasure.
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Lemma 20.3

Lemma 20.3

Lemma 20.3. Let E ⊂ X × Y be an Rσδ set for which (µ× ν)(E ) < ∞.
Then for all x ∈ X , the x-section of set E , Ex , is a ν-measurable subset of
Y , the function x 7→ ν(Ex) for x ∈ X is a µ-measurable function and

(µ× ν)(E ) =

∫
X

ν(Ex) dµ(x).

Proof. (1) First suppose E = A× B is a measurable rectangle.

Then for

x ∈ X , Ex =

{
B for x ∈ A
∅ for x 6∈ A,

and so ν(Ex) = ν(B)χA(x), and

(µ× ν)(E ) = µ(A)ν(B) = ν(B)

∫
X

χA(x) dµ(x) =

∫
X

ν(Ex) dµ(x),

so the result holds for E a measurable rectangle.

() Real Analysis December 21, 2016 9 / 28



Lemma 20.3

Lemma 20.3

Lemma 20.3. Let E ⊂ X × Y be an Rσδ set for which (µ× ν)(E ) < ∞.
Then for all x ∈ X , the x-section of set E , Ex , is a ν-measurable subset of
Y , the function x 7→ ν(Ex) for x ∈ X is a µ-measurable function and

(µ× ν)(E ) =

∫
X

ν(Ex) dµ(x).

Proof. (1) First suppose E = A× B is a measurable rectangle. Then for

x ∈ X , Ex =

{
B for x ∈ A
∅ for x 6∈ A,

and so ν(Ex) = ν(B)χA(x), and

(µ× ν)(E ) = µ(A)ν(B) = ν(B)

∫
X

χA(x) dµ(x) =

∫
X

ν(Ex) dµ(x),

so the result holds for E a measurable rectangle.

() Real Analysis December 21, 2016 9 / 28



Lemma 20.3

Lemma 20.3

Lemma 20.3. Let E ⊂ X × Y be an Rσδ set for which (µ× ν)(E ) < ∞.
Then for all x ∈ X , the x-section of set E , Ex , is a ν-measurable subset of
Y , the function x 7→ ν(Ex) for x ∈ X is a µ-measurable function and

(µ× ν)(E ) =

∫
X

ν(Ex) dµ(x).

Proof. (1) First suppose E = A× B is a measurable rectangle. Then for

x ∈ X , Ex =

{
B for x ∈ A
∅ for x 6∈ A,

and so ν(Ex) = ν(B)χA(x), and

(µ× ν)(E ) = µ(A)ν(B) = ν(B)

∫
X

χA(x) dµ(x) =

∫
X

ν(Ex) dµ(x),

so the result holds for E a measurable rectangle.

() Real Analysis December 21, 2016 9 / 28



Lemma 20.3

Lemma 20.3 (continued 1)

Proof (continued). (2) Suppose E in an Rσ set. Since R is a semiring,
there is a disjoint collection of measurable rectangles {Ak × Bk}∞k=1 whose
union is E . For fixed x ∈ X , we have Ex = ∪·∞k=1(Ak × Bk)x . Thus Ex is
the countable disjoint union of some of the Bk ’s (the ones for which
x ∈ Ak).

So by the countable additivity of ν (by the definition of measure),
ν(Ex) =

∑∞
k=1 ν(Ak × Bk)x).
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Lemma 20.3

Lemma 20.3 (continued 2)

Proof (continued). So we have∫
X

ν(Ex) dµ(x) =

∫
X

( ∞∑
k=1

ν((Ak × Bk)x

)
dµ(x)

=
∞∑

k=1

(∫
X

ν((Ak × Bk)x) dµ(x)

)
by the Monotone

Convergence Theorem; the partial sums are increasing

=
∞∑

k=1

µ(Ak)ν(Bk) by part (1),

since Ak × Bk is a measurable rectangle

= (µ× ν)(E ) by the definition of µ× ν

So the result holds for E ∈ Rσ.
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Lemma 20.3

Lemma 20.3 (continued 3)
Proof (continued). (3) Suppose E is in Rσδ and (µ× ν)(E ) < ∞. Since
R is a semiring (closed under finite intersections), there is a descending
sequence {Ek}∞k=1 of sets in Rσ whose intersection is E . Since
(µ× ν)(E ) < ∞, without loss of generality (µ× ν)(E ) < ∞ (from the
definition of µ× ν in terms of the outer measure induced by the
premeasure µ× ν on R).

By the continuity of measure µ× ν (Proposition
17.2),

lim
k→∞

(µ× ν)Ek) = (µ× ν)(E ). (3)

Since E1 ∈ Rσ and the result holds for Rσ sets,
(µ× ν)(E1) =

∫
X ν((E1)x) dµ(x), and since (µ× ν)(E1) < ∞ and

ν((E1)x) is nonnegative, then ν((E1)x) < ∞ for almost all x ∈ X by
Proposition 18.9. For each x ∈ X , Ex is the intersection of the descending
sequence {(Ek)x}∞k=1, and so Ex is ν-measurable (B is a σ-algebra). So by
continuity of measure ν, for almost all x ∈ E (the x for which
ν((E1)x) < ∞) we have limk→∞ ν((Ek)x)− ν(Ex) (Continuity of Measure
for descending sequences requires finite measure; see Proposition 17.2).
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Lemma 20.3

Lemma 20.3 (continued 4)

Proof (continued). Furthermore, the function x 7→ ν((E1)x) is
nonnegative and integrable (since (µ× ν)(E1) < ∞) and for each k ∈ N,
dominates a.e. the function x 7→ ν((Ek)x) since the Ek form a descending
sequence. So we have∫

X
ν(Ex) dµ(x) =

∫
X

(
lim

k→∞
ν(Ek)x

)
dµ(x)

= lim
k→∞

(∫
X

ν((Ek)x) dµ(x)

)
by the Lebesgue

Dominated Convergence Theorem

= lim
k→∞

(µ× ν)(Ek) since the result holds on Rσ sets Ek

= (µ× ν)(E ) from (3)

So the result holds for Rσδ sets.

() Real Analysis December 21, 2016 13 / 28



Lemma 20.3

Lemma 20.3 (continued 4)

Proof (continued). Furthermore, the function x 7→ ν((E1)x) is
nonnegative and integrable (since (µ× ν)(E1) < ∞) and for each k ∈ N,
dominates a.e. the function x 7→ ν((Ek)x) since the Ek form a descending
sequence. So we have∫

X
ν(Ex) dµ(x) =

∫
X

(
lim

k→∞
ν(Ek)x

)
dµ(x)

= lim
k→∞

(∫
X

ν((Ek)x) dµ(x)

)
by the Lebesgue

Dominated Convergence Theorem

= lim
k→∞

(µ× ν)(Ek) since the result holds on Rσ sets Ek

= (µ× ν)(E ) from (3)

So the result holds for Rσδ sets.

() Real Analysis December 21, 2016 13 / 28



Lemma 20.4

Lemma 20.4

Lemma 20.4. Assume the measure ν is complete. LetE ⊂ X × Y be
measurable with respect to µ× ν. If (µ× ν)(E ) = 0, then almost all
x ∈ X , the x-section of E , Ex , is ν-measurable and ν(Ex) = 0. Therefore

0 = (µ× ν)(E ) =

∫
X

ν(Ex) dµ(x) = 0.

Proof. Since (µ× ν)(E ) < ∞ it follows from Proposition 17.10 that there
is a set A ∈ Rσδ for which E ⊂ A and (µ× ν)(A) = (µ× ν)(E ) = 0.

Since A is Rσδ, by Lemma 20.3 we have that for all x ∈ X that the
x-section of A, Ax , is ν-measurable and (µ× ν)(A) =

∫
X ν(Ax) dµ(x). So

the integral is 0 for almost all x ∈ X by Problem 18.19. However, for all
x ∈ X we have Ex ⊂ Ax . By the completeness of ν, ν(Ex) = 0 and so Ex

is ν-measurable. So∫
X

ν(Ex) dµ(x) = 0 = (µ× ν)(E ).
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Proposition 20.5

Proposition 20.5

Proposition 20.5. Assume the measure ν is complete. Let E ⊂ X ×Y be
measurable with respect to µ× ν and (µ× ν)(E ) < ∞. The for almost all
x ∈ X , the x-section of E , Ex , is a ν-measurable subset of Y , the function
x 7→ ν(Ex) is µ-measurable for all x ∈ X , and

(µ× ν)(E ) =

∫
X

ν(Ex) dµ(x).

Proof. Since (µ× ν)(E ) < ∞ it follows from Proposition 17.10 that there
is a set A ∈ Rσδ for which E ⊂ Q and (µ× ν)(A \ E ) = 0. By the
excision property of measure µ× ν (Proposition 17.1), we have
(µ× ν)(E ) = (µ× ν)(A).

Since A ∈ Rσδ then by Lemma 20.3, Ax is a
ν-measurable function. So by the finite additivity of ν (Proposition 17.1)

ν(Ax) = ν(Ex ∪· (A \ E )x) = ν(Ex) + ν((A \ E )x).
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Proposition 20.5

Proposition 20.5 (continued)

Proof. Since (µ× ν)(E \ A) = 0, then by Lemma 20.4 (the completeness
of ν is used here) for almost all x ∈ X , (\E )x is ν-measurable and
ν((A \ E )x) = 0. So ν(Ax) = ν(Ex) for almost all x ∈ X . So

(µ× ν)(E ) = (µ× ν)(A) by above

=

∫
X

ν(Az) dµ(x) by Lemma 20.3 since A ∈ Rσδ

=

∫
X

ν(Ex) dµ(x) since ν(Ax) = ν(Ex) a.e. on X .
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Theorem 20.6

Theorem 20.6

Theorem 20.6. Assume measure ν is complete. Let φ : X × Y → R be a
simple function that is integrable over X × Y with respect to µ× ν. Then
for almost all x ∈ X , the x-section of φ, φ(x , ·), is integrable over Y with
respect to ν and∫

X×Y
φ d(µ× ν) =

∫
X

[∫
Y

φ(x , y) dν(y)

]
dµ(x).

Proof. First, if χE is a characteristic function on a subset E of X × Y of
finite measure (to get integrability), then∫

X×Y
χE d(µ× ν) = 1(µ× ν)(E ) where ϕ = 1 on E , by the definition

of integral of a characteristic function; page 366

=

∫
X

ν((χE )x) dµ(x) by Proposition 20.5
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Theorem 20.6

Theorem 20.6 (continued)

Proof (continued).∫
X×Y

χE d(µ× ν) =

∫
X

(∫
Y

ϕ(x , y) dν(y)

)
dµ(x)

since (χE )x = χEx = ϕ(x , ·) =

{
1 if y ∈ Ex

0 if y 6∈ Ex
and so

ν((χE )x) =
∫
Y ϕ(x , y) dν(y). So the result holds for characteristic

functions.

Second, for general simple and integrable ϕ, ϕ is a linear combination of
characteristic functions and this result then follows by the linearity of
integration (Theorem 18.12) as applied to the integral with respect to
ν.
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Theorem 20.6 (continued)
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Fubini’s Theorem

Fubini’s Theorem

Fubini’s Theorem.
Let (X ,A, µ) and (Y ,B, ν) be measure spaces and let ν be complete. Let
f be integrable over X × Y with respect to the product measure µ× ν.
Then for almost all x ∈ X , the x-section of f , f (x , ·)(y), is integrable over
Y with respect to µ and∫

X×Y
f d(µ× ν) =

∫
X

[∫
Y

f (x , y) dν(y)

]
dµ(x).

Proof. Since integration is linear (Theorem 18.12), we assume f is
nonnegative (otherwise, we break f into f + and f − and consider these
parts individually). By the Simple Approximation Theorem there is an
increasing sequence {ϕ} of simple functions that converges pointwise on
X × Y to f and 0 ≤ ϕk ≤ f on X × T for each k ∈ N. Since f is
integrable over X × Y , each ϕk is integrable over X × Y (by the Integral
Comparison Test).
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Fubini’s Theorem

Fubini’s Theorem (continued 1)

Proof (continued). Since each ϕk is simple and integrable, then by
Theorem 20.6 we have∫

X×Y
ϕk d(µ× ν) =

∫
X

(∫
Y

ϕk(x , y) dν(y)

)
dµ(x).

Since {ϕk} is an increasing sequence convergent to f , we can apply the
Monotone Convergence Theorem to get∫

X×Y
f d(µ×ν) =

∫
X×Y

(
lim

k→∞
ϕk

)
d(µ×ν) = lim

k→∞

(∫
X×Y

ϕk d(µ× ν)

)
= lim

k→∞

∫
X

(∫
Y

ϕk(x , y) dν(y)

)
dµ(x).

So we are done if we show

lim
k→∞

∫
X

(∫
Y

ϕk(x , y) dν(y)

)
dµ(x) =

∫
X

(∫
Y

f (x , y) f ν(y)

)
dµ(x). (7)
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Fubini’s Theorem

Fubini’s Theorem (continued 2)

Proof (continued). If we excise from X × Y a set of µ× ν measure zero,
then the left hand side of (7) remains the same by Additivity of Integrals
(Theorem 8.12) since the left hand side of (7) equals

∫
X×Y f d(µ× ν) by

above. If we excise from X × Y a set E of µ× ν measure zero, then by
Lemma 20.4 for almost all x ∈ X , ν(Ex) = 0 where Ex is the x-section of
the excised set E . But then

∫
Ex

f (x , ·)(y) dν(y) = 0 for almost all x ∈ X ,
by Problem 18.19. So for almost all x ∈ X ,∫
Y f (x , y) dν(y) =

∫
Y \Ex

f (x , y) dν(y). Since this holds a.e. on X , we see

that the right hand side of (7) also remains unchanged by the excision of
µ× ν measure zero set E .

So, without loss of generality we may suppose
that for all x ∈ X and for all k ∈ N, ϕk(x , ·) is integrable over Y with
respect to ν.

() Real Analysis December 21, 2016 21 / 28



Fubini’s Theorem

Fubini’s Theorem (continued 2)

Proof (continued). If we excise from X × Y a set of µ× ν measure zero,
then the left hand side of (7) remains the same by Additivity of Integrals
(Theorem 8.12) since the left hand side of (7) equals

∫
X×Y f d(µ× ν) by

above. If we excise from X × Y a set E of µ× ν measure zero, then by
Lemma 20.4 for almost all x ∈ X , ν(Ex) = 0 where Ex is the x-section of
the excised set E . But then

∫
Ex

f (x , ·)(y) dν(y) = 0 for almost all x ∈ X ,
by Problem 18.19. So for almost all x ∈ X ,∫
Y f (x , y) dν(y) =

∫
Y \Ex

f (x , y) dν(y). Since this holds a.e. on X , we see

that the right hand side of (7) also remains unchanged by the excision of
µ× ν measure zero set E . So, without loss of generality we may suppose
that for all x ∈ X and for all k ∈ N, ϕk(x , ·) is integrable over Y with
respect to ν.

() Real Analysis December 21, 2016 21 / 28



Fubini’s Theorem

Fubini’s Theorem (continued 2)

Proof (continued). If we excise from X × Y a set of µ× ν measure zero,
then the left hand side of (7) remains the same by Additivity of Integrals
(Theorem 8.12) since the left hand side of (7) equals

∫
X×Y f d(µ× ν) by

above. If we excise from X × Y a set E of µ× ν measure zero, then by
Lemma 20.4 for almost all x ∈ X , ν(Ex) = 0 where Ex is the x-section of
the excised set E . But then

∫
Ex

f (x , ·)(y) dν(y) = 0 for almost all x ∈ X ,
by Problem 18.19. So for almost all x ∈ X ,∫
Y f (x , y) dν(y) =

∫
Y \Ex

f (x , y) dν(y). Since this holds a.e. on X , we see

that the right hand side of (7) also remains unchanged by the excision of
µ× ν measure zero set E . So, without loss of generality we may suppose
that for all x ∈ X and for all k ∈ N, ϕk(x , ·) is integrable over Y with
respect to ν.

() Real Analysis December 21, 2016 21 / 28



Fubini’s Theorem

Fubini’s Theorem (continued 3)

Proof (continued). Fix x ∈ X . Then {ϕk(x , ·)} is an increasing sequence
of simple ν-measurable functions that converges pointwise on Y to f (x , ·).
By Theorem 18.6, f (x , ·) is a ν-measurable function, and by the Monotone
Convergence Theorem,∫

Y
f (x , y) dν(y) =

∫
Y

(
lim

k→∞
ϕk(x , y)

)
dν(y) = lim

k→∞

∫
Y

ϕk(x , y) dν(y).

For each x ∈ X , define h(x) =
∫
Y f (x , y) dν(y) and

hk(x) =
∫
Y ϕk(x , y) dν(y). By Theorem 20.6, each hk is integrable over

X with respect to µ. Now {hk} is an increasing nonnegative sequence
(since {ϕk} is an increasing nonnegative sequence) that converges
pointwise on X to h.

So by the Monotone Convergence Theorem,

lim
k→∞

∫
X

(∫
Y

ϕk(x , y) dν(y)

)
= lim

k→∞

∫
X

hk(x) dµ(x)

=

∫
X

h(x) dµ(x) =

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).
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Fubini’s Theorem

Fubini’s Theorem (continued 4)

Fubini’s Theorem.
Let (X ,A, µ) and (Y ,B, ν) be measure spaces and let ν be complete. Let
f be integrable over X × Y with respect to the product measure µ× ν.
Then for almost all x ∈ X , the x-section of f , f (x , ·)(y), is integrable over
Y with respect to µ and∫

X×Y
f d(µ× ν) =

∫
X

[∫
Y

f (x , y) dν(y)

]
dµ(x).

Proof (continued). So (7) holds and we now have∫
X×Y

f d(µ× ν) = lim
k→∞

∫
X×Y

ϕk d(µ× ν)

= lim
k→∞

∫
X

(∫
Y

ϕk(x , y) dν(y)

)
dµ(x) =

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).
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Tonelli’s Theorem

Tonelli’s Theorem

Tonelli’s Theorem.
Let (X ,A, µ) and (Y ,B, ν) be two σ-finite measure spaces and ν be
complete. Let f be a nonnegative (µ× ν)-measurable function on X × Y .
Then for almost all x ∈ X , the x-section of function f , f (x , ·), is
ν-measurable and the function defined a.e. on X by

x 7→ (the integral of f (x , ·) over X with respect to ν)

is µ-measurable. Moreover,∫
X×Y

f f (µ× ν) =

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).

Proof. By the Simple Approximation Theorem, there is an increasing
sequence {ϕk} of simple functions that converge pointwise on X ×Y to f ,
and 0 ≤ ϕk ≤ f on X × Y for all k ∈ N. The product measure µ× ν is
σ-finite since both µ and ν are σ-finite.
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Tonelli’s Theorem

Tonelli’s Theorem (continued)

Tonelli’s Theorem.
Let (X ,A, µ) and (Y ,B, ν) be two σ-finite measure spaces and ν be
complete. Let f be a nonnegative (µ× ν)-measurable function on X × Y .
Then for almost all x ∈ X , the x-section of function f , f (x , ·), is
ν-measurable and the function defined a.e. on X by

x 7→ (the integral of f (x , ·) over X with respect to ν)

is µ-measurable. Moreover,∫
X×Y

f f (µ× ν) =

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).

Proof (continued). So by (i) of the Simple Approximation Theorem, the
ϕk can have the additional property that they vanish outside a set of finite
measure (and so are integrable). We now apply Theorem 20.6 to each ϕk ,
as we did neat the beginning of the proof of Fubini. The remainder of the
proof is identical to the proof of Fubini’s Theorem.
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Corollary 20.7. Tonelli’s Corollary

Corollary 20.7. (Tonelli’s Corollary).
Let (X ,A, µ) and (Y ,B, ν) be two σ-finite, complete measure spaces and
f a nonnegative (µ× ν)-measurable function of X × Y . Then:

(i) For almost all x ∈ X , the x-section of f , f (x , ·), is
ν-measurable and the function defined almost everywhere on
X by

x 7→ (the integral of f (x , ·) over X with respect to ν)

is µ-measurable, and

(ii) for almost all y ∈ Y , the y -section of f , f (·, y), is
µ-measurable and the function defined almost everywhere on
Y by

y 7→ (the integral of f (·, y) over Y with respect to µ)

is µ-measurable.
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Corollary 20.7. Tonelli’s Corollary (continued 1)

Corollary 20.7. (Tonelli’s Corollary, continued).
Moreover, if ∫

X

(∫
Y

f (x , y) dν(y)

)
dµ(x) < ∞,

then f is integrable over X × Y with respect to µ× ν and∫
Y

(∫
X

f (x , y) dµ(x)

)
dν(y) =

∫
X×Y

f d(µ× ν)

=

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).

Proof. Since both measure spaces are σ-finite and ν is complete, Tonelli’s
Theorem implies that the x-section of f is ν-measurable for almost all
x ∈ X and x 7→

∫
Y f (x , y) dν(y) is µ-measurable.
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Corollary 20.7. Tonelli’s Corollary

Corollary 20.7. Tonelli’s Corollary (continued 1)

Corollary 20.7. (Tonelli’s Corollary, continued).
Moreover, if ∫

X

(∫
Y

f (x , y) dν(y)

)
dµ(x) < ∞,

then f is integrable over X × Y with respect to µ× ν and∫
Y

(∫
X

f (x , y) dµ(x)

)
dν(y) =

∫
X×Y

f d(µ× ν)

=

∫
X

(∫
Y

f (x , y) dν(y)

)
dµ(x).

Proof. Since both measure spaces are σ-finite and ν is complete, Tonelli’s
Theorem implies that the x-section of f is ν-measurable for almost all
x ∈ X and x 7→

∫
Y f (x , y) dν(y) is µ-measurable.
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Corollary 20.7. Tonelli’s Corollary

Corollary 20.7. Tonelli’s Corollary (continued 2)

Proof (continued). Also,∫
X×Y f f (µ× ν) =

∫
X

(∫
Y f (x , y) dν(y)

)
dµ(x), and so f is integrable

over X × Y with respect to µ× ν by (10). Now applying Fubini’s
Theorem, since f is integrable over X × Y with respect to µ× ν and since
µ is complete we have∫

X×Y
f d(µ× ν) =

∫
Y

(∫
X

f (x , y) dµ(x) dν(y)

)
.
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Corollary 20.7. Tonelli’s Corollary (continued 2)

Proof (continued). Also,∫
X×Y f f (µ× ν) =

∫
X

(∫
Y f (x , y) dν(y)

)
dµ(x), and so f is integrable

over X × Y with respect to µ× ν by (10). Now applying Fubini’s
Theorem, since f is integrable over X × Y with respect to µ× ν and since
µ is complete we have∫

X×Y
f d(µ× ν) =

∫
Y

(∫
X

f (x , y) dµ(x) dν(y)

)
.
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