Real Analysis

Chapter 20. The Construction of Particular Measures 20.1. Product Measures: Fubini and Tonelli Theorems—Proofs

Real Analysis

Table of contents

- Lemma 20.1
- Proposition 20.2
- 3 Lemma 20.3
- 4 Lemma 20.4
- 5 Proposition 20.5
- 6 Theorem 20.6
 - 7 Fubini's Theorem
- 8 Tonelli's Theorem
- Orollary 20.7. Tonelli's Corollary

Lemma 20.1

Lemma 20.1. Let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union also is a measurable rectangle $A \times B$. Notice that index k ranges over ALL of the rectangles which compose $A \times B$ (so there is no $A_i \times B_+ j$ where $i \neq j$). Then

$$\mu(A)\cdot\nu(B)=\sum_{k=1}^{\infty}\mu(A_k)\cdot\nu(B_k).$$

Proof. Fix a point $x \in A$. For each $y \in B$, the point $(x, y) \in A \times B$ and since $\{A_k \times B_k\}_{k=1}^{\infty}$ is a disjoint collection, then (x, y) is in exactly one $A_k \times B_k$.

Lemma 20.1

Lemma 20.1. Let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union also is a measurable rectangle $A \times B$. Notice that index k ranges over ALL of the rectangles which compose $A \times B$ (so there is no $A_i \times B_+ j$ where $i \neq j$). Then

$$\mu(A)\cdot\nu(B)=\sum_{k=1}^{\infty}\mu(A_k)\cdot\nu(B_k).$$

Proof. Fix a point $x \in A$. For each $y \in B$, the point $(x, y) \in A \times B$ and since $\{A_k \times B_k\}_{k=1}^{\infty}$ is a disjoint collection, then (x, y) is in exactly one $A_k \times B_k$. So we can write B as the following disjoint union: $B = \bigcup_{\{k \mid x \in A_k\}} B_k$ (here x is a fixed element of A). By the countable additivity of measure ν , $\nu(B) = \sum_{\{k \mid x \in A_k\}} \nu(B_k)$ (here x is a fixed element of A).

Lemma 20.1

Lemma 20.1. Let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union also is a measurable rectangle $A \times B$. Notice that index k ranges over ALL of the rectangles which compose $A \times B$ (so there is no $A_i \times B_+ j$ where $i \neq j$). Then

$$\mu(A)\cdot\nu(B)=\sum_{k=1}^{\infty}\mu(A_k)\cdot\nu(B_k).$$

Proof. Fix a point $x \in A$. For each $y \in B$, the point $(x, y) \in A \times B$ and since $\{A_k \times B_k\}_{k=1}^{\infty}$ is a disjoint collection, then (x, y) is in exactly one $A_k \times B_k$. So we can write B as the following disjoint union: $B = \bigcup_{\{k \mid x \in A_k\}} B_k$ (here x is a fixed element of A). By the countable additivity of measure ν , $\nu(B) = \sum_{\{k \mid x \in A_k\}} \nu(B_k)$ (here x is a fixed element of A).

Proof (continued).

Equivalently, we have $\nu(B) = \sum_{x \in A_k} \nu(B) \chi_{A_k}(x)$ for $x \in A$. So both for $x \in A$ and $x \notin A$ we have $\nu(B) \chi_A(x) = \sum_{k=1}^{\infty} \nu(B_k) \chi_{A_k}(x)$ for all $x \in X$.

Lemma 20.1. Let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union also is a measurable rectangle $A \times B$. Notice that index k ranges over ALL of the rectangles which compose $A \times B$ (so there is no $A_i \times B_+ j$ where $i \neq j$). Then

$$\mu(A)\cdot\nu(B)=\sum_{k=1}^{\infty}\mu(A_k)\cdot\nu(B_k).$$

Proof (continued). Now $\sum_{k=1}^{\infty} \nu(B_k) \chi_{A_k}(x)$ has partial sums which form a monotone increasing sequence of nonnegative functions. So by the Monotone Convergence Theorem for general measurable spaces (see page 370), $\int_X \nu(B) \chi_A(x) d\mu = \nu(B) \mu(A) = \int_X \left(\sum_{k=1}^{\infty} \nu(B_k) \chi_A \right) d\mu =$ $\sum_{k=1}^{\infty} \left(\int_X \nu(B_k) \chi_A(x) d\mu \right) = \sum_{k=1}^{\infty} \nu(B_k) \mu(A_k).$

Lemma 20.1. Let $\{A_k \times B_k\}_{k=1}^{\infty}$ be a countable disjoint collection of measurable rectangles whose union also is a measurable rectangle $A \times B$. Notice that index k ranges over ALL of the rectangles which compose $A \times B$ (so there is no $A_i \times B_+ j$ where $i \neq j$). Then

$$\mu(A)\cdot\nu(B)=\sum_{k=1}^{\infty}\mu(A_k)\cdot\nu(B_k).$$

Proof (continued). Now $\sum_{k=1}^{\infty} \nu(B_k) \chi_{A_k}(x)$ has partial sums which form a monotone increasing sequence of nonnegative functions. So by the Monotone Convergence Theorem for general measurable spaces (see page 370), $\int_X \nu(B) \chi_A(x) d\mu = \nu(B) \mu(A) = \int_X \left(\sum_{k=1}^{\infty} \nu(B_k) \chi_A \right) d\mu =$ $\sum_{k=1}^{\infty} \left(\int_X \nu(B_k) \chi_A(x) d\mu \right) = \sum_{k=1}^{\infty} \nu(B_k) \mu(A_k).$ **Proposition 20.2.** Let \mathcal{R} be the collection of measurable rectangles in $X \times Y$ and for a measurable rectangle $A \times B$ define $\lambda(A \times B) = \mu(A) \cdot \nu(B)$. Then \mathcal{R} is a semiring and $\lambda : \mathcal{R} \to [0, \infty]$ is a premeasure.

Proof. To show \mathcal{R} is a semiring, we need to show that it is closed under finite intersections and that relative complements of \mathcal{R} are finite disjoint unions of elements of \mathcal{R} . Let $A_1 \times B_1$ and $A_2 \times B_2$ be measurable rectangles.

Proposition 20.2. Let \mathcal{R} be the collection of measurable rectangles in $X \times Y$ and for a measurable rectangle $A \times B$ define $\lambda(A \times B) = \mu(A) \cdot \nu(B)$. Then \mathcal{R} is a semiring and $\lambda : \mathcal{R} \to [0, \infty]$ is a premeasure.

Proof. To show \mathcal{R} is a semiring, we need to show that it is closed under finite intersections and that relative complements of \mathcal{R} are finite disjoint unions of elements of \mathcal{R} . Let $A_1 \times B_1$ and $A_2 \times B_2$ be measurable rectangles. Then $(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$ so \mathcal{R} is closed under intersections (since \mathcal{A} and \mathcal{B} are σ -algebras).

Proposition 20.2. Let \mathcal{R} be the collection of measurable rectangles in $X \times Y$ and for a measurable rectangle $A \times B$ define $\lambda(A \times B) = \mu(A) \cdot \nu(B)$. Then \mathcal{R} is a semiring and $\lambda : \mathcal{R} \to [0, \infty]$ is a premeasure.

Proof. To show \mathcal{R} is a semiring, we need to show that it is closed under finite intersections and that relative complements of \mathcal{R} are finite disjoint unions of elements of \mathcal{R} . Let $A_1 \times B_1$ and $A_2 \times B_2$ be measurable rectangles. Then $(A_1 \times B_1) \cap (A_2 \times B_2) = (A_1 \cap A_2) \times (B_1 \cap B_2)$ so \mathcal{R} is closed under intersections (since \mathcal{A} and \mathcal{B} are σ -algebras).

Proposition 20.2 (continued 1)

So the relative complement of elements of \mathcal{R} is the union of two disjoint elements of \mathcal{R} (again, we have \mathcal{A} and \mathcal{B} are σ -algebras. so $A_1 \setminus A_2 \in \mathcal{A}$, $A_1 \cup A_2 \in \mathcal{A}$, $B_1 \setminus B_2 \in \mathcal{B}$). So \mathcal{R} is a semiring.

Proposition 20.2 (continued 1)

Proof (continued). Next, $(A_1 \times B_1) \setminus (A_2 \times B_2) = [(A_1 \setminus A_2) \times B_1] \cup [(A_1 \cap A_2) \times (B_1 \setminus B_2)].$ $(A_1 \times B_1) \setminus (A_2 \times B_2)$ $(A_1 \cap A_2) \times (B_1 \setminus B_2)$

So the relative complement of elements of \mathcal{R} is the union of two disjoint elements of \mathcal{R} (again, we have \mathcal{A} and \mathcal{B} are σ -algebras. so $A_1 \setminus A_2 \in \mathcal{A}$, $A_1 \cup A_2 \in \mathcal{A}$, $B_1 \setminus B_2 \in \mathcal{B}$). So \mathcal{R} is a semiring.

Proposition 20.2 (continued 2)

Proof (continued). To show λ is a premeasure, we must show that λ is finite additive and countably monotone (and that $\lambda(\emptyset) = 0$ which follows from the fact that $\lambda(\emptyset) = \lambda(\emptyset \times \emptyset) = \mu(\emptyset)\nu(\emptyset = 0)$. Lemma 20.1 gives countable additivity. For countable monotonicity. let $E \in \mathcal{R}$ be covered by $\{E_k\}_{k=1}^{\infty} \subset \mathcal{R}$. Since \mathcal{R} is a semiring we can assume WLOG that the E_k are disjoint and that $E = \bigcup_{k=1}^{\infty} (E \cap E_k)$ where each $E \cap E_k$ is a measurable rectangle.

Proposition 20.2 (continued 2)

Proof (continued). To show λ is a premeasure, we must show that λ is finite additive and countably monotone (and that $\lambda(\emptyset) = 0$ which follows from the fact that $\lambda(\emptyset) = \lambda(\emptyset \times \emptyset) = \mu(\emptyset)\nu(\emptyset = 0)$. Lemma 20.1 gives countable additivity. For countable monotonicity. let $E \in \mathcal{R}$ be covered by $\{E_k\}_{k=1}^{\infty} \subset \mathcal{R}$. Since \mathcal{R} is a semiring we can assume WLOG that the E_k are disjoint and that $E = \bigcup_{k=1}^{\infty} (E \cap E_k)$ where each $E \cap E_k$ is a measurable rectangle. We then have

$$\lambda(E) = \sum_{k=1}^{\infty} \lambda(E \cap E_k) \text{ by Lemma 20.1}$$

$$\leq \sum_{k=1}^{\infty} \lambda(E_k) \text{ since } \lambda \text{ is monotone (because } \mu \text{ and } \nu \text{ are monotone).}$$

So λ is countable monotone and λ is a premeasure.

Proposition 20.2 (continued 2)

Proof (continued). To show λ is a premeasure, we must show that λ is finite additive and countably monotone (and that $\lambda(\emptyset) = 0$ which follows from the fact that $\lambda(\emptyset) = \lambda(\emptyset \times \emptyset) = \mu(\emptyset)\nu(\emptyset = 0)$. Lemma 20.1 gives countable additivity. For countable monotonicity. let $E \in \mathcal{R}$ be covered by $\{E_k\}_{k=1}^{\infty} \subset \mathcal{R}$. Since \mathcal{R} is a semiring we can assume WLOG that the E_k are disjoint and that $E = \bigcup_{k=1}^{\infty} (E \cap E_k)$ where each $E \cap E_k$ is a measurable rectangle. We then have

$$\begin{split} \lambda(E) &= \sum_{k=1}^{\infty} \lambda(E \cap E_k) \text{ by Lemma 20.1} \\ &\leq \sum_{k=1}^{\infty} \lambda(E_k) \text{ since } \lambda \text{ is monotone (because } \mu \text{ and } \nu \text{ are monotone).} \end{split}$$

So λ is countable monotone and λ is a premeasure.

Lemma 20.3. Let $E \subset X \times Y$ be an $\mathcal{R}_{\sigma\delta}$ set for which $(\mu \times \nu)(E) < \infty$. Then for all $x \in X$, the x-section of set E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ for $x \in X$ is a μ -measurable function and

$$(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

Proof. (1) First suppose $E = A \times B$ is a measurable rectangle.

Lemma 20.3. Let $E \subset X \times Y$ be an $\mathcal{R}_{\sigma\delta}$ set for which $(\mu \times \nu)(E) < \infty$. Then for all $x \in X$, the x-section of set E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ for $x \in X$ is a μ -measurable function and

$$(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

Proof. (1) First suppose $E = A \times B$ is a measurable rectangle. Then for $x \in X$, $E_x = \begin{cases} B & \text{for } x \in A \\ \varnothing & \text{for } x \notin A, \end{cases}$ and so $\nu(E_x) = \nu(B)\chi_A(x)$, and

$$(\mu \times \nu)(E) = \mu(A)\nu(B) = \nu(B)\int_X \chi_A(x) d\mu(x) = \int_X \nu(E_x) d\mu(x),$$

so the result holds for E a measurable rectangle.

Lemma 20.3. Let $E \subset X \times Y$ be an $\mathcal{R}_{\sigma\delta}$ set for which $(\mu \times \nu)(E) < \infty$. Then for all $x \in X$, the x-section of set E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ for $x \in X$ is a μ -measurable function and

$$(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

Proof. (1) First suppose $E = A \times B$ is a measurable rectangle. Then for $x \in X$, $E_x = \begin{cases} B & \text{for } x \in A \\ \emptyset & \text{for } x \notin A, \end{cases}$ and so $\nu(E_x) = \nu(B)\chi_A(x)$, and

$$(\mu \times \nu)(E) = \mu(A)\nu(B) = \nu(B)\int_X \chi_A(x) d\mu(x) = \int_X \nu(E_x) d\mu(x),$$

so the result holds for E a measurable rectangle.

Proof (continued). (2) Suppose E in an \mathcal{R}_{σ} set. Since \mathcal{R} is a semiring, there is a disjoint collection of measurable rectangles $\{A_k \times B_k\}_{k=1}^{\infty}$ whose union is E. For fixed $x \in X$, we have $E_x = \bigcup_{k=1}^{\infty} (A_k \times B_k)_x$. Thus E_x is the countable disjoint union of some of the B_k 's (the ones for which $x \in A_k$).

Proof (continued). (2) Suppose E in an \mathcal{R}_{σ} set. Since \mathcal{R} is a semiring, there is a disjoint collection of measurable rectangles $\{A_k \times B_k\}_{k=1}^{\infty}$ whose union is E. For fixed $x \in X$, we have $E_x = \bigcup_{k=1}^{\infty} (A_k \times B_k)_x$. Thus E_x is the countable disjoint union of some of the B_k 's (the ones for which $x \in A_k$).

So by the countable additivity of ν (by the definition of measure), $\nu(E_x) = \sum_{k=1}^{\infty} \nu(A_k \times B_k)_x$).

Proof (continued). (2) Suppose E in an \mathcal{R}_{σ} set. Since \mathcal{R} is a semiring, there is a disjoint collection of measurable rectangles $\{A_k \times B_k\}_{k=1}^{\infty}$ whose union is E. For fixed $x \in X$, we have $E_x = \bigcup_{k=1}^{\infty} (A_k \times B_k)_x$. Thus E_x is the countable disjoint union of some of the B_k 's (the ones for which $x \in A_k$).

So by the countable additivity of ν (by the definition of measure), $\nu(E_x) = \sum_{k=1}^{\infty} \nu(A_k \times B_k)_x$).

Proof (continued). So we have

$$\int_{X} \nu(E_{x}) d\mu(x) = \int_{X} \left(\sum_{k=1}^{\infty} \nu((A_{k} \times B_{k})_{x}) d\mu(x) \right)$$

$$= \sum_{k=1}^{\infty} \left(\int_{X} \nu((A_{k} \times B_{k})_{x}) d\mu(x) \right) \text{ by the Monotone}$$
Convergence Theorem; the partial sums are increasing
$$= \sum_{k=1}^{\infty} \mu(A_{k})\nu(B_{k}) \text{ by part (1),}$$
since $A_{k} \times B_{k}$ is a measurable rectangle
$$= (\mu \times \nu)(E) \text{ by the definition of } \mu \times \nu$$

So the result holds for $E \in \mathcal{R}_{\sigma}$.

Proof (continued). (3) Suppose *E* is in $\mathcal{R}_{\sigma\delta}$ and $(\mu \times \nu)(E) < \infty$. Since \mathcal{R} is a semiring (closed under finite intersections), there is a descending sequence $\{E_k\}_{k=1}^{\infty}$ of sets in \mathcal{R}_{σ} whose intersection is *E*. Since $(\mu \times \nu)(E) < \infty$, without loss of generality $(\mu \times \nu)(E) < \infty$ (from the definition of ∞ where μ is the extent measure induced by the

definition of $\mu \times \nu$ in terms of the outer measure induced by the

premeasure $\mu \times \nu$ on \mathcal{R}).

Proof (continued). (3) Suppose *E* is in $\mathcal{R}_{\sigma\delta}$ and $(\mu \times \nu)(E) < \infty$. Since \mathcal{R} is a semiring (closed under finite intersections), there is a descending sequence $\{E_k\}_{k=1}^{\infty}$ of sets in \mathcal{R}_{σ} whose intersection is *E*. Since $(\mu \times \nu)(E) < \infty$, without loss of generality $(\mu \times \nu)(E) < \infty$ (from the definition of $\mu \times \nu$ in terms of the outer measure induced by the premeasure $\mu \times \nu$ on \mathcal{R}). By the continuity of measure $\mu \times \nu$ (Proposition 17.2),

$$\lim_{k \to \infty} (\mu \times \nu) E_k) = (\mu \times \nu)(E).$$
(3)

Since $E_1 \in \mathcal{R}_{\sigma}$ and the result holds for \mathcal{R}_{σ} sets, $(\mu \times \nu)(E_1) = \int_X \nu((E_1)_x) d\mu(x)$, and since $(\mu \times \nu)(E_1) < \infty$ and $\nu((E_1)_x)$ is nonnegative, then $\nu((E_1)_x) < \infty$ for almost all $x \in X$ by Proposition 18.9.

Proof (continued). (3) Suppose *E* is in $\mathcal{R}_{\sigma\delta}$ and $(\mu \times \nu)(E) < \infty$. Since \mathcal{R} is a semiring (closed under finite intersections), there is a descending sequence $\{E_k\}_{k=1}^{\infty}$ of sets in \mathcal{R}_{σ} whose intersection is *E*. Since $(\mu \times \nu)(E) < \infty$, without loss of generality $(\mu \times \nu)(E) < \infty$ (from the definition of $\mu \times \nu$ in terms of the outer measure induced by the premeasure $\mu \times \nu$ on \mathcal{R}). By the continuity of measure $\mu \times \nu$ (Proposition 17.2),

$$\lim_{k\to\infty} (\mu \times \nu) E_k) = (\mu \times \nu)(E).$$
 (3)

Since $E_1 \in \mathcal{R}_{\sigma}$ and the result holds for \mathcal{R}_{σ} sets, $(\mu \times \nu)(E_1) = \int_X \nu((E_1)_x) d\mu(x)$, and since $(\mu \times \nu)(E_1) < \infty$ and $\nu((E_1)_x)$ is nonnegative, then $\nu((E_1)_x) < \infty$ for almost all $x \in X$ by Proposition 18.9. For each $x \in X$, E_x is the intersection of the descending sequence $\{(E_k)_x\}_{k=1}^{\infty}$, and so E_x is ν -measurable (\mathcal{B} is a σ -algebra). So by continuity of measure ν , for almost all $x \in E$ (the x for which $\nu((E_1)_x) < \infty$) we have $\lim_{k\to\infty} \nu((E_k)_x) - \nu(E_x)$ (Continuity of Measure for descending sequences requires finite measure; see Proposition 17.2).

()

Proof (continued). (3) Suppose *E* is in $\mathcal{R}_{\sigma\delta}$ and $(\mu \times \nu)(E) < \infty$. Since \mathcal{R} is a semiring (closed under finite intersections), there is a descending sequence $\{E_k\}_{k=1}^{\infty}$ of sets in \mathcal{R}_{σ} whose intersection is *E*. Since $(\mu \times \nu)(E) < \infty$, without loss of generality $(\mu \times \nu)(E) < \infty$ (from the definition of $\mu \times \nu$ in terms of the outer measure induced by the premeasure $\mu \times \nu$ on \mathcal{R}). By the continuity of measure $\mu \times \nu$ (Proposition 17.2),

$$\lim_{k\to\infty} (\mu \times \nu) E_k) = (\mu \times \nu) (E).$$
 (3)

Since $E_1 \in \mathcal{R}_{\sigma}$ and the result holds for \mathcal{R}_{σ} sets, $(\mu \times \nu)(E_1) = \int_X \nu((E_1)_x) d\mu(x)$, and since $(\mu \times \nu)(E_1) < \infty$ and $\nu((E_1)_x)$ is nonnegative, then $\nu((E_1)_x) < \infty$ for almost all $x \in X$ by Proposition 18.9. For each $x \in X$, E_x is the intersection of the descending sequence $\{(E_k)_x\}_{k=1}^{\infty}$, and so E_x is ν -measurable (\mathcal{B} is a σ -algebra). So by continuity of measure ν , for almost all $x \in E$ (the x for which $\nu((E_1)_x) < \infty$) we have $\lim_{k\to\infty} \nu((E_k)_x) - \nu(E_x)$ (Continuity of Measure for descending sequences requires finite measure; see Proposition 17.2).

Proof (continued). Furthermore, the function $x \mapsto \nu((E_1)_x)$ is nonnegative and integrable (since $(\mu \times \nu)(E_1) < \infty$) and for each $k \in \mathbb{N}$, dominates a.e. the function $x \mapsto \nu((E_k)_x)$ since the E_k form a descending sequence. So we have

$$\int_{X} \nu(E_{x}) d\mu(x) = \int_{X} \left(\lim_{k \to \infty} \nu(E_{k})_{x} \right) d\mu(x)$$

$$= \lim_{k \to \infty} \left(\int_{X} \nu((E_{k})_{x}) d\mu(x) \right) \text{ by the Lebesgue}$$
Dominated Convergence Theorem
$$= \lim_{k \to \infty} (\mu \times \nu)(E_{k}) \text{ since the result holds on } \mathcal{R}_{\sigma} \text{ sets } E_{\mu}$$

$$= (\mu \times \nu)(E) \text{ from } (3)$$

So the result holds for $\mathcal{R}_{\sigma\delta}$ sets.

Proof (continued). Furthermore, the function $x \mapsto \nu((E_1)_x)$ is nonnegative and integrable (since $(\mu \times \nu)(E_1) < \infty$) and for each $k \in \mathbb{N}$, dominates a.e. the function $x \mapsto \nu((E_k)_x)$ since the E_k form a descending sequence. So we have

$$\int_{X} \nu(E_{x}) d\mu(x) = \int_{X} \left(\lim_{k \to \infty} \nu(E_{k})_{x} \right) d\mu(x)$$

$$= \lim_{k \to \infty} \left(\int_{X} \nu((E_{k})_{x}) d\mu(x) \right) \text{ by the Lebesgue}$$
Dominated Convergence Theorem
$$= \lim_{k \to \infty} (\mu \times \nu)(E_{k}) \text{ since the result holds on } \mathcal{R}_{\sigma} \text{ sets } E_{k}$$

$$= (\mu \times \nu)(E) \text{ from (3)}$$

So the result holds for $\mathcal{R}_{\sigma\delta}$ sets.

Lemma 20.4. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$. If $(\mu \times \nu)(E) = 0$, then almost all $x \in X$, the x-section of E, E_x , is ν -measurable and $\nu(E_x) = 0$. Therefore

$$0=(\mu\times\nu)(E)=\int_X\nu(E_x)\,d\mu(x)=0.$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset A$ and $(\mu \times \nu)(A) = (\mu \times \nu)(E) = 0$.

Lemma 20.4. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$. If $(\mu \times \nu)(E) = 0$, then almost all $x \in X$, the x-section of E, E_x , is ν -measurable and $\nu(E_x) = 0$. Therefore

$$0=(\mu\times\nu)(E)=\int_X\nu(E_x)\,d\mu(x)=0.$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset A$ and $(\mu \times \nu)(A) = (\mu \times \nu)(E) = 0$. Since A is $\mathcal{R}_{\sigma\delta}$, by Lemma 20.3 we have that for all $x \in X$ that the x-section of A, A_x , is ν -measurable and $(\mu \times \nu)(A) = \int_X \nu(A_x) d\mu(x)$. So the integral is 0 for almost all $x \in X$ by Problem 18.19.

Lemma 20.4. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$. If $(\mu \times \nu)(E) = 0$, then almost all $x \in X$, the x-section of E, E_x , is ν -measurable and $\nu(E_x) = 0$. Therefore

$$0=(\mu\times\nu)(E)=\int_X\nu(E_x)\,d\mu(x)=0.$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset A$ and $(\mu \times \nu)(A) = (\mu \times \nu)(E) = 0$. Since A is $\mathcal{R}_{\sigma\delta}$, by Lemma 20.3 we have that for all $x \in X$ that the x-section of A, A_x , is ν -measurable and $(\mu \times \nu)(A) = \int_X \nu(A_x) d\mu(x)$. So the integral is 0 for almost all $x \in X$ by Problem 18.19. However, for all $x \in X$ we have $E_x \subset A_x$. By the completeness of ν , $\nu(E_x) = 0$ and so E_x is ν -measurable. So

$$\int_X \nu(E_x) d\mu(x) = 0 = (\mu \times \nu)(E).$$

Lemma 20.4. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$. If $(\mu \times \nu)(E) = 0$, then almost all $x \in X$, the x-section of E, E_x , is ν -measurable and $\nu(E_x) = 0$. Therefore

$$0=(\mu\times\nu)(E)=\int_X\nu(E_x)\,d\mu(x)=0.$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset A$ and $(\mu \times \nu)(A) = (\mu \times \nu)(E) = 0$. Since A is $\mathcal{R}_{\sigma\delta}$, by Lemma 20.3 we have that for all $x \in X$ that the x-section of A, A_x , is ν -measurable and $(\mu \times \nu)(A) = \int_X \nu(A_x) d\mu(x)$. So the integral is 0 for almost all $x \in X$ by Problem 18.19. However, for all $x \in X$ we have $E_x \subset A_x$. By the completeness of ν , $\nu(E_x) = 0$ and so E_x is ν -measurable. So

$$\int_X \nu(E_x) d\mu(x) = 0 = (\mu \times \nu)(E).$$

Proposition 20.5. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$ and $(\mu \times \nu)(E) < \infty$. The for almost all $x \in X$, the x-section of E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ is μ -measurable for all $x \in X$, and

$$(\mu \times \nu)(E) = \int_X \nu(E_x) d\mu(x).$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset Q$ and $(\mu \times \nu)(A \setminus E) = 0$. By the excision property of measure $\mu \times \nu$ (Proposition 17.1), we have $(\mu \times \nu)(E) = (\mu \times \nu)(A)$.

Proposition 20.5. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$ and $(\mu \times \nu)(E) < \infty$. The for almost all $x \in X$, the x-section of E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ is μ -measurable for all $x \in X$, and

$$(\mu imes
u)(E) = \int_X
u(E_x) \, d\mu(x).$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset Q$ and $(\mu \times \nu)(A \setminus E) = 0$. By the excision property of measure $\mu \times \nu$ (Proposition 17.1), we have $(\mu \times \nu)(E) = (\mu \times \nu)(A)$. Since $A \in \mathcal{R}_{\sigma\delta}$ then by Lemma 20.3, A_x is a ν -measurable function. So by the finite additivity of ν (Proposition 17.1)

$$\nu(A_x) = \nu(E_x \cup (A \setminus E)_x) = \nu(E_x) + \nu((A \setminus E)_x).$$

Proposition 20.5. Assume the measure ν is complete. Let $E \subset X \times Y$ be measurable with respect to $\mu \times \nu$ and $(\mu \times \nu)(E) < \infty$. The for almost all $x \in X$, the x-section of E, E_x , is a ν -measurable subset of Y, the function $x \mapsto \nu(E_x)$ is μ -measurable for all $x \in X$, and

$$(\mu imes
u)(E) = \int_X
u(E_x) \, d\mu(x).$$

Proof. Since $(\mu \times \nu)(E) < \infty$ it follows from Proposition 17.10 that there is a set $A \in \mathcal{R}_{\sigma\delta}$ for which $E \subset Q$ and $(\mu \times \nu)(A \setminus E) = 0$. By the excision property of measure $\mu \times \nu$ (Proposition 17.1), we have $(\mu \times \nu)(E) = (\mu \times \nu)(A)$. Since $A \in \mathcal{R}_{\sigma\delta}$ then by Lemma 20.3, A_x is a ν -measurable function. So by the finite additivity of ν (Proposition 17.1)

$$\nu(A_x) = \nu(E_x \cup (A \setminus E)_x) = \nu(E_x) + \nu((A \setminus E)_x).$$

Proposition 20.5 (continued)

Proof. Since $(\mu \times \nu)(E \setminus A) = 0$, then by Lemma 20.4 (the completeness of ν is used here) for almost all $x \in X$, $(\setminus E)_x$ is ν -measurable and $\nu((A \setminus E)_x) = 0$. So $\nu(A_x) = \nu(E_x)$ for almost all $x \in X$. So

$$(\mu \times \nu)(E) = (\mu \times \nu)(A) \text{ by above}$$

= $\int_X \nu(A_z) d\mu(x)$ by Lemma 20.3 since $A \in \mathcal{R}_{\sigma\delta}$
= $\int_X \nu(E_x) d\mu(x)$ since $\nu(A_x) = \nu(E_x)$ a.e. on X.

Proposition 20.5 (continued)

Proof. Since $(\mu \times \nu)(E \setminus A) = 0$, then by Lemma 20.4 (the completeness of ν is used here) for almost all $x \in X$, $(\setminus E)_x$ is ν -measurable and $\nu((A \setminus E)_x) = 0$. So $\nu(A_x) = \nu(E_x)$ for almost all $x \in X$. So

$$\begin{aligned} (\mu \times \nu)(E) &= (\mu \times \nu)(A) \text{ by above} \\ &= \int_X \nu(A_z) \, d\mu(x) \text{ by Lemma 20.3 since } A \in \mathcal{R}_{\sigma\delta} \\ &= \int_X \nu(E_x) \, d\mu(x) \text{ since } \nu(A_x) = \nu(E_x) \text{ a.e. on } X. \end{aligned}$$

Theorem 20.6

Theorem 20.6. Assume measure ν is complete. Let $\phi : X \times Y \to \mathbb{R}$ be a simple function that is integrable over $X \times Y$ with respect to $\mu \times \nu$. Then for almost all $x \in X$, the x-section of ϕ , $\phi(x, \cdot)$, is integrable over Y with respect to ν and

$$\int_{X\times Y} \phi \, d(\mu \times \nu) = \int_X \left[\int_Y \phi(x,y) \, d\nu(y) \right] \, d\mu(x).$$

Proof. First, if χ_E is a characteristic function on a subset *E* of *X* × *Y* of finite measure (to get integrability), then

 $\int_{X \times Y} \chi_E d(\mu \times \nu) = 1(\mu \times \nu)(E) \text{ where } \varphi = 1 \text{ on } E, \text{ by the definition}$

of integral of a characteristic function; page 366

$$= \int_{X}^{\cdot} \nu((\chi_E)_x) d\mu(x) \text{ by Proposition 20.5}$$

Theorem 20.6

Theorem 20.6. Assume measure ν is complete. Let $\phi : X \times Y \to \mathbb{R}$ be a simple function that is integrable over $X \times Y$ with respect to $\mu \times \nu$. Then for almost all $x \in X$, the x-section of ϕ , $\phi(x, \cdot)$, is integrable over Y with respect to ν and

$$\int_{X\times Y} \phi \, d(\mu \times \nu) = \int_X \left[\int_Y \phi(x,y) \, d\nu(y) \right] \, d\mu(x).$$

Proof. First, if χ_E is a characteristic function on a subset *E* of $X \times Y$ of finite measure (to get integrability), then

 $\int_{X \times Y} \chi_E d(\mu \times \nu) = 1(\mu \times \nu)(E) \text{ where } \varphi = 1 \text{ on } E, \text{ by the definition}$

of integral of a characteristic function; page 366

$$= \int_X \nu((\chi_E)_x) \, d\mu(x) \text{ by Proposition 20.5}$$

Theorem 20.6 (continued)

Proof (continued).

$$\int_{X \times Y} \chi_E \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi(x, y) \, d\nu(y) \right) \, d\mu(x)$$

since $(\chi_E)_x = \chi_{E_x} = \varphi(x, \cdot) = \begin{cases} 1 & \text{if } y \in E_x \\ 0 & \text{if } y \notin E_x \end{cases}$ and so $\nu((\chi_E)_x) = \int_Y \varphi(x, y) \, d\nu(y)$. So the result holds for characteristic functions.

Theorem 20.6 (continued)

Proof (continued).

$$\int_{X \times Y} \chi_E \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi(x, y) \, d\nu(y) \right) \, d\mu(x)$$

since
$$(\chi_E)_x = \chi_{E_x} = \varphi(x, \cdot) = \begin{cases} 1 & \text{if } y \in E_x \\ 0 & \text{if } y \notin E_x \end{cases}$$
 and so $\nu((\chi_E)_x) = \int_Y \varphi(x, y) \, d\nu(y)$. So the result holds for characteristic functions.

Second, for general simple and integrable φ , φ is a linear combination of characteristic functions and this result then follows by the linearity of integration (Theorem 18.12) as applied to the integral with respect to ν .

Theorem 20.6 (continued)

Proof (continued).

$$\int_{X \times Y} \chi_E \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi(x, y) \, d\nu(y) \right) \, d\mu(x)$$

since $(\chi_E)_x = \chi_{E_x} = \varphi(x, \cdot) = \begin{cases} 1 & \text{if } y \in E_x \\ 0 & \text{if } y \notin E_x \end{cases}$ and so $\nu((\chi_E)_x) = \int_Y \varphi(x, y) \, d\nu(y)$. So the result holds for characteristic functions.

Second, for general simple and integrable φ , φ is a linear combination of characteristic functions and this result then follows by the linearity of integration (Theorem 18.12) as applied to the integral with respect to ν .

Fubini's Theorem

Fubini's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let ν be complete. Let f be integrable over $X \times Y$ with respect to the product measure $\mu \times \nu$. Then for almost all $x \in X$, the x-section of f, $f(x, \cdot)(y)$, is integrable over Y with respect to μ and

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x,y) d\nu(y) \right] d\mu(x).$$

Proof. Since integration is linear (Theorem 18.12), we assume f is nonnegative (otherwise, we break f into f^+ and f^- and consider these parts individually). By the Simple Approximation Theorem there is an increasing sequence $\{\varphi\}$ of simple functions that converges pointwise on $X \times Y$ to f and $0 \le \varphi_k \le f$ on $X \times T$ for each $k \in \mathbb{N}$. Since f is integrable over $X \times Y$, each φ_k is integrable over $X \times Y$ (by the Integral Comparison Test).

0

Fubini's Theorem

Fubini's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let ν be complete. Let f be integrable over $X \times Y$ with respect to the product measure $\mu \times \nu$. Then for almost all $x \in X$, the x-section of f, $f(x, \cdot)(y)$, is integrable over Y with respect to μ and

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x,y) d\nu(y) \right] d\mu(x).$$

Proof. Since integration is linear (Theorem 18.12), we assume f is nonnegative (otherwise, we break f into f^+ and f^- and consider these parts individually). By the Simple Approximation Theorem there is an increasing sequence $\{\varphi\}$ of simple functions that converges pointwise on $X \times Y$ to f and $0 \le \varphi_k \le f$ on $X \times T$ for each $k \in \mathbb{N}$. Since f is integrable over $X \times Y$, each φ_k is integrable over $X \times Y$ (by the Integral Comparison Test).

Fubini's Theorem (continued 1)

Proof (continued). Since each φ_k is simple and integrable, then by Theorem 20.6 we have

$$\int_{X\times Y} \varphi_k \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Since $\{\varphi_k\}$ is an increasing sequence convergent to f, we can apply the Monotone Convergence Theorem to get

$$\int_{X \times Y} f d(\mu \times \nu) = \int_{X \times Y} \left(\lim_{k \to \infty} \varphi_k \right) d(\mu \times \nu) = \lim_{k \to \infty} \left(\int_{X \times Y} \varphi_k d(\mu \times \nu) \right)$$
$$= \lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) d\nu(y) \right) d\mu(x).$$

Fubini's Theorem (continued 1)

Proof (continued). Since each φ_k is simple and integrable, then by Theorem 20.6 we have

$$\int_{X\times Y} \varphi_k \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Since $\{\varphi_k\}$ is an increasing sequence convergent to f, we can apply the Monotone Convergence Theorem to get

$$\int_{X \times Y} f d(\mu \times \nu) = \int_{X \times Y} \left(\lim_{k \to \infty} \varphi_k \right) d(\mu \times \nu) = \lim_{k \to \infty} \left(\int_{X \times Y} \varphi_k d(\mu \times \nu) \right)$$
$$= \lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) d\nu(y) \right) d\mu(x).$$

So we are done if we show

$$\lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) \, d\mu(x) = \int_X \left(\int_Y f(x, y) \, f\nu(y) \right) \, d\mu(x).$$
(7)

Fubini's Theorem (continued 1)

Proof (continued). Since each φ_k is simple and integrable, then by Theorem 20.6 we have

$$\int_{X\times Y} \varphi_k \, d(\mu \times \nu) = \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Since $\{\varphi_k\}$ is an increasing sequence convergent to f, we can apply the Monotone Convergence Theorem to get

$$\int_{X \times Y} f d(\mu \times \nu) = \int_{X \times Y} \left(\lim_{k \to \infty} \varphi_k \right) d(\mu \times \nu) = \lim_{k \to \infty} \left(\int_{X \times Y} \varphi_k d(\mu \times \nu) \right)$$
$$= \lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) d\nu(y) \right) d\mu(x).$$

So we are done if we show

$$\lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) \, d\mu(x) = \int_X \left(\int_Y f(x, y) \, f\nu(y) \right) \, d\mu(x).$$
(7)

Fubini's Theorem (continued 2)

Proof (continued). If we excise from $X \times Y$ a set of $\mu \times \nu$ measure zero, then the left hand side of (7) remains the same by Additivity of Integrals (Theorem 8.12) since the left hand side of (7) equals $\int_{X \times Y} f d(\mu \times \nu)$ by above. If we excise from $X \times Y$ a set E of $\mu \times \nu$ measure zero, then by Lemma 20.4 for almost all $x \in X$, $\nu(E_x) = 0$ where E_x is the x-section of the excised set E. But then $\int_{E_x} f(x, \cdot)(y) d\nu(y) = 0$ for almost all $x \in X$, by Problem 18.19. So for almost all $x \in X$, $\int_Y f(x, y) d\nu(y) = \int_{Y \setminus E_x} f(x, y) d\nu(y)$. Since this holds a.e. on X, we see that the right hand side of (7) also remains unchanged by the excision of $\mu \times \nu$ measure zero set E.

Fubini's Theorem (continued 2)

Proof (continued). If we excise from $X \times Y$ a set of $\mu \times \nu$ measure zero, then the left hand side of (7) remains the same by Additivity of Integrals (Theorem 8.12) since the left hand side of (7) equals $\int_{X \times V} f d(\mu \times \nu)$ by above. If we excise from $X \times Y$ a set *E* of $\mu \times \nu$ measure zero, then by Lemma 20.4 for almost all $x \in X$, $\nu(E_x) = 0$ where E_x is the x-section of the excised set E. But then $\int_{E_{\nu}} f(x, \cdot)(y) d\nu(y) = 0$ for almost all $x \in X$, by Problem 18.19. So for almost all $x \in X$, $\int_Y f(x,y) d\nu(y) = \int_{Y \setminus E_x} f(x,y) d\nu(y)$. Since this holds a.e. on X, we see that the right hand side of (7) also remains unchanged by the excision of $\mu \times \nu$ measure zero set E. So, without loss of generality we may suppose that for all $x \in X$ and for all $k \in \mathbb{N}$, $\varphi_k(x, \cdot)$ is integrable over Y with respect to ν .

Fubini's Theorem (continued 2)

Proof (continued). If we excise from $X \times Y$ a set of $\mu \times \nu$ measure zero, then the left hand side of (7) remains the same by Additivity of Integrals (Theorem 8.12) since the left hand side of (7) equals $\int_{X \times V} f d(\mu \times \nu)$ by above. If we excise from $X \times Y$ a set *E* of $\mu \times \nu$ measure zero, then by Lemma 20.4 for almost all $x \in X$, $\nu(E_x) = 0$ where E_x is the x-section of the excised set E. But then $\int_{E_{\nu}} f(x, \cdot)(y) d\nu(y) = 0$ for almost all $x \in X$, by Problem 18.19. So for almost all $x \in X$, $\int_Y f(x,y) d\nu(y) = \int_{Y \setminus E_x} f(x,y) d\nu(y)$. Since this holds a.e. on X, we see that the right hand side of (7) also remains unchanged by the excision of $\mu \times \nu$ measure zero set E. So, without loss of generality we may suppose that for all $x \in X$ and for all $k \in \mathbb{N}$, $\varphi_k(x, \cdot)$ is integrable over Y with respect to ν .

Fubini's Theorem (continued 3)

Proof (continued). Fix $x \in X$. Then $\{\varphi_k(x, \cdot)\}$ is an increasing sequence of simple ν -measurable functions that converges pointwise on Y to $f(x, \cdot)$. By Theorem 18.6, $f(x, \cdot)$ is a ν -measurable function, and by the Monotone Convergence Theorem,

$$\int_{Y} f(x,y) \, d\nu(y) = \int_{Y} \left(\lim_{k \to \infty} \varphi_k(x,y) \right) \, d\nu(y) = \lim_{k \to \infty} \int_{Y} \varphi_k(x,y) \, d\nu(y).$$

For each $x \in X$, define $h(x) = \int_Y f(x, y) d\nu(y)$ and $h_k(x) = \int_Y \varphi_k(x, y) d\nu(y)$. By Theorem 20.6, each h_k is integrable over X with respect to μ . Now $\{h_k\}$ is an increasing nonnegative sequence (since $\{\varphi_k\}$ is an increasing nonnegative sequence) that converges pointwise on X to h.

Fubini's Theorem (continued 3)

Proof (continued). Fix $x \in X$. Then $\{\varphi_k(x, \cdot)\}$ is an increasing sequence of simple ν -measurable functions that converges pointwise on Y to $f(x, \cdot)$. By Theorem 18.6, $f(x, \cdot)$ is a ν -measurable function, and by the Monotone Convergence Theorem,

$$\int_{Y} f(x,y) \, d\nu(y) = \int_{Y} \left(\lim_{k \to \infty} \varphi_k(x,y) \right) \, d\nu(y) = \lim_{k \to \infty} \int_{Y} \varphi_k(x,y) \, d\nu(y).$$

For each $x \in X$, define $h(x) = \int_Y f(x, y) d\nu(y)$ and $h_k(x) = \int_Y \varphi_k(x, y) d\nu(y)$. By Theorem 20.6, each h_k is integrable over X with respect to μ . Now $\{h_k\}$ is an increasing nonnegative sequence (since $\{\varphi_k\}$ is an increasing nonnegative sequence) that converges pointwise on X to h. So by the Monotone Convergence Theorem,

$$\lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) = \lim_{k \to \infty} \int_X h_k(x) \, d\mu(x)$$
$$= \int_X h(x) \, d\mu(x) = \int_X \left(\int_Y f(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Fubini's Theorem (continued 3)

Proof (continued). Fix $x \in X$. Then $\{\varphi_k(x, \cdot)\}$ is an increasing sequence of simple ν -measurable functions that converges pointwise on Y to $f(x, \cdot)$. By Theorem 18.6, $f(x, \cdot)$ is a ν -measurable function, and by the Monotone Convergence Theorem,

$$\int_{Y} f(x,y) \, d\nu(y) = \int_{Y} \left(\lim_{k \to \infty} \varphi_k(x,y) \right) \, d\nu(y) = \lim_{k \to \infty} \int_{Y} \varphi_k(x,y) \, d\nu(y).$$

For each $x \in X$, define $h(x) = \int_Y f(x, y) d\nu(y)$ and $h_k(x) = \int_Y \varphi_k(x, y) d\nu(y)$. By Theorem 20.6, each h_k is integrable over X with respect to μ . Now $\{h_k\}$ is an increasing nonnegative sequence (since $\{\varphi_k\}$ is an increasing nonnegative sequence) that converges pointwise on X to h. So by the Monotone Convergence Theorem,

$$\lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) \, d\nu(y) \right) = \lim_{k \to \infty} \int_X h_k(x) \, d\mu(x)$$
$$= \int_X h(x) \, d\mu(x) = \int_X \left(\int_Y f(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Fubini's Theorem (continued 4)

Fubini's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be measure spaces and let ν be complete. Let f be integrable over $X \times Y$ with respect to the product measure $\mu \times \nu$. Then for almost all $x \in X$, the x-section of f, $f(x, \cdot)(y)$, is integrable over Y with respect to μ and

$$\int_{X\times Y} f d(\mu \times \nu) = \int_X \left[\int_Y f(x,y) d\nu(y) \right] d\mu(x).$$

Proof (continued). So (7) holds and we now have

$$\int_{X \times Y} f d(\mu \times \nu) = \lim_{k \to \infty} \int_{X \times Y} \varphi_k d(\mu \times \nu)$$
$$= \lim_{k \to \infty} \int_X \left(\int_Y \varphi_k(x, y) d\nu(y) \right) d\mu(x) = \int_X \left(\int_Y f(x, y) d\nu(y) \right) d\mu(x).$$

Tonelli's Theorem

Tonelli's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces and ν be complete. Let f be a nonnegative $(\mu \times \nu)$ -measurable function on $X \times Y$. Then for almost all $x \in X$, the x-section of function f, $f(x, \cdot)$, is ν -measurable and the function defined a.e. on X by

 $x \mapsto$ (the integral of $f(x, \cdot)$ over X with respect to ν)

is μ -measurable. Moreover,

$$\int_{X\times Y} f f(\mu \times \nu) = \int_X \left(\int_Y f(x,y) \, d\nu(y) \right) \, d\mu(x).$$

Proof. By the Simple Approximation Theorem, there is an increasing sequence $\{\varphi_k\}$ of simple functions that converge pointwise on $X \times Y$ to f, and $0 \le \varphi_k \le f$ on $X \times Y$ for all $k \in \mathbb{N}$. The product measure $\mu \times \nu$ is σ -finite since both μ and ν are σ -finite.

Tonelli's Theorem

Tonelli's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces and ν be complete. Let f be a nonnegative $(\mu \times \nu)$ -measurable function on $X \times Y$. Then for almost all $x \in X$, the x-section of function f, $f(x, \cdot)$, is ν -measurable and the function defined a.e. on X by

 $x \mapsto$ (the integral of $f(x, \cdot)$ over X with respect to ν)

is μ -measurable. Moreover,

$$\int_{X\times Y} f f(\mu \times \nu) = \int_X \left(\int_Y f(x,y) \, d\nu(y) \right) \, d\mu(x).$$

Proof. By the Simple Approximation Theorem, there is an increasing sequence $\{\varphi_k\}$ of simple functions that converge pointwise on $X \times Y$ to f, and $0 \le \varphi_k \le f$ on $X \times Y$ for all $k \in \mathbb{N}$. The product measure $\mu \times \nu$ is σ -finite since both μ and ν are σ -finite.

Tonelli's Theorem (continued)

Tonelli's Theorem.

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite measure spaces and ν be complete. Let f be a nonnegative $(\mu \times \nu)$ -measurable function on $X \times Y$. Then for almost all $x \in X$, the x-section of function f, $f(x, \cdot)$, is ν -measurable and the function defined a.e. on X by

 $x \mapsto$ (the integral of $f(x, \cdot)$ over X with respect to ν)

is μ -measurable. Moreover,

$$\int_{X\times Y} ff(\mu\times\nu) = \int_X \left(\int_Y f(x,y)\,d\nu(y)\right)\,d\mu(x).$$

Proof (continued). So by (i) of the Simple Approximation Theorem, the φ_k can have the additional property that they vanish outside a set of finite measure (and so are integrable). We now apply Theorem 20.6 to each φ_k , as we did neat the beginning of the proof of Fubini. The remainder of the proof is identical to the proof of Fubini's Theorem.

Corollary 20.7. Tonelli's Corollary

Corollary 20.7. (Tonelli's Corollary).

Let (X, \mathcal{A}, μ) and (Y, \mathcal{B}, ν) be two σ -finite, complete measure spaces and f a nonnegative $(\mu \times \nu)$ -measurable function of $X \times Y$. Then:

(i) For almost all x ∈ X, the x-section of f, f(x, ·), is
 ν-measurable and the function defined almost everywhere on X by

 $x \mapsto$ (the integral of $f(x, \cdot)$ over X with respect to ν)

is $\mu\text{-measurable, and}$

(ii) for almost all $y \in Y$, the y-section of f, $f(\cdot, y)$, is μ -measurable and the function defined almost everywhere on Y by

 $y \mapsto$ (the integral of $f(\cdot, y)$ over Y with respect to μ)

is μ -measurable.

Corollary 20.7. Tonelli's Corollary (continued 1)

Corollary 20.7. (Tonelli's Corollary, continued). Moreover, if

٠

$$\int_X \left(\int_Y f(x,y) \, d\nu(y)\right) \, d\mu(x) < \infty,$$

then f is integrable over X \times Y with respect to $\mu \times \nu$ and

$$\int_{Y} \left(\int_{X} f(x, y) \, d\mu(x) \right) \, d\nu(y) = \int_{X \times Y} f \, d(\mu \times \nu)$$
$$= \int_{X} \left(\int_{Y} f(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Proof. Since both measure spaces are σ -finite and ν is complete, Tonelli's Theorem implies that the x-section of f is ν -measurable for almost all $x \in X$ and $x \mapsto \int_Y f(x, y) d\nu(y)$ is μ -measurable.

Corollary 20.7. Tonelli's Corollary (continued 1)

Corollary 20.7. (Tonelli's Corollary, continued). Moreover, if

٠

$$\int_X \left(\int_Y f(x,y) \, d\nu(y)\right) \, d\mu(x) < \infty,$$

then f is integrable over X \times Y with respect to $\mu \times \nu$ and

$$\int_{Y} \left(\int_{X} f(x, y) \, d\mu(x) \right) \, d\nu(y) = \int_{X \times Y} f \, d(\mu \times \nu)$$
$$= \int_{X} \left(\int_{Y} f(x, y) \, d\nu(y) \right) \, d\mu(x).$$

Proof. Since both measure spaces are σ -finite and ν is complete, Tonelli's Theorem implies that the x-section of f is ν -measurable for almost all $x \in X$ and $x \mapsto \int_Y f(x, y) d\nu(y)$ is μ -measurable.

Corollary 20.7. Tonelli's Corollary (continued 2)

Proof (continued). Also, $\int_{X \times Y} f f(\mu \times \nu) = \int_X (\int_Y f(x, y) d\nu(y)) d\mu(x)$, and so f is integrable over $X \times Y$ with respect to $\mu \times \nu$ by (10). Now applying Fubini's Theorem, since f is integrable over $X \times Y$ with respect to $\mu \times \nu$ and since μ is complete we have

$$\int_{X \times Y} f d(\mu \times \nu) = \int_{Y} \left(\int_{X} f(x, y) d\mu(x) d\nu(y) \right)$$

Corollary 20.7. Tonelli's Corollary (continued 2)

Proof (continued). Also,

 $\int_{X \times Y} ff(\mu \times \nu) = \int_X \left(\int_Y f(x, y) \, d\nu(y) \right) \, d\mu(x), \text{ and so } f \text{ is integrable}$ over $X \times Y$ with respect to $\mu \times \nu$ by (10). Now applying Fubini's Theorem, since f is integrable over $X \times Y$ with respect to $\mu \times \nu$ and since μ is complete we have

$$\int_{X\times Y} f d(\mu \times \nu) = \int_Y \left(\int_X f(x, y) d\mu(x) d\nu(y) \right) d\mu(x) d\nu(y) d\mu(x) d\mu$$