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Lemma 20.8

Lemma 20.8

Lemma 20.8. For each ε > 0, the ε-dilation Tε : Rn → Rn is Tε(x) = εn.
Then for each bounded interval I in Rn,

lim
ε→0

µintegral(Tε(I ))

εn
= vol(I ).

Proof. For bounded interval I in R with end-points a and b then, by
Exercise 20.18,

(b − a)− 1 ≤ µintegral(I ) ≤ (b − a) + 1.

So for I = I1 × I2 × · · · × In we have

µintegral(I ) = µintegral(I1)µ
integral(I2) · · ·µintegral(In)

and with Ik having end points ak and bk , this implies

((b1 − a1)− 1)((b2 − a2)− 1) · · · ((bn − an)− 1) ≤ µintegral(I )

≤ ((b1 − a1) + 1)((b2 − a2) + 1) · · · ((bn − an) + 1).
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Lemma 20.8

Lemma 20.8 (continued)

Proof (continued). Since Tε maps interval Ik to an interval with
endpoints εak and εbk , then

(ε(b1 − a1)− 1)(ε(b2 − a2)− 1) · · · (ε(bn − an)− 1) ≤ µintegral(Tε(I ))

≤ (ε(b1 − a1) + 1)(ε(b2 − a2) + 1) · · · (ε(bn − an) + 1).

Dividing this by εn and letting ε→∞ we get

(b1 − a1)(b2 − a2) · · · (bn − an) ≤ lim)ε→∞
µintegral(Tε(I ))

εn

≤ (b1 − a1)(b2 − a2) · · · (bn − an),

or vol(I ) = lim
ε→∞

µintegral(Tε(I ))

εn
, as claimed.
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Proposition 20.10

Proposition 20.10

Proposition 20.10. The set function volume, vol : I → [0,∞), is a
premeasure on the semiring I of bounded intervals in Rn.

Proof. By definition of “premeasure,” we need to show that vol is finitely
additive and countably monotone on the semiring consists only of bounded
intervals and the intersection of two bounded intervals is a bounded
interval.

Let I be a bounded interval in Rn that is the union of the finite disjoint
collection of bounded intervals {I k}m

k=1 (think of the I k as disjoint blocks
which pack together to produce box I ). Then for each ε > 0, the bounded
interval Tε(I ) is the union of the finite disjoint collection of bounded
intervals {Tε(I

k)}m
k=1. Since µintegral is “clearly” finitely additive, then for

all ε > 0,

µintegral(Tε(I )) =
m∑

k=1

µintegral(Tε(I
k)).
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Proposition 20.10

Proposition 20.10 (continued 1)

Proof (continued). Dividing both sides of this by εn and letting ε→ 0
we get, by Lemma 20.8,

vol(I ) = lim
ε→0

µintegral(Tε(I ))

εn
= lim

ε→0

m∑
k=1

µintegral(Tε(I
k))

εn
=

n∑
k=1

vol(I k).

Therefore, vol is finitely additive.

For countable monotonicity, let I be a bounded interval in Rn that is
covered by the countable collection of bounded intervals {I k}∞k=1. We first
consider the case that I is a closed interval and each I k is open. By the
Heine-Borel Theorem, there is a finite subcover, say {I k}m

k=1, of I (with m
large enough, we can assume the subcover involves the first m intervals).
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Proposition 20.10

Proposition 20.10 (continued 2)

Proof (continued). Since µintegral is “clearly” finitely additive and
monotone, then

µintegral(I ) ≤ µintegral
(
∪∞k=1I

k
)
≤

m∑
k=1

µintegral(I k)

where the first inequality holds by monotonicity and the second inequality
(“finite monotonicity”) follows by decomposing ∪m

k=1I
k into disjoint pieces

which are subsets of the I k ’s (which can be done since the intervals form a
semiring) and using finite additivity and monotonicity; details are to be
given in Exercise 20.2.A. So by dilating the intervals we get

µintegral(Tε(I )) ≤
m∑

k=1

µintegral(Tε(I
k)) for all ε > 0.
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Proposition 20.10

Proposition 20.10 (continued 3)

Proof (continued). Dividing each side of this inequality by εn and letting
ε→∞ we get from Lemma 20.8 that

vol(I ) ≤
m∑

k=1

vol(I k) ≤
∞∑

k=1

vol(I k),

so countable monotonicity holds in this special case.

Now for the general {I k}∞k=1 of bounded intervals in Rn (not necessarily

open) that cover interval I , let ε > 0. Choose a closed interval (̂I ) that is
contained in I with vol(I ) = vol(Î ) < ε (just shorten the n intervals from
R that constitute I by a length of ε/(n + 1) each and include the
endpoints).

Choose a collection {Î k}∞k=1 of open intervals such that each

I k ⊂ Î k with vol(Î k)− vol(I k) < ε/2k for all k ∈ N (by expanding the
lengths of the intervals from R that constitute I k by an appropriate
amount and excluding the endpoints). By the special case above,
vol(Î ) ≤

∑∞
k=1 vol(Î k).
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endpoints). Choose a collection {Î k}∞k=1 of open intervals such that each
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Proposition 20.10

Proposition 20.10 (continued 4)

Proposition 20.10. The set function volume, vol : I → [0,∞), is a
premeasure on the semiring I of bounded intervals in Rn.

Proof (continued). Therefore

vol(I ) < vol(Î ) + ε ≤
∞∑

k=1

vol(Î k) + ε

<

∞∑
k=1

(
vol(I k) +

ε

2k

)
+ ε =

∞∑
k=1

vol(I k) + 2ε.

Since ε > 0 is arbitrary, then this implies that vol(I ) ≤
∑∞

k=1 vol(I k). So
countable monotonicity holds in general and hence vol is a premeasure on
the semiring of intervals in Rn
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Theorem 20.11

Theorem 20.11

Theorem 20.11. The σ-algebra Ln of Lebesgue measurable subsets of Rn

contains the bounded intervals in Rn and contains the Borel subsets in Rn.
Moreover, the measure space (Rn,Ln, µn) is both σ-finite and complete.
For bounded interval I in Rn, µn(I ) = vol(I ).

Proof. By Proposition 2.10, volume (“vol”) is a premeasure on the
semiring of bounded intervals in Rn. Recall that a measure is σ-finite if
the whole space is the union of a countable collection of measureable sets,
each of finite measure. Here, Rn can be written as a countable union of
intervals (say a countable collection of “cubes” of volume 1), so measure
vol is σ-finite.

By the Carathéodory-Hahn Theorem, Lebesgue measure µn

is an extension of volume (and so µn(I ) = vol(I ) for I a bounded interval)
and the measure space (Rn,Ln, µn) is complete and Ln is a σ-algebra.
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Theorem 20.11

Theorem 20.11 (continued)

Theorem 20.11. The σ-algebra Ln of Lebesgue measurable subsets of Rn

contains the bounded intervals in Rn and contains the Borel subsets in Rn.
Moreover, the measure space (Rn,Ln, µn) is both σ-finite and complete.
For bounded interval I in Rn, µn(I ) = vol(I ).

Proof (continued). Finally, we show that each Borel set is Lebesgue
measurable. Since Ln is a σ-algebra and the Borel sets form the smallest
σ-algebra containing the open sets, it suffices to show that every open set
O of Rn is Lebesgue measurable. The collection of points in such O that
have rational coordinates is a countable dense subset of O. Let {zk}∞k=1

be an enumeration of this collection. For each k, consider the open cube
Ik,n centered at qk of edge length 1/n (a “cube” is a Cartesian product of
n intervals in R of the same length). In Exercise 20.16 it is to be shown
that O = ∪Ik,n⊂OIk,n. Since each Ik,n is an interval in Rn then each is
measurable and since Ln is a σ-algebra then O is measurable. Therefore
Ln contains all Borel sets, as claimed.
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Corollary 20.12

Corollary 20.12

Corollary 20.12. Let E be a Lebesgue measurable subset of Rn and
f : E → R be continuous. Then f is measurable with respect to
n-dimensional Lebesgue measure.

Proof. Let O be an open set of real numbers. Since f is continuous on E
then f −1(O) is open relative to E , say f −1(O) = E ∩ U where U is open
in Rn. By Theorem 20.11, U ⊂ Rn is measurable (since Ln includes are
Borel, and hence all open, sets). So f −1(O) = E ∩ U is measurable. By
Proposition 18.2, f is measurable, as claimed.
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Theorem 20.13

Theorem 20.13

Theorem 20.13. Let E be a Lebesgue measurable subset of Rn. Then

µ(E ) = inf{µn(O) | E ⊂ O,O is open}

and
µ(E ) = sup{µn(K) | K ⊂ E ,K is compact}.

Proof. We first consider the case in which E is bounded and hence of
finite Lebesgue measure. Let ε > 0. Since µn(E ) = µ∗n(E ) <∞, by the
definition of Lebesgue outer measure, there is a countable collection of
bounded intervals in Rn, {Im}∞m=1, which covers E and∑∞

m=1 µn(I
m) < µn(E ) + ε/2 by Theorem 0.3, “Epsilon Property of Sup

and Inf.”

For each m ∈ N, choose an open interval in Rn that contains Im

and has measure less then µn(I
m) + ε/2m+1 (which can be done by

slightly expanding each interval in the Cartesian product of real intervals
which make up Im and be excluding the endpoints). The union of this
collection of open intervals is an open set that we denote O.
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Theorem 20.13

Theorem 20.13 (continued 1)

Proof (continued). Then E ⊂ O and since the measure is countable
monotone (by Proposition 17.1)

µn(O) ≤
∞∑

m=1

(
µn(I

k) +
ε

2m+1

)

=
∞∑

m=1

µn(I
m) +

ε

2
<
(
µn(E ) +

ε

2

)
+
ε

2
= µn(E ) + ε.

Since ε > 0 is arbitrary, then inf{µn(O) | E ⊂ O,O open} ≤ µn(E ). By
monotonicity (given by Proposition 17.1), for E ⊂ O we have
µn(E ) ≤ µn(O), so inf{µn(O) | E ⊂ O,O open} ≥ µn(E ) and we have
equality for E bounded and of finite measure.

Exercise 20.2.B(a) covers
the case where E is unbounded and of finite measure, and Exercise
20.2.B(b) covers the case where E is of infinite measure.
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the case where E is unbounded and of finite measure, and Exercise
20.2.B(b) covers the case where E is of infinite measure.
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Theorem 20.13

Theorem 20.13 (continued 2)

Proof (continued). For the second claim, we again first consider the case
in which E is bounded and hence of finite Lebesgue measure. Since E is
bounded, we may choose a closed and bounded set K ′ that contains E .
Since K ′ \ E is bounded, we know from the first claim (and the first part
of the proof) that there is an open set O for which K ′ \ E ⊂ O and, by
the excision property of µn (Prop. 17.1): µn(O \ (K ′ \ E )) < ε. (19)
Define K = K ′ \ O. Then K is closed and bounded in Rn and therefore
compact by the Heine-Borel Theorem. Since K ′ \ E ⊂ O and E ⊂ K ′ then
K = K ′ \ O ⊂ K ′ \ (K ′ \ E ) = K ′ ∩ E ⊂ E , or K ⊂ E . On the other hand,
since E ⊂ K ′ we infer that E \ K = E \ (K ′ \ O) = E ∩ O and
E ∩ O ⊂ O \ (K ′ \ E ).
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Theorem 20.13

Theorem 20.13 (continued 3)

Proof (continued). Therefore, by the excision and monotonicity
properties of measure (Proposition 17.1) and (19)

0 ≤ µn(E ) = µn(K ) = µn(E \ K ) by excision

≤ µn(O \ (K ′ \ E )) since E \ K ⊂ O \ (K ′ \ E )

< ε by (19).

That is, µn(E ) < µN(K ) + ε. Since ε > 0 if arbitrary, then
sup{µn(K) | K ⊂ E ,K is compact} ≥ µn(E ). Since K ⊂ E implies
µn(K ) ≤ µn(E ) by monotonicity (Proposition 17.1) then
sup{µn(K) | K ⊂ E ,K is compact} ≤ µn(E ) and hence the claim holds for
E bounded. Exercise 20.2.C(a) covers the case where E is unbounded and
of finite measure, and Exercise 20.2.C(b) covers the case where E is of
infinite measure.
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Theorem 20.15

Theorem 20.15

Proposition 20.15. For the mapping ϕ : Rn → Rm × Rk defined by (20),
a subset E of Rn is measurable with respect to n-dimensional Lebesgue
measure µn if and only if its image ϕ(E ) is measurable with respect to the
product measure µm × µk on Rm × Rk and µn(E ) = (µm × µk)(ϕ(E )).

Proof. Define In to be the collection of bounded intervals in Rn and voln
the set function volume (“vol”) defined on In. Since voln is a σ-finite
premeasure by Proposition 20.10 and Theorem 20.11, it follows from the
uniqueness part of the Carathédory-Hahn Theorem that Lebesgue measure
µn is the unique measure on Ln which extends voln : In → [0,∞].

For
interval I = I1 × I2 × · · · × In in Rn, vol(I ) = `(I1)`(I2) · · · `(In), so

(µm×µn)(ϕ(U)) = (µm×µn)((I1×I2×· · ·×In), (Im+1×Im+2×· · ·×Im+k))

= µm((I1 × I2 × · · · × Im))µk((Im+1 × Im+2 × · · · × Im+k))

= (`(I1)`(I2) · · · `(Im))(`(Im+1)`(Im+2) · · · `(Im+k))

= `(I1)`(I2) · · · `(In) = voln(I ) = µn(I ).
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Theorem 20.15

Theorem 20.15 (continued)

Proof (continued). That is, measures of intervals are preserved under ϕ.
It follows that outer measures are also preserved under ϕ (we leave the
details of this claim to Exercise 20.2.D). Since ϕ is one to one and one,
E ∈ Ln if and only if ϕ(E ) is (µm × µk)-measurable. This establishes the
measurability claim, but we still need to establish the equalities of the
measures. If we define µ′(E ) = (µm × µk)(ϕ(E )) for all E ∈ Ln, then µ′ is
a measure in Ln and µ′(I ) = (µm × µk)(ϕ(I )) = µn(I ) = voln(I ) for all
intervals I ⊂ Rn. So µ′ extends voln on the collection of bounded intervals
in Rn. But, as mentioned above, such an extension is unique (by the
Carathédory-Hahn Theorem) so µ′ = µ on Ln and

µn(E ) = µ′(E ) = (µm × µk)(ϕ(E )) for all E ∈ Ln.

That is, the value of µn(E ) equals (µm × µk)(ϕ(E )), as claimed.
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Theorem 20.17

Theorem 20.17

Proposition 20.17. A linear operator T : Rn → Rn is Lipschitz.

Proof. Let x ∈ Rn, say x = x1e1 + x2e2 + · · ·+ xnen where e1, e2, . . . , en

are the standard basis vectors in Rn. Then

T (x) = T (x1e1 + x2e2 + · · ·+ xnen) = x1T (e1) + x2T (e2) + · · ·+ xnT (en).

By the Triangle Inequality and positive homogeneity of the norm (see the
definition of norm in Section 7.1),

‖T (x)‖ = ‖x1T (e1) + x2T (e2) + · · ·+ xnT (en)‖

≤ ‖x1T (e1)‖+ ‖x2T (e2)‖+ · · ·+ ‖xnT (en)‖

= |x1|‖T (e1)‖+ |x2|‖T (e2)‖+ · · ·+ |xn|‖T (en)‖ =
n∑

k=1

|xk |‖T (ek)‖.
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Theorem 20.17

Theorem 20.17 (continued)

Proof (continued). So with c =
√∑n

k=1 ‖T (ek)‖2 we have for every
x = (x1, x2, . . . , xn) ∈ Rn by the Cauchy-Schwarz Inequality (which in Rn

states |x · y | ≤ ‖x‖‖y‖ for all x , y ∈ Rn) that

‖T (x)‖ ≤
n∑

k=1

|xk |‖T (ek)‖

= (|x1|, |x2|, . . . , |xn|) · (‖T (e1)‖, ‖T (e2)‖, . . . , ‖T (en)‖)
≤ ‖(|x1|, |x2|, . . . , |xn|)‖‖(‖T (e1)‖, ‖T (e2)‖, . . . , ‖T (en)‖)‖

=

{
n∑

k=1

|xk |2
}1/2{ n∑

k=1

‖T (ek)‖2

}1/2

= c‖x‖.

So for u, v ∈ Rn, let x = u − v . Then T (x) = T (u − v) = T (u−T (v) and
‖T (x)‖ = ‖T (u)− T (v)‖ ≤ c‖x‖ = c‖u − v‖ and so T is Lipschitz, as
claimed.
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Proposition 20.18

Proposition 20.18

Proposition 20.18. Let the mapping Ψ : Rn → Rn be Lipschitz. If E is a
Lebesgue measurable subset in Rn, so is Ψ(E ). In particular, a linear
operator T : Rn → Rn maps Lebesgue measurable sets to Lebesgue
measurable sets.

Proof. By the Heine-Borel Theorem, a subset of Rn is compact if and
only if it is closed and bounded. A continuous function maps compact sets
to compact sets by Proposition 11.20. Since ψ is Lipschitz then, as
commented above, it is continuous. For any function f , we have
f (∪Ai ) = ∪f (Ai ). So ψ maps bounded Fσ sets to Fσ sets.

Let E be a Lebesgue measurable subset of Rn. Since Rn is the inion of a
countable collection of bounded measurable sets (say unit cubes which tile
Rn), we may assume without loss of generality that E is bounded (we take
the intersection of E with each unit cube then apply the above mentioned
result that f (∪Ai ) = ∪f (Ai )). By Corollary 20.14, E = A ∪ D where A is
an Fσ set and D has Lebesgue out measure zero.
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Proposition 20.18

Proposition 20.18 (continued)

Proof (continued). We know from the first paragraph of the proof that
ψ(E ) is Lebesgue measurable it suffices to show that the set ψ(D) is
measurable it suffices to show that the set ψ(D) is measurable. We do so
by showing that ψ(D) has Lebesgue outer measure zero.

Let c > 0 be such that ‖ψ(u)− ψ(v)‖ ≤ c‖u − v‖ for all u, v ∈ Rn. By
Exercise 20.24, there is constant c ′ that depends only on c and n such that
for any interval I in Rn we have µ∗n(ψ(I )) ≤ c ′vol(I ). Let ε > 0. Since the
outer measure µ∗n(D) = 0, there is a countable collection {I k}∞k=1, of
intervals in Rn that cover D and for which

∑∞
k=1 vol(I k) < ε/c ′. Then

{ψ(I k)‖∞k=1 is a countable cover of ψ(D).

By the property of c ′, we have

ψ∗n(ψ(D)) <
∞∑

k=1

µ∗n(ψ(I k)) ≤
n∑

k=1

c ′vol(I k) = c ′
n∑

k=1

vol(I k) = c ′(ε/c ′) = ε.

Since ε > 0 is arbitrary, then µ∗n(ψ(D)) = 0 and hence ψ(D) is
µn-measurable and hence ψ maps Lebesgue measurable sets to Lebesgue
measurable sets, as claimed.
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Corollary 20.19

Corollary 20.19

Corollary 20.19. Let the function f : Rn → R be measurable with respect
to Lebesgue measure and let the operator T : Rn → Rn be linear and
invertible. Then the composition f ◦ T : Rn → R is also measurable with
respect to Lebesgue measure.

Proof. By Proposition 18.2, it is sufficient to show that (f ◦ T )−1(O) is
Lebesgue measurable for every open O ⊂ R. Let O ⊂ R by open. Since
f : Rn → R is measurable then by Proposition 18.2 f −1(O) ⊂ Rn is open.
Since T−1 is linear (because T is) then by Proposition 20.18,
T−1(f −1(O)) ⊂ Rn is measurable. That is,
(f ◦ T )−1(O) = (T−1 ◦ f −1)(O = T−1(f −1(O)) is measurable and hence
f ◦ T is a measurable function by Proposition 18.2.
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Proposition 20.20

Proposition 20.20

Proposition 20.20. Let f : R → R be integrable over R with respect to
one-dimensional Lebesgue measure µ1. If α, β ∈ R, α 6= 0, then∫

R
f dµ1 = |α|

∫
R

f (αx) dµ1(x) and

∫
R

f dµ1 =

∫
R

f (x + β) dµ1(x).

Proof. Since f is integrable over R then by Proposition 4.14 and the
definition of of integrable, both f − and f + are integrable over R. By
definition,

∫
R f dµ1 =

∫
R f + dµ1 −

∫
R f − dµ1, so if we establish the result

for nonnegative function f then the result holds in general. So without loss
of generality, we may suppose that f is nonnegative. By Exercise 4.3.24(i),
there is an increasing sequence {ϕn} of nonnegative simple functions on
R, each of finite support, which converges pointwise on R to f .
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Proposition 20.20

Proposition 20.20 (continued 1)

Proof (continued). Now for simple function ϕ =
∑n

i=1 aiχEi
we have∫

R
ϕ(αx) dµ1(x) =

∫
R

(
n∑

i=1

aiχEi
(αx)

)
dµ1(x)

=
n∑

i=1

ai

(∫
R
χEi

(αx) dµ1(x)

)
=

n∑
i=1

ai
1

|α|
m(Ei )

=
1

|α|

n∑
i=1

aim(Ei ) =
1

|α|

∫
R
ϕ dµ1

and

∫
R
ϕ(x + β) dµ1(x) =

∫
R

(
n∑

i=1

aiχEi
(x + β)

)
dµ1(x)

=
n∑

i=1

ai

(∫
R
χEi

(x + β) dµ1(x)

)
=

n∑
i=1

aim(Ei ) =

∫
R
ϕ dµ1

so that the result holds for simple functions.
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Proposition 20.20

Proposition 20.20 (continued 2)

Proof (continued). By the Monotone Convergence Theorem (of Section
4.3), ∫

R
f dµ1 = lim

n→∞

(∫
R
ϕn dµ1

)
= lim

n→∞

(
|α|
∫

R
ϕn(αx) dµ1(x)

)
= |α| lim

n→∞

(∫
R
ϕn(αx) dµ1(x)

)
= |α|

∫
R

f (αx) dµ1(x)

since ϕn(αx) → f (αx) monotonically and pointwise. Also by the
Monotone Convergence Theorem,∫

R
f (x + β) dµ1(x) = lim

n→∞

(∫
R
ϕn(x + β) dµ1(x)

)
= lim

n→∞

(∫
R
ϕn dµ1

)
=

∫
R

f f µ1

since ϕn(x + β) → f (x + β) monotonically and pointwise. So the result
holds for f nonnegative and, as commented above, holds for general
integrable f , as claimed.
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Proposition 20.21 for ϕ(x, y) = f (y, x)

Proposition 20.21

Proposition 20.21. Let f : R2 → R be integrable over R2 with respect to
Lebesgue measure µ2 and let c 6= 0 be a real number. Define ϕ : R2 → R,
ψ : R2 → R, and η : R2 → R by ϕ(x , y) = f (y , x), ψ(x , y) = f (x , x + y),
and η(x , y) = f (cx , y) for all (x , y) ∈ R2. Then ϕ, ψ, and η are integrable
over R2 with respect to Lebesgue measure µ2. Moreover,∫

R2

f dµ2 =

∫
R2

ϕ dµ2 =

∫
R2

ψ dµ2 and

∫
R2

f dµ2 = |c |
∫

R2

η dµ2.

Proof for ϕ(x , y) = f (y , x). By Corollary 20.19, each of ϕ, ψ, and η are
µ2-measurable. We use Fubini’s Theorem and Tonelli’s Theorem as stated
in Theorem 20.16. As in the proof of Proposition 20,20, we may assume
without loss of generality that f is nonnegative.

Since f is integrable over R2, by Fubini’s Theorem (as given in Theorem
20.16), ∫

R2

f µ2 =

∫
R

(∫
R

f (x , y) dµ1(x)

)
dµ1(y).
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Proposition 20.21 for ϕ(x, y) = f (y, x)

Proposition 20.21 (continued)

Proof (continued). Now f (x , y) = ϕ)(y , x) so∫
R f (x , y) dµ1(x) =

∫
R ϕ(y , x) dµ1(x) and therefore∫

R

(∫
R

f (x , y) dµ1(x)

)
dµ1(y) =

∫
R

(∫
R
ϕ(y , x) dµ1(x)

)
dµ1(y).

Since ϕ is nonnegative (because f is nonnegative without loss of
generality) and µ2-measurable, then by Tonelli’s Theorem (as given in
Theorem 20.16, the “moreover” part)∫

R

(∫
R
ϕ(y , x) dµ1(x)

)
dµ1(y) =

∫
R2

ϕ dµ2.

Therefore,
∫

R2 f dµ2 =
∫

R2 ϕ dµ2, as claimed.
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Proposition 20.22

Proposition 20.22

Proposition 20.22. Let the linear operator T : Rn → Rn be invertible
and the function f : Rn → R be integrable over Rn with respect to
Lebesgue measure µn. Then the composition f ◦ T : Rn → R is also
integrable over Rn with respect to Lebesgue measure µn and∫

Rn

f dµn = |det(T )|
∫

Rn

f ◦T dµn or

∫
Rn

f ◦T dµn =
1

|det(T )|

∫
Rn

f dµn.

Proof. As in the proof of Proposition 20.20, we may assume without loss
of generality that f is nonnegative. By the multiplicative property of the
determinant (Property (i)) and the fact that every invertible linear
operator T : Rn → Rn is a composition of linear operators of Types 1, 2, 3
above we need only establish the result for Type 1, 2, 3 linear operators.
The cases n = 1 and n = 2 follow from Propositions 20.20 and 20.21. We
now give an inductive proof. Suppose the result has been established for m
where m ≥ 2 and consider the case n = m + 1.
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Proposition 20.22

Proposition 20.22 (continued 1)

Proof (continued). Since T is Type 1, 2, or 3 then either (1) T (en) = en

or (2) T (e1) = e1 (that is, since n ≥ 3 and T is Type 1, 2, or 3, we
cannot have both T (en) 6= en and T (e1) 6= e1; notice that T “differs from
the identity” by only one “very elementary” operation). In the first case,
T maps subspace {x ∈ Rn | x = (x1, x2, . . . , xn−1, 0)} into itself and in the
second case T maps the subspace {x ∈ Rn | x = (0, x2, x3, . . . , xn)} into
itself. We consider the first case, with the second case following similarly.

Let T ′ be the operator induced on Rn−1 by T (that is, the restriction of T
to Rn=1 = {x = (x1, x2, . . . , xn)}). By Property (iii), |det(T ′)| = |det(T )|.
By Corollary 20.19, f ◦ T is µn measurable.

Since f is integrable and
(WLOG) nonnegative, Theorem 20.16 applies and∫

Rn

f ◦ T dµn =

∫
R

(∫
Rn−1

f ◦ T (x1, x2, . . . , xn) dµn−1(x1, x2, . . . , xn−1)

)
dµ1(xn) by Tonelli’s Theorem (as given in

Theorem 20.16) since f and f ◦ T are nonnegative
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Proposition 20.22 (continued 1)

Proof (continued). Since T is Type 1, 2, or 3 then either (1) T (en) = en

or (2) T (e1) = e1 (that is, since n ≥ 3 and T is Type 1, 2, or 3, we
cannot have both T (en) 6= en and T (e1) 6= e1; notice that T “differs from
the identity” by only one “very elementary” operation). In the first case,
T maps subspace {x ∈ Rn | x = (x1, x2, . . . , xn−1, 0)} into itself and in the
second case T maps the subspace {x ∈ Rn | x = (0, x2, x3, . . . , xn)} into
itself. We consider the first case, with the second case following similarly.

Let T ′ be the operator induced on Rn−1 by T (that is, the restriction of T
to Rn=1 = {x = (x1, x2, . . . , xn)}). By Property (iii), |det(T ′)| = |det(T )|.
By Corollary 20.19, f ◦ T is µn measurable. Since f is integrable and
(WLOG) nonnegative, Theorem 20.16 applies and∫

Rn

f ◦ T dµn =

∫
R

(∫
Rn−1

f ◦ T (x1, x2, . . . , xn) dµn−1(x1, x2, . . . , xn−1)

)
dµ1(xn) by Tonelli’s Theorem (as given in

Theorem 20.16) since f and f ◦ T are nonnegative
() Real Analysis December 20, 2018 30 / 32



Proposition 20.22

Proposition 20.22 (continued 1)

Proof (continued). Since T is Type 1, 2, or 3 then either (1) T (en) = en

or (2) T (e1) = e1 (that is, since n ≥ 3 and T is Type 1, 2, or 3, we
cannot have both T (en) 6= en and T (e1) 6= e1; notice that T “differs from
the identity” by only one “very elementary” operation). In the first case,
T maps subspace {x ∈ Rn | x = (x1, x2, . . . , xn−1, 0)} into itself and in the
second case T maps the subspace {x ∈ Rn | x = (0, x2, x3, . . . , xn)} into
itself. We consider the first case, with the second case following similarly.

Let T ′ be the operator induced on Rn−1 by T (that is, the restriction of T
to Rn=1 = {x = (x1, x2, . . . , xn)}). By Property (iii), |det(T ′)| = |det(T )|.
By Corollary 20.19, f ◦ T is µn measurable. Since f is integrable and
(WLOG) nonnegative, Theorem 20.16 applies and∫

Rn

f ◦ T dµn =

∫
R

(∫
Rn−1

f ◦ T (x1, x2, . . . , xn) dµn−1(x1, x2, . . . , xn−1)

)
dµ1(xn) by Tonelli’s Theorem (as given in

Theorem 20.16) since f and f ◦ T are nonnegative
() Real Analysis December 20, 2018 30 / 32



Proposition 20.22

Proposition 20.22 (continued 2)

Proof (continued).

=

∫
R

(∫
Rn−1

f (T ′((x1, x2, . . . , xn−1), xn)dµn−1(x1, x2, . . . , xn−1)

)
dµ1(xn) since T ′ = T restricted and T (en) = en

=
1

|det(T ′)|

∫
R

(∫
Rn−1

f (x1, x2, . . . , xn) dµn−1(x1, x2, . . . , xn−1)

)
dµ1(xn)

by the induction hypothesis

=
1

|det(T )|

∫
Rn

f dµn since det(T ′) = det(T ) and by Fubini’s Theorem

(as given in Theorem 20.16) since f is integrable.
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Corollary 20.23

Corollary 20.23

Corollary 20.23. Let the linear operator T : Rn → Rn be invertible. Then
for each Lebesgue measurable subset E of Rn, T (E ) is Lebesgue
measurable and µn(T (E )) = |det(T )|µn(E ).

Proof. Let E be bounded. By Proposition 20.17, T is Lipschitz. So T (E )
is bounded. By Proposition 20.18, T (E ) is Lebesgue measurable and of
finite measure since it is bounded. So f = χT (E) is integrable over Rn

with respect to Lebesgue measure µn.

Now for x ∈ E ,
(f ◦ T )(x) = f (T (x)) = χT (E)(T (x)) = 1, and for x 6∈ E , T (x) 6∈ E
(since T is one to on) and (f ◦T )(x) = f (T (x)) = χT (E)(T (x)) = 0; that
is, f ◦ T = χE . Therefore

∫
Rn f ◦ T dµn =

∫
Rn χE dµn = µn(E ) and∫

Rn f f µn =
∫

Rn χT (E) dµn = µn(T (E )). So by Theorem 20.22,

µn(E ) =

∫
Rn

f ◦ T dµn =
1

|det(T )|

∫
Rn

f dµn =
1

|det(T )|
µn(T (E ))

and the claim holds for E bounded. We leave the case of E unbounded to
Exercise 20.2.G.
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