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Proposition 20.25

Proposition 20.25. Let ;1 be a Borel measure on B(/). Then its
cumulative distribution function g, is increasing and continuous on the
right. Conversely, each function g : | — R is increasing and continuous on
the right is the cumulative distribution function of a unique Borel measure
g on B(1).

Proof. First, let ;. be a Borel measure on B(/). For x > y,

gu(x) = u([a.x]) = p([a, ¥]) = gu(y) by monotonicity and so g, is
increasing. gmu is also bounded by g, (b) = p([a, b]) = p(/). Let

xo € [a, b) and let {x,} be a decreasing sequence in (xo, b] that converges
to xp. Then NZ2; (X0, xk] = &. Since f1 is finite, by the Continuity of
Measure (Proposition 17.2)
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Proposition 20.25 (continued 1)

Proof (continued). Since {xi} is an arbitrary sequence in (xo, b] that
converges to xp, then limy_.,; g,(x) = gu(x0) and g, is continuous on the
right at xp.

For the converse, let g : | — R be an increasing function that is
continuous on the right. Consider the collection S of subsets of /
consisting of the empty set, the singleton set {a}, and all subintervals of
I = [a, b] of the form (c,d]. Then S is a semiring (the intersection of two
elements of S is either @ or an interval of the form (¢, d], and the set

difference of two elements of S is either @, and element of the form (c, d],

or a set of the form (¢, d1] U (c2, do]). Consider the set function
i : S — R defined by setting u(@) =0, p({a}) = g(a), and
u((c. d]) = g(d) — g(c) for (c.d] C I.
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Proposition 20.25 (continued 2)

Proof (continued). In Exercise 20.39 (this is where continuity on the
right is needed) it is to be shown that if (¢, d] C I is the union of finite
disjoint collection U2 ;(ck, dk], then g(d) — g(c) = >";_,(g(dk) — g(ck))
and that if (¢, d] C f is covered by the countable collection U2, (¢, dk]
then g(d) — g(c) < >_.2,(g(dk) — g(ck))- So g is finitely additive and
countably monotone on S. Therefore, by definition (see Section 17.5), u is
a premeasure on S. By the Carathéodory-Hahn Theorem (see Section
17.5) the Carathéodory measure i induced by s is an extension of 1. Now
the p* measurable sets form a o-algebra (by Theorem 17.8) including S
and so for (¢, d) C [a, b] we have (c,d) = U2 (c,d — 1/k], and so every
open subinterval of [a, b] is p*-measurable and hence every open subset of
[a, b] (being a countable union of open intervals) is ;1*-measurable. So the
(t*-measurable sets are a o-algebra containing all open subsets of I, B(/).
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Proposition 20.25 (continued 3)

Proposition 20.25. Let  be a Borel measure on B(/). Then its
cumulative distribution function g, is increasing and continuous on the
right. Conversely, each function g : | — R is increasing and continuous on

the right is the cumulative distribution function of a unique Borel measure
tig on B(1).

Proof (continued). For each x € [a, b],
Alax) = ullax]) = u({a}) + u((a x]) by additivity

= 8(a) + (g(x) — g(a)) since u((c, d]) = g(d) — g(c)
for (c,d] C I

= g(x).

So g is the cumulative distribution functions for the restriction of 7i is to
o-algebra B(/), as claimed. O

I Res Anlss December 20,2018 6/



