Real Analysis

Chapter 20. The Construction of Particular Measures

Real Analysis

Table of contents

Proposition 20.25

Proposition 20.25. Let μ be a Borel measure on $\mathcal{B}(I)$. Then its cumulative distribution function g_{μ} is increasing and continuous on the right. Conversely, each function $g: I \to \mathbb{R}$ is increasing and continuous on the right is the cumulative distribution function of a unique Borel measure μ_g on $\mathcal{B}(I)$.

Proof. First, let μ be a Borel measure on $\mathcal{B}(I)$. For x > y, $g_{\mu}(x) = \mu([a, x]) \ge \mu([a, y]) = g_{\mu}(y)$ by monotonicity and so g_{μ} is increasing. $g_m u$ is also bounded by $g_{\mu}(b) = \mu([a, b]) = \mu(I)$. Let $x_0 \in [a, b)$ and let $\{x_k\}$ be a decreasing sequence in $(x_0, b]$ that converges to x_0 . Then $\bigcap_{k=1}^{\infty} (x_0, x_k] = \emptyset$.

Proposition 20.25

Proposition 20.25. Let μ be a Borel measure on $\mathcal{B}(I)$. Then its cumulative distribution function g_{μ} is increasing and continuous on the right. Conversely, each function $g: I \to \mathbb{R}$ is increasing and continuous on the right is the cumulative distribution function of a unique Borel measure μ_g on $\mathcal{B}(I)$.

Proof. First, let μ be a Borel measure on $\mathcal{B}(I)$. For x > y, $g_{\mu}(x) = \mu([a, x]) \ge \mu([a, y]) = g_{\mu}(y)$ by monotonicity and so g_{μ} is increasing. $g_m u$ is also bounded by $g_{\mu}(b) = \mu([a, b]) = \mu(I)$. Let $x_0 \in [a, b)$ and let $\{x_k\}$ be a decreasing sequence in $(x_0, b]$ that converges to x_0 . Then $\bigcap_{k=1}^{\infty} (x_0, x_k] = \emptyset$. Since μ is finite, by the Continuity of Measure (Proposition 17.2)

$$D = \mu(\varnothing) = \lim_{k \to \infty} \mu((x_0, x_k])$$
$$= \lim_{k \to \infty} (\mu([a, x_k] - g([a, x_0])) \text{ by additivity})$$
$$= \lim_{k \to \infty} (g_\mu(x_k) - g_\mu(x_0)).$$

Proposition 20.25

Proposition 20.25. Let μ be a Borel measure on $\mathcal{B}(I)$. Then its cumulative distribution function g_{μ} is increasing and continuous on the right. Conversely, each function $g: I \to \mathbb{R}$ is increasing and continuous on the right is the cumulative distribution function of a unique Borel measure μ_g on $\mathcal{B}(I)$.

Proof. First, let μ be a Borel measure on $\mathcal{B}(I)$. For x > y, $g_{\mu}(x) = \mu([a, x]) \ge \mu([a, y]) = g_{\mu}(y)$ by monotonicity and so g_{μ} is increasing. $g_m u$ is also bounded by $g_{\mu}(b) = \mu([a, b]) = \mu(I)$. Let $x_0 \in [a, b)$ and let $\{x_k\}$ be a decreasing sequence in $(x_0, b]$ that converges to x_0 . Then $\bigcap_{k=1}^{\infty} (x_0, x_k] = \emptyset$. Since μ is finite, by the Continuity of Measure (Proposition 17.2)

$$0 = \mu(\emptyset) = \lim_{k \to \infty} \mu((x_0, x_k])$$

=
$$\lim_{k \to \infty} (\mu([a, x_k] - g([a, x_0])) \text{ by additivity}$$

=
$$\lim_{k \to \infty} (g_\mu(x_k) - g_\mu(x_0)).$$

Proposition 20.25 (continued 1)

Proof (continued). Since $\{x_k\}$ is an arbitrary sequence in $(x_0, b]$ that converges to x_0 , then $\lim_{x\to x_0} g_{\mu}(x) = g_{\mu}(x_0)$ and g_{μ} is continuous on the right at x_0 .

For the converse, let $g: I \to \mathbb{R}$ be an increasing function that is continuous on the right. Consider the collection S of subsets of Iconsisting of the empty set, the singleton set $\{a\}$, and all subintervals of I = [a, b] of the form (c, d]. Then S is a semiring (the intersection of two elements of S is either \emptyset or an interval of the form (c, d], and the set difference of two elements of S is either \emptyset , and element of the form (c, d], or a set of the form $(c_1, d_1] \cup (c_2, d_2]$). Consider the set function $\mu: S \to \mathbb{R}$ defined by setting $\mu(\emptyset) = 0$, $\mu(\{a\}) = g(a)$, and $\mu((c, d]) = g(d) - g(c)$ for $(c, d] \subset I$.

Proposition 20.25 (continued 1)

Proof (continued). Since $\{x_k\}$ is an arbitrary sequence in $(x_0, b]$ that converges to x_0 , then $\lim_{x\to x_0} g_{\mu}(x) = g_{\mu}(x_0)$ and g_{μ} is continuous on the right at x_0 .

For the converse, let $g: I \to \mathbb{R}$ be an increasing function that is continuous on the right. Consider the collection S of subsets of Iconsisting of the empty set, the singleton set $\{a\}$, and all subintervals of I = [a, b] of the form (c, d]. Then S is a semiring (the intersection of two elements of S is either \emptyset or an interval of the form (c, d], and the set difference of two elements of S is either \emptyset , and element of the form (c, d], or a set of the form $(c_1, d_1] \cup (c_2, d_2]$). Consider the set function $\mu: S \to \mathbb{R}$ defined by setting $\mu(\emptyset) = 0$, $\mu(\{a\}) = g(a)$, and $\mu((c, d]) = g(d) - g(c)$ for $(c, d] \subset I$.

Proposition 20.25 (continued 2)

Proof (continued). In Exercise 20.39 (this is where continuity on the right is needed) it is to be shown that if $(c, d] \subset I$ is the union of finite disjoint collection $\bigcup_{k=1}^{\infty} (c_k, d_k]$, then $g(d) - g(c) = \sum_{k=1}^{n} (g(d_k) - g(c_k))$ and that if $(c, d] \subset I$ is covered by the countable collection $\bigcup_{k=1}^{\infty} (c_k, d_k]$ then $g(d) - g(c) \leq \sum_{k=1}^{\infty} (g(d_k) - g(c_k))$. So g is finitely additive and countably monotone on S. Therefore, by definition (see Section 17.5), μ is a premeasure on \mathcal{S} . By the Carathéodory-Hahn Theorem (see Section 17.5) the Carathéodory measure $\overline{\mu}$ induced by μ is an extension of μ . Now the μ^* measurable sets form a σ -algebra (by Theorem 17.8) including S and so for $(c, d) \subset [a, b]$ we have $(c, d) = \bigcup_{k=1}^{\infty} (c, d - 1/k]$, and so every open subinterval of [a, b] is μ^* -measurable and hence every open subset of [a, b] (being a countable union of open intervals) is μ^* -measurable. So the μ^* -measurable sets are a σ -algebra containing all open subsets of *I*, $\mathcal{B}(I)$.

Proposition 20.25 (continued 2)

Proof (continued). In Exercise 20.39 (this is where continuity on the right is needed) it is to be shown that if $(c, d] \subset I$ is the union of finite disjoint collection $\bigcup_{k=1}^{\infty} (c_k, d_k]$, then $g(d) - g(c) = \sum_{k=1}^{n} (g(d_k) - g(c_k))$ and that if $(c, d] \subset I$ is covered by the countable collection $\bigcup_{k=1}^{\infty} (c_k, d_k]$ then $g(d) - g(c) \leq \sum_{k=1}^{\infty} (g(d_k) - g(c_k))$. So g is finitely additive and countably monotone on S. Therefore, by definition (see Section 17.5), μ is a premeasure on S. By the Carathéodory-Hahn Theorem (see Section 17.5) the Carathéodory measure $\overline{\mu}$ induced by μ is an extension of μ . Now the μ^* measurable sets form a σ -algebra (by Theorem 17.8) including S and so for $(c, d) \subset [a, b]$ we have $(c, d) = \bigcup_{k=1}^{\infty} (c, d - 1/k]$, and so every open subinterval of [a, b] is μ^* -measurable and hence every open subset of [a, b] (being a countable union of open intervals) is μ^* -measurable. So the μ^* -measurable sets are a σ -algebra containing all open subsets of I, $\mathcal{B}(I)$.

Proposition 20.25 (continued 3)

Proposition 20.25. Let μ be a Borel measure on $\mathcal{B}(I)$. Then its cumulative distribution function g_{μ} is increasing and continuous on the right. Conversely, each function $g: I \to \mathbb{R}$ is increasing and continuous on the right is the cumulative distribution function of a unique Borel measure μ_g on $\mathcal{B}(I)$.

Proof (continued). For each $x \in [a, b]$,

$$\overline{\mu}([a, x]) = \mu([a, x]) = \mu(\{a\}) + \mu((a, x]) \text{ by additivity} = g(a) + (g(x) - g(a)) \text{ since } \mu((c, d]) = g(d) - g(c) for (c, d] \subset I = g(x).$$

So g is the cumulative distribution functions for the restriction of $\overline{\mu}$ is to σ -algebra $\mathcal{B}(I)$, as claimed.