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Real Analysis Proposition 20.27. Let ¢ be a real-valued function on a set X and
p* : 2% — [0, 00] an outer measure with the property that whenever two
Chapter 20. The Construction of Particular Measures subsets A and B of X are separated by ¢, then

20.4. Carathéodory Outer Measure and Hausdorff Measures on a Metric

(AU B) = u*(A *(B).
Space—Proofs of Theorems w( ) = w(A) + 1 (B)

Then ¢ is measurable with respect to the measure induced by p*.

Proof. Let a € R. We show that £ = {x € X | p(x) > a} is
REAL J1*-measurable, implying the measurability of function ¢. By definition, an

outer measure is countably monotone (see Section 17.3) so
ANALYSIS

P (A) = (ANE)U(ANE®)) < u"(ANE)+ pu* (AN E®).
So we need only show that for A a set of finite measure and for any £ > 0,
P (A) +e> p (ANE)+ " (AN E®). (32)

Notice that (32) trivially holds if *(A) = oo, so we can assume
1*(A) < oc. Define B=ANE and C=ANE€,
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Proposition 20.27 (continued 1) Proposition 20.27 (continued 2)
Proof (continued). For each n € N, define Proof (continued). Since U_:;lej C Bok C B C A we have by
B, ={x€|l¢(x) >a+1/n} and R, = B, \ Bp_1. monotonicity that

Notice that By C B, C -+, U, B, = B, and

k
w(UiRo) < p*(A) or Y (Ryy) < i (A).
B = by U (Ui ps1(Bk \ Bk-1)) = By U (UpZpi1Re) - ( ) =1

Now on B,_> (by definition of B,) we have ¢ > a+ 1/(n — 2), which on Since we have ;*(A) < 0o then the series Zj’il w*(Rzj) converges
Rn =B, \ Bs—1 we have a+1/n < ¢ < a+1/(n—1). Thus ¢ separates (absolutely). Similarly, the series 3°°°; 11*(Rx) converges. So there is
R, and B,_> and hence separates Ry, and Uj.‘:_llek since n € N such that Zf:nﬂ»“*(Rk) <. Since B= B, U (U«ic:nHRk) then
Uf:_llej C Byk_2. So by hypothesis, by the countable monotonicity of u*,
* k . _ *® * k—1 .
v () = (18) e S R <6+
So by induction on k, k=n+1
k or f*(Bp) > p*(B) —e. Now C = AN E€ by definition so C C A, and
w (Uj‘lezj) = u*(Rok) + pu* (U_;(:_llej) = Z;L*(sz). B = AN E by definition so B C A. So by monotonicity of u*,
=1

w*(A) = p*(B, U C).
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Proposition 20.27 (continued 3)

Proposition 20.27. Let ¢ be a real-valued function on a set X and
p* 22X — [0, oc] an outer measure with the property that whenever two
subsets A and B of X are separated by ¢, then

pr (AU B) = p*(A) + i (B).
Then ¢ is measurable with respect to the measure induced by p*.

Proof (continued). Now ¢ > a+1/non B, and ¢ < a on E€ (by the
definition of E) and so ¢ separates B, and C. So by hypothesis,

w(A) = pu*(B,U C) = u*(Bn) + 1*(C). Since u*(B,) > p*(B) — £ then
P (A) > p*(B) + p*(C), or p*(A) +e > pu*(ANE)+ p*(AN E), and
hence u*(A) = p*(AN E) + p* (AN E€) for all A C X where A is of finite
outer measure. That is, E = {x € X | ¢(x) > a} is measurable. Since

a € R is arbitrary, then function ¢ is measurable. O
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Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some
continuous function f, say f <aon Aand f > b on B where a < b.
ASSUME that p(A, B) = 0. Then there are sequences {ux} C A and

{vk} C B such that limg_~ p(uk, vk) = 0. Since f is continuous then
limg_.oo |F(ug) — f(vk)| = 0. But then there is some uy € A and vy € B
with [f(un) — f(vn)| < (b—a)/2, a CONTRADICTION. So the
assumption that p(A, B) = 0 is false and in fact p(A, B) > 0. Since u* is a
Carathéodory outer measure then (by definition)

(AU B) = p*(A) + p*(B). So for any A, B C X separated by some
continuous function f, we have by Proposition 20.27 that continuous f is
a measurable function with respect to p*. Since this holds for arbitrary A
and B, all continuous functions are measurable with respect to pu*. As
discussed above, this establishes that all Borel sets are p;-measurable. [
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Proposition 20.28

Theorem 20.28. Let ;1* be a Carathéodory outer measure on matrix space
(X, p). Then every Borel subset of X is measurable with respect to y*.

Proof. The collection of Borel sets is the smallest o-algebra containing
the closed sets, and the measurable sets are a g-algebra. So if we show
that each closed set is measurable, then the result follows. For closed set
F, define function f(x) = p(F,{x}). In Exercise 20.4.A it is to be shown
that f is continuous on X and that f~({0}) = F. So if we show f is
measurable then this implies

“1({0}) = {x € X | f(x) =0} N {x € X | f(x) < 0} is measurable (that
is, arbitrary closed set F is measurable) and the result then follows. We
use Proposition 20.27 to show that every continuous real valued function
on X is measurable. First, if a continuous function separates no sets, then
the hypothesis of Proposition 20.27 are vacuously satisfies and that
function is measurable.
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Proposition 20.29

Proposition 20.29. Let (X, p) be a metric space and « a positive real
number. Then H : 2X — [0, oc] is a Carathéodory outer measure.

Proof. First, for any & > 0, H (Q}) =0 and so Hj(@) = 0. For
countable monotonicity, let { Ex}7°, be a countable cover of E. For any
coverings {Ak}2, of Ey (for k = 1, 2 ..) we have {A¥} . isa
countable cover of E C U° | E,. Now '

i (dlam(Ak ) - i (i (diam(Af‘))ﬂ)
ik=1 k=1 \i=1
and taking an infimum over all such Af‘ we get
inf Z (diam(A )) — inf (ii (diam(Aff))“)
ik=1 k=1 i=1
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Proposition 20.29 (continued 1)

Proof (continued).

o0 o0

o " ; k i ; i s

— z |2fz (dlam(A, )) where inf) denotes an infimum
k=1 = i=1
over all {A%}2° coverings of E,

= > HO(E).
k=1

Now since {Af‘}}’j(:l is some covering of E (namely, one based on a union
of coverings of the E;) then when an infimum is taken over all coverings of
E we have H((f)(E) <inf) 7%y (diam(Aﬁ‘))a and hence

HE(E) < 22, HE)(Ey). a limit as £ — 0 we have

Hi(E) < 332, Hi(Ek) so that H; is countably monotone. So H, is (by
definition) an outer measure on 2X.
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Proposition 20.29 (continued 3)

Proposition 20.29. Let (X.p) be a metric space and « a positive real
number. Then H : 2X — [0, 00] is a Carathéodory outer measure.

Proof (continued). Taking a limit as £ — 0 we get

HY(EUF) > H;(E) + HA(F). We showed above that H, is countably
monotone and so HX(E U F) < HX(E) + H:(F) so that H is (by
definition) a Carathéodory outer measure. O
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Proposition 20.29 (continued 2)

Proof (continued). To establish that H} is a Carathéodory outer
measure, let E, F C X for which p(E,F) > § > 0. Let € > 0 be such that
e < 4. If {Ac}32 is a cover of E U F then since ¢ < § then each Ay can
intersect at most one of E and F. So any such cover of E U F yields a
cover of E and a cover of F. Taking an infimum over all such coverings of
E UF we have

oo
H(EUF) =inf ) (diam(Ak))
k=1

: = H E\\“ . = ; Eyv)” _ € €
> ng_fé (d|am(Ak )) + u;fg (dlam(Ak )) = HO(E) + HE(F)
where infg is an infimum over all coverings {AE}2° | of E (and similarly
for infg); the inequality is introduced since (for £ < §) every covering
E U F implies a covering of E and a covering of F but infg and infg
involves more potential coverings of £ and F.
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Proposition 20.30

Proposition 20.30. Let (X, p) be a metric space. Let A be a Borel subset
of X, and let a., 3 be positive real numbers for which o < 3. If
Ha(A) < oo then Hg(A) = 0.

Proof. Let ¢ > 0. Choose {A,}7°, as a covering of A by sets of diameter
less than or equal to £ for which
oo
D (diam(Ax)* < Hi(A) + 1 = Ho(A) +1
k=1
(which can be done, by the definition of “infimum”). Then
oo
HO(A) < (diam(Ax))” by the infimum definition of H{(A)
k=1

= &7 i (diamp(Ak))a
k=1 -
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Proposition 20.30 (continued 1)

Proof (continued).

s [(diam(Ag)\® lam(A
< Eﬁz (W) since diam(Ak) <&, w <1 and so
k=1 -

: s - “
(M) < (M) because a < 3

-
(=3

o0

P72 " (diam(Ay))* < e (Ha(A) + 1.

k=1

Taking a limit as ¢ — 0 we get
5(4) = lim HY)(A) < lim =~*(Ha(4) +1) = 0

since # —a > 0 and Ha(A) + 1 is finite. Since Hj3(A) = 0 (here, Hj is a
Carathéodory outer measure) then the induced Hausdorff 3-dimensional
measure satisfies Hz(A) = 0. O
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Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, Hy, is the same
as Lebesgue measure on the g-algebra of Lebesgue measurable sets of real
numbers.

Proof. Let /| C R be an interval. Given € > 0, / can be expressed as the
disjoint union of subintervals of length less than £ and the diameter of
each subinterval is its length (we make no restriction on any of the
intervals in terms of open/closed). So

HEO (1) =inf Y t(l) = m*(1) = m(1) = (1)
k=1

and so Hi(/) = lim._p H%E](I) = m*(/). Thus H; and Lebesgue measure
agree on the semiring of intervals of real numbers. Since H; and Lebesgue
measure are extensions of the same premeasure on the semiring of
intervals, then by the uniqueness claim of the Carathéodory-Hahn
Theorem, Lebesgue measure and H; are equal on the o-algebra of

m rabl . ]
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