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Proposition 20.27

Proposition 20.27

Proposition 20.27. Let ϕ be a real-valued function on a set X and
µ∗ : 2X → [0,∞] an outer measure with the property that whenever two
subsets A and B of X are separated by ϕ, then

µ∗(A ∪· B) = µ∗(A) + µ∗(B).

Then ϕ is measurable with respect to the measure induced by µ∗.

Proof. Let a ∈ R. We show that E = {x ∈ X | ϕ(x) > a} is
µ∗-measurable, implying the measurability of function ϕ. By definition, an
outer measure is countably monotone (see Section 17.3) so

µ∗(A) = µ∗((A ∩ E ) ∪· (A ∩ E c)) ≤ µ∗(A ∩ E ) + µ∗(A ∩ E c).

So we need only show that for A a set of finite measure and for any ε > 0,

µ∗(A) + ε > µ∗(A ∩ E ) + µ∗(A ∩ E c). (32)

Notice that (32) trivially holds if µ∗(A) = ∞, so we can assume
µ∗(A) < ∞. Define B = A ∩ E and C = A ∩ E c .
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Proposition 20.27

Proposition 20.27 (continued 1)

Proof (continued). For each n ∈ N, define

Bn = {x ∈| ϕ(x) > a + 1/n} and Rn = Bn \ Bn−1.

Notice that B1 ⊂ B2 ⊂ · · · , ∪∞k=1Bn = B, and

B = bn ∪
(
∪∞k=n+1(Bk \ Bk−1)

)
= Bn ∪

(
∪∞k=n+1Rk

)
.

Now on Bn−2 (by definition of Bn) we have ϕ > a + 1/(n − 2), which on
Rn = Bn \ Bn−1 we have a + 1/n < ϕ ≤ a + 1/(n − 1). Thus ϕ separates
Rn and Bn−2 and hence separates R2k and ∪k−1

j=1 R2k since

∪k−1
j=1 R2j ⊂ B2k−2. So by hypothesis,

µ∗
(
∪k

j=1R2j

)
= µ∗(R2k) + µ∗

(
∪k−1

j=1 R2j

)
.

So by induction on k,

µ∗
(
∪k

j=1R2j

)
= µ∗(R2k) + µ∗

(
∪k−1

j=1 R2j

)
=

k∑
j=1

µ∗(R2j).
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Proposition 20.27

Proposition 20.27 (continued 2)

Proof (continued). Since ∪k
j=1R2j ⊂ B2k ⊂ B ⊂ A we have by

monotonicity that

µ∗
(
∪k

j=1R2j

)
≤ µ∗(A) or

k∑
j=1

µ∗(R2j) ≤ µ∗(A).

Since we have µ∗(A) < ∞ then the series
∑∞

j=1 µ∗(R2j) converges
(absolutely). Similarly, the series

∑∞
j=1 µ∗(Rk) converges. So there is

n ∈ N such that
∑∞

k=n+1 µ∗(Rk) < ε. Since B = Bn ∪
(
∪∞k=n+1Rk

)
then

by the countable monotonicity of µ∗,

µ∗(B) ≤ µ∗(Bn) +
∞∑

k=n+1

µ∗(Rk) < µ∗(Bn) + ε

or µ∗(Bn) > µ∗(B)− ε. Now C = A ∩ E c by definition so C ⊂ A, and
B = A ∩ E by definition so B ⊂ A. So by monotonicity of µ∗,
µ∗(A) ≥ µ∗(Bn ∪ C ).
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Proposition 20.27

Proposition 20.27 (continued 3)

Proposition 20.27. Let ϕ be a real-valued function on a set X and
µ∗ : 2X → [0,∞] an outer measure with the property that whenever two
subsets A and B of X are separated by ϕ, then

µ∗(A ∪· B) = µ∗(A) + µ∗(B).

Then ϕ is measurable with respect to the measure induced by µ∗.

Proof (continued). Now ϕ > a + 1/n on Bn and ϕ ≤ a on E c (by the
definition of E ) and so ϕ separates Bn and C . So by hypothesis,
µ∗(A) ≥ µ∗(Bn ∪ C ) = µ∗(Bn) + µ∗(C ). Since µ∗(Bn) > µ∗(B)− ε then
µ∗(A) > µ∗(B) + µ∗(C ), or µ∗(A) + ε > µ∗(A ∩ E ) + µ∗(A ∩ E c), and
hence µ∗(A) = µ∗(A ∩ E ) + µ∗(A ∩ E c) for all A ⊂ X where A is of finite
outer measure. That is, E = {x ∈ X | ϕ(x) > a} is measurable. Since
a ∈ R is arbitrary, then function ϕ is measurable.
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Proposition 20.28

Proposition 20.28

Theorem 20.28. Let µ∗ be a Carathéodory outer measure on matrix space
(X , ρ). Then every Borel subset of X is measurable with respect to µ∗.

Proof. The collection of Borel sets is the smallest σ-algebra containing
the closed sets, and the measurable sets are a σ-algebra. So if we show
that each closed set is measurable, then the result follows. For closed set
F , define function f (x) = ρ(F , {x}). In Exercise 20.4.A it is to be shown
that f is continuous on X and that f −1({0}) = F .

So if we show f is
measurable then this implies
f −1({0}) = {x ∈ X | f (x) ≥ 0} ∩ {x ∈ X | f (x) ≤ 0} is measurable (that
is, arbitrary closed set F is measurable) and the result then follows. We
use Proposition 20.27 to show that every continuous real valued function
on X is measurable. First, if a continuous function separates no sets, then
the hypothesis of Proposition 20.27 are vacuously satisfies and that
function is measurable.
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Proposition 20.28

Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some
continuous function f , say f ≤ a on A and f ≥ b on B where a < b.
ASSUME that ρ(A,B) = 0. Then there are sequences {uk} ⊂ A and
{vk} ⊂ B such that limk→∞ ρ(uk , vk) = 0. Since f is continuous then
limk→∞ |f (uk)− f (vk)| = 0. But then there is some uN ∈ A and vN ∈ B
with |f (uN)− f (vN)| < (b − a)/2, a CONTRADICTION. So the
assumption that ρ(A,B) = 0 is false and in fact ρ(A,B) > 0.

Since µ∗ is a
Carathéodory outer measure then (by definition)
µ∗(A ∪ B) = µ∗(A) + µ∗(B). So for any A,B ⊂ X separated by some
continuous function f , we have by Proposition 20.27 that continuous f is
a measurable function with respect to µ∗. Since this holds for arbitrary A
and B, all continuous functions are measurable with respect to µ∗. As
discussed above, this establishes that all Borel sets are µ∗n-measurable.
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Proposition 20.29

Proposition 20.29

Proposition 20.29. Let (X , ρ) be a metric space and α a positive real
number. Then H∗α : 2X → [0,∞] is a Carathéodory outer measure.

Proof. First, for any ε > 0, H
(ε)
α (∅) = 0 and so H∗α(∅) = 0. For

countable monotonicity, let {Ek}∞k=1 be a countable cover of E . For any
coverings {Ak

i }∞i=1 of Ek (for k = 1, 2, . . .) we have {Ak
i }∞i ,k=1 is a

countable cover of E ⊂ ∪∞k=1Ek .

Now

∞∑
i ,k=1

(
diam(Ak

i )
)α

=
∞∑

k=1

( ∞∑
i=1

(
diam(Ak

i )
)α
)

and taking an infimum over all such Ak
i we get

inf
∞∑

i ,k=1

(
diam(Ak

i )
)α

= inf

( ∞∑
k=1

∞∑
i=1

(
diam(Ak

i )
)α
)
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Proposition 20.29

Proposition 20.29 (continued 1)

Proof (continued).

=
∞∑

k=1

inf
k

∞∑
i=1

(
diam(Ak

i )
)α

where infk denotes an infimum

over all {Ak
i }∞i=1 coverings of Ek

=
∞∑

k=1

H(ε)
α (Ek).

Now since {Ak
i }∞i ,k=1 is some covering of E (namely, one based on a union

of coverings of the Ek) then when an infimum is taken over all coverings of

E we have H
(ε)
α (E ) ≤ inf

∑∞
i ,k=1

(
diam(Ak

i )
)α

and hence

H
(ε)
α (E ) ≤

∑∞
k=1 H

(ε)
α (Ek). a limit as ε → 0 we have

H∗α(E ) ≤
∑∞

k=1 H∗α(Ek) so that H∗α is countably monotone. So H∗α is (by
definition) an outer measure on 2X .
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Proposition 20.29

Proposition 20.29 (continued 2)

Proof (continued). To establish that H∗α is a Carathéodory outer
measure, let E ,F ⊂ X for which ρ(E ,F ) > δ > 0. Let ε > 0 be such that
ε < δ. If {Ak}∞k=1 is a cover of E ∪ F then since ε < δ then each Ak can
intersect at most one of E and F . So any such cover of E ∪ F yields a
cover of E and a cover of F . Taking an infimum over all such coverings of
E ∪ F we have

H(ε)
α (E ∪ F ) = inf

∞∑
k=1

(diam(Ak))α

≥ inf
E

∞∑
k=1

(
diam(AE

k )
)α

+ inf
F

∞∑
k=1

(
diam(AE

k )
)α

= H(ε)
α (E ) + H(ε)

α (F )

where infE is an infimum over all coverings {AE
k }∞k=1 of E (and similarly

for infF ); the inequality is introduced since (for ε < δ) every covering
E ∪ F implies a covering of E and a covering of F but infE and infF
involves more potential coverings of E and F .
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Proposition 20.29

Proposition 20.29 (continued 3)

Proposition 20.29. Let (X , ρ) be a metric space and α a positive real
number. Then H∗α : 2X → [0,∞] is a Carathéodory outer measure.

Proof (continued). Taking a limit as ε → 0 we get
H∗α(E ∪ F ) ≥ H∗α(E ) + H∗α(F ). We showed above that H∗α is countably
monotone and so H∗α(E ∪ F ) ≤ H∗α(E ) + H∗α(F ) so that H∗α is (by
definition) a Carathéodory outer measure.
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Proposition 20.30

Proposition 20.30

Proposition 20.30. Let (X , ρ) be a metric space. Let A be a Borel subset
of X , and let α, β be positive real numbers for which α < β. If
Hα(A) < ∞ then Hβ(A) = 0.

Proof. Let ε > 0. Choose {Ak}∞k=1 as a covering of A by sets of diameter
less than or equal to ε for which

∞∑
k=1

(diam(Ak))α ≤ H∗α(A) + 1 = Hα(A) + 1

(which can be done, by the definition of “infimum”).

Then

H
(ε)
β (A) ≤

∞∑
k=1

(diam(Ak))β by the infimum definition of H
(ε)
β (A)

= εβ
∞∑

k=1

(
diam(Ak)

ε

)α
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Proposition 20.30

Proposition 20.30 (continued 1)

Proof (continued).

≤ εβ
∞∑

k=1

(
diam(Ak)

ε

)α

since diam(Ak) ≤ ε,
diam(Ak)

ε
≤ 1 and so

(
diam(Ak)

ε

)β

≤
(

diam(Ak)

ε

)α

because α < β

= εβ−α
∞∑

k=1

(diam(Ak))α ≤ εβ−α(Hα(A) + 1.

Taking a limit as ε → 0 we get

H∗β(A) = lim
ε→0

H
(ε)
β (A) ≤ lim

ε→0
εβ−α(Hα(A) + 1) = 0

since β − α > 0 and Hα(A) + 1 is finite. Since H∗β(A) = 0 (here, H∗β is a
Carathéodory outer measure) then the induced Hausdorff β-dimensional
measure satisfies Hβ(A) = 0.
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Theorem 20.4.A

Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, H1, is the same
as Lebesgue measure on the σ-algebra of Lebesgue measurable sets of real
numbers.

Proof. Let I ⊂ R be an interval. Given ε > 0, I can be expressed as the
disjoint union of subintervals of length less than ε and the diameter of
each subinterval is its length (we make no restriction on any of the
intervals in terms of open/closed). So

H
(ε)
1 (I ) = inf

∞∑
k=1

`(Ik) = m∗(I ) = m(I ) = `(I )

and so H1(I ) = limε→0 H
(ε)
1 (I ) = m∗(I ).

Thus H1 and Lebesgue measure
agree on the semiring of intervals of real numbers. Since H1 and Lebesgue
measure are extensions of the same premeasure on the semiring of
intervals, then by the uniqueness claim of the Carathéodory-Hahn
Theorem, Lebesgue measure and H1 are equal on the σ-algebra of
measurable sets.
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