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Proposition 20.27

Proposition 20.27

Proposition 20.27. Let ¢ be a real-valued function on a set X and

p* 1 2% — [0, 00] an outer measure with the property that whenever two
subsets A and B of X are separated by ¢, then

p (AU B) = p*(A) + i (B).

Then ¢ is measurable with respect to the measure induced by u*.
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Proposition 20.27
Proposition 20.27. Let ¢ be a real-valued function on a set X and

p* 1 2% — [0, 00] an outer measure with the property that whenever two
subsets A and B of X are separated by ¢, then

p (AU B) = p(A) + 1 (B).
Then ¢ is measurable with respect to the measure induced by u*.

Proof. Let a € R. We show that E = {x € X | ¢(x) > a} is
w*-measurable, implying the measurability of function . By definition, an
outer measure is countably monotone (see Section 17.3) so

WH(A) = 1 (AN E) U (AN E9)) < 1" (AN E) + (AN E°).
So we need only show that for A a set of finite measure and for any € > 0,
p (A +e>p (ANE)+ pu* (AN ES). (32)

Notice that (32) trivially holds if ©*(A) = oo, so we can assume
p*(A) < co. Define B=ANE and C=AnNE°.
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Proposition 20.27 (continued 1)

Proof (continued). For each n € N, define
B, ={x €| v(x) >a+1/n} and R, = B, \ Bn_1.
Notice that By C B, C ---, Uz2 B, = B, and
B = by U (Ui 1(Bk \ Bk—1)) = Bn U (UpZ 11 Rx) -

Now on B,_» (by definition of B,,) we have ¢ > a+ 1/(n— 2), which on
Ry =Bn\ Bh_1iwehavea+1/n<p<a+1/(n—1).
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Proposition 20.27 (continued 1)

Proof (continued). For each n € N, define
B, ={x €| v(x) >a+1/n} and R, = B, \ Bn_1.
Notice that By C B, C ---, Uz2 B, = B, and
B = by U (Ui 1(Bk \ Bk—1)) = Bn U (UpZ 11 Rx) -

Now on B,_» (by definition of B,,) we have ¢ > a+ 1/(n— 2), which on
Ry, = Bn\ Bh—1 we have a+1/n < p <a+1/(n—1). Thus ¢ separates
R, and B,_» and hence separates Ry and Uj-‘;llek since

Ujfz_llej C Bok_». So by hypothesis,

LL* (Uj‘(lezj) = ,LL*(RZ[() + LL* (Ujfz_llRQJ) .
So by induction on k,
k

w (UjlleRzJ') = (Rok) + 1" (U}le sz) = ZM*(sz)-
=1
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Proposition 20.27

Proposition 20.27 (continued 2)

Proof (continued). Since UJ’-‘Zlej C By C B C A we have by
monotonicity that

k
it (URyy) < 7 (A) o D u(Ry) < i (A).
j=1

Since we have ;*(A) < oo then the series 2, 11" (Ry;) converges
(absolutely). Similarly, the series >° u*(Rx) converges. So there is
n € Nsuch that 3772 . u*(Ry) <e.
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Proposition 20.27 (continued 2)

Proof (continued). Since UJ’-‘Zlej C By C B C A we have by
monotonicity that

k
w (UaRy) < w7 (A) or 3w (Ry) < 17(A).
j=1
Since we have ;*(A) < oo then the series 2, 11" (Ry;) converges
(absolutely). Similarly, the series >° u*(Rx) converges. So there is
n € N such that Y72, u*(Rk) <e. Since B = B, U (U2, Rx) then
by the countable monotonicity of u*,
pH(B) < i (Ba)+ Y W (R) < p(Bn) +e
k=n+1
or u*(Bp) > p*(B) —e. Now C = AN E€ by definition so C C A, and
B = AN E by definition so B C A. So by monotonicity of u*,
w(A) > p*(BnU C).
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Proposition 20.27 (continued 3)

Proposition 20.27. Let o be a real-valued function on a set X and
p* 12X — [0, 00] an outer measure with the property that whenever two
subsets A and B of X are separated by ¢, then

W (AU B) = u*(A) + ' (B).
Then ¢ is measurable with respect to the measure induced by u*.

Proof (continued). Now ¢ > a+1/non B, and ¢ < a on E€ (by the
definition of E) and so ¢ separates B, and C. So by hypothesis,

p(A) =z p*(Ba U C) = p*(Bn) + p*(C). Since p*(Bp) > p*(B) — € then
p(A) > p*(B) + p*(C), or u*(A) +e> p*(ANE)+ p*(ANEC), and
hence p*(A) = p*(ANE) + pu* (AN E®) for all A C X where A is of finite
outer measure. That is, E = {x € X | ¢(x) > a} is measurable. Since

a € R is arbitrary, then function ¢ is measurable. O
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Proposition 20.28

Theorem 20.28. Let u* be a Carathéodory outer measure on matrix space
(X, p). Then every Borel subset of X is measurable with respect to p*.
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Proposition 20.28

Proposition 20.28

Theorem 20.28. Let u* be a Carathéodory outer measure on matrix space
(X, p). Then every Borel subset of X is measurable with respect to p*.

Proof. The collection of Borel sets is the smallest o-algebra containing
the closed sets, and the measurable sets are a o-algebra. So if we show
that each closed set is measurable, then the result follows. For closed set

F, define function f(x) = p(F,{x}). In Exercise 20.4.A it is to be shown
that f is continuous on X and that f~({0}) = F.
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Proposition 20.28

Theorem 20.28. Let u* be a Carathéodory outer measure on matrix space
(X, p). Then every Borel subset of X is measurable with respect to p*.

Proof. The collection of Borel sets is the smallest o-algebra containing
the closed sets, and the measurable sets are a o-algebra. So if we show
that each closed set is measurable, then the result follows. For closed set
F, define function f(x) = p(F,{x}). In Exercise 20.4.A it is to be shown
that f is continuous on X and that f~({0}) = F. So if we show f is
measurable then this implies

f1{0}) = {x € X | f(x) >0} Nn{x € X | f(x) < 0} is measurable (that
is, arbitrary closed set F is measurable) and the result then follows. We
use Proposition 20.27 to show that every continuous real valued function
on X is measurable. First, if a continuous function separates no sets, then
the hypothesis of Proposition 20.27 are vacuously satisfies and that
function is measurable.
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Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some
continuous function f, say f < aon Aand f > b on B where a < b.
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Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some
continuous function f, say f < aon Aand f > b on B where a < b.
ASSUME that p(A, B) = 0. Then there are sequences {ux} C A and

{vk} C B such that limy_ p(uk, vk) = 0. Since f is continuous then
limg_ o0 |f(ux) — f(vk)| = 0. But then there is some uy € A and vy € B
with |f(un) — f(vn)| < (b—a)/2, a CONTRADICTION. So the
assumption that p(A, B) = 0 is false and in fact p(A, B) > 0.
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Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some
continuous function f, say f < aon Aand f > b on B where a < b.
ASSUME that p(A, B) = 0. Then there are sequences {ux} C A and

{vk} C B such that limy_ p(uk, vk) = 0. Since f is continuous then
limg_ o0 |f(ux) — f(vk)| = 0. But then there is some uy € A and vy € B
with |f(un) — f(vn)| < (b—a)/2, a CONTRADICTION. So the
assumption that p(A, B) = 0 is false and in fact p(A, B) > 0. Since p* is a
Carathéodory outer measure then (by definition)

p (AU B) = u*(A) + p*(B). So for any A, B C X separated by some
continuous function f, we have by Proposition 20.27 that continuous f is
a measurable function with respect to p*. Since this holds for arbitrary A
and B, all continuous functions are measurable with respect to u*. As
discussed above, this establishes that all Borel sets are u;-measurable. [
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Proposition 20.29

Proposition 20.29. Let (X, p) be a metric space and « a positive real
number. Then H : 2X — [0, 00] is a Carathéodory outer measure.
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Proposition 20.29

Proposition 20.29

Proposition 20.29. Let (X, p) be a metric space and « a positive real
number. Then H : 2X — [0, 00] is a Carathéodory outer measure.

Proof. First, for any ¢ > 0, H&E)(Q) =0 and so H(@) = 0. For
countable monotonicity, let {Ex}2°, be a countable cover of E. For any
coverings {AK}2°, of Ey (for k =1,2,...) we have {A¥}>__ isa
countable cover of E C U2 | Ej. 7

Real Analysis

December 21, 2018 9/15



Proposition 20.29

Proposition 20.29. Let (X, p) be a metric space and « a positive real
number. Then H : 2X — [0, 00] is a Carathéodory outer measure.

Proof. First, for any e > 0, H{)(@) = 0 and so H(2) = 0. For
countable monotonicity, let {Ex}2°, be a countable cover of E. For any
coverings {AK}2°, of Ey (for k =1,2,...) we have {A¥}>__ isa
countable cover of E C U2, Ex. Now 7

i (diam(Af‘))a = i (i (diam(Af‘))a>
i k=1 k=1 \i=1
and taking an infimum over all such A,’-‘ we get

infi (diam(Af))a = inf( Z(d'am Ak) )

ik=1
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Proposition 20.29 (continued 1)

Proof (continued).

o o
= E inf
k <
k=1 i=1
koo ;
over all {Af}%°, coverings of Ej

(diam(Af-‘))a where infy denotes an infimum

o0

= Y HO(E).

k=1
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Proposition 20.29 (continued 1)

Proof (continued).

B . . k o . -
= Z w/p‘Z (dlam(A, )> where infy denotes an infimum

over all {A¥}2°, coverings of Ej

o0

= Y HO(E).

k=1
Now since {Af‘}?‘;zl is some covering of E (namely, one based on a union
of coverings of the Ex) then when an infimum is taken over all coverings of
E we have H{(E) < inf %5, (diam(A¥))® and hence
HE(E) < 22 HE(E,). a limit as e — 0 we have
HI(E) <3224 H*(Ek) so that H is countably monotone. So H is (by
definition) an outer measure on 2%.
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Proposition 20.29

Proposition 20.29 (continued 2)

Proof (continued). To establish that H’ is a Carathéodory outer
measure, let E, F C X for which p(E,F) > ¢ > 0. Let € > 0 be such that
e < 0. If {A}22, is a cover of E U F then since € < ¢ then each Ay can

intersect at most one of E and F. So any such cover of E U F yields a
cover of E and a cover of F.
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Proposition 20.29

Proposition 20.29 (continued 2)

Proof (continued). To establish that H’ is a Carathéodory outer
measure, let E, F C X for which p(E,F) > ¢ > 0. Let € > 0 be such that
e < 0. If {A}22, is a cover of E U F then since € < ¢ then each Ay can
intersect at most one of E and F. So any such cover of E U F yields a

cover of E and a cover of F. Taking an infimum over all such coverings of
E UF we have

H() EUF) |nfz (diam(Ak))

> ir&fi (diam(Af)) + |nfz (dlam AE)) EVE) + HE(F)
k=1

k=1

where infg is an infimum over all coverings {AE}2 | of E (and similarly
for infg); the inequality is introduced since (for € < §) every covering

E U F implies a covering of E and a covering of F but infg and infg
involves more potential coverings of E and F.
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Proposition 20.29 (continued 3)

Proposition 20.29. Let (X, p) be a metric space and « a positive real
number. Then H : 2X — [0, 00] is a Carathéodory outer measure.

Proof (continued). Taking a limit as ¢ — 0 we get

H:(EUF) > H:(E) + HX(F). We showed above that H is countably
monotone and so HX(E U F) < HX(E) + H)(F) so that H}, is (by
definition) a Carathéodory outer measure. O
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Proposition 20.30

Proposition 20.30

Proposition 20.30. Let (X, p) be a metric space. Let A be a Borel subset
of X, and let «, 3 be positive real numbers for which a < 5. If
Ho(A) < oo then Hg(A) = 0.
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Proposition 20.30

Proposition 20.30

Proposition 20.30. Let (X, p) be a metric space. Let A be a Borel subset
of X, and let «, 3 be positive real numbers for which a < 5. If
Ho(A) < oo then Hg(A) = 0.

Proof. Let ¢ > 0. Choose {A,}?2; as a covering of A by sets of diameter
less than or equal to ¢ for which

o)

D (diam(Ay))* < Hi(A) + 1= Ho(A) + 1
k=1

(which can be done, by the definition of “infimum”).
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Proposition 20.30

Proposition 20.30

Proposition 20.30. Let (X, p) be a metric space. Let A be a Borel subset
of X, and let «, 3 be positive real numbers for which a < 5. If
Ho(A) < oo then Hg(A) = 0.

Proof. Let ¢ > 0. Choose {A,}?2; as a covering of A by sets of diameter
less than or equal to ¢ for which

o)

D (diam(Ay))* < Hi(A) + 1= Ho(A) + 1
k=1

(which can be done, by the definition of “infimum”). Then

HO(A) < Y (diam(Ax))? by the infimum definition of H(A)
k=1
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Proposition 20.30 (continued 1)

Proof (continued).

</ diam(Al)\ ® diam(A
< gﬁz <|am€(k)> since diam(Ax) < &, diam(Ax) <1landso
k=1

(8amA0Y (AN ﬁ
= ef@ i (diam(Ag))® < e%7%(Ha(A) + 1.
k=1
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Proposition 20.30 (continued 1)

Proof (continued).

</ diam(Al)\ ® diam(A
< gﬁz <|am€(k)> since diam(Ax) < &, diam(Ax) <1landso
k=1

(8amA0Y (AN ﬁ
= ef@ i (diam(Ag))® < e%7%(Ha(A) + 1.
k=1

Taking a limit as € — 0 we get

H5(A) = lim HS(A) < lim £7%(Ha(A) +1) =0
e—0 e—0

since 3 —a > 0 and Hy(A) + 1 is finite. Since H3(A) = 0 (here, Hj is a

Carathéodory outer measure) then the induced Hausdorff 3-dimensional

measure satisfies Hg(A) = 0. O
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Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, Hi, is the same
as Lebesgue measure on the g-algebra of Lebesgue measurable sets of real
numbers.
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Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, Hi, is the same
as Lebesgue measure on the g-algebra of Lebesgue measurable sets of real
numbers.

Proof. Let / C R be an interval. Given € > 0, | can be expressed as the
disjoint union of subintervals of length less than ¢ and the diameter of
each subinterval is its length (we make no restriction on any of the
intervals in terms of open/closed). So

HE (1) = infie(lk) = m*(I) = m(I) = £(I)
k=1

and so Hy (1) = lim._o HE (1) = m*(1).
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Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, Hi, is the same
as Lebesgue measure on the g-algebra of Lebesgue measurable sets of real
numbers.

Proof. Let / C R be an interval. Given € > 0, | can be expressed as the
disjoint union of subintervals of length less than ¢ and the diameter of
each subinterval is its length (we make no restriction on any of the
intervals in terms of open/closed). So

HE (1) = infiﬁ(lk) = m*(I) = m(I) = £(I)
k=1

and so Hy(/) = lim._g H{a)(l) = m*(I). Thus H; and Lebesgue measure
agree on the semiring of intervals of real numbers. Since H; and Lebesgue
measure are extensions of the same premeasure on the semiring of
intervals, then by the uniqueness claim of the Carathéodory-Hahn
Theorem, Lebesgue measure and H; are equal on the o-algebra of

measurable sets. [
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