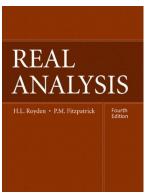
Real Analysis

Chapter 20. The Construction of Particular Measures

20.4. Carathéodory Outer Measure and Hausdorff Measures on a Metric Space—Proofs of Theorems



Real Analysis

- Proposition 20.27
- 2 Proposition 20.28
- 3 Proposition 20.29
- Proposition 20.30
- 5 Theorem 20.4.A

Proposition 20.27. Let φ be a real-valued function on a set X and $\mu^* : 2^X \to [0, \infty]$ an outer measure with the property that whenever two subsets A and B of X are separated by φ , then

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

Then φ is measurable with respect to the measure induced by μ^* .

Proof. Let $a \in \mathbb{R}$. We show that $E = \{x \in X \mid \varphi(x) > a\}$ is μ^* -measurable, implying the measurability of function φ . By definition, an outer measure is countably monotone (see Section 17.3) so

 $\mu^*(A) = \mu^*((A \cap E) \cup (A \cap E^c)) \le \mu^*(A \cap E) + \mu^*(A \cap E^c).$

So we need only show that for A a set of finite measure and for any $\varepsilon > 0$,

$$\mu^*(A) + \varepsilon > \mu^*(A \cap E) + \mu^*(A \cap E^c).$$
 (32)

Notice that (32) trivially holds if $\mu^*(A) = \infty$, so we can assume $\mu^*(A) < \infty$. Define $B = A \cap E$ and $C = A \cap E^c$.

Proposition 20.27. Let φ be a real-valued function on a set X and $\mu^* : 2^X \to [0, \infty]$ an outer measure with the property that whenever two subsets A and B of X are separated by φ , then

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

Then φ is measurable with respect to the measure induced by μ^* .

Proof. Let $a \in \mathbb{R}$. We show that $E = \{x \in X \mid \varphi(x) > a\}$ is μ^* -measurable, implying the measurability of function φ . By definition, an outer measure is countably monotone (see Section 17.3) so

$$\mu^*(A) = \mu^*((A \cap E) \cup (A \cap E^c)) \leq \mu^*(A \cap E) + \mu^*(A \cap E^c).$$

So we need only show that for A a set of finite measure and for any $\varepsilon > 0$,

$$\mu^*(A) + \varepsilon > \mu^*(A \cap E) + \mu^*(A \cap E^c).$$
 (32)

Notice that (32) trivially holds if $\mu^*(A) = \infty$, so we can assume $\mu^*(A) < \infty$. Define $B = A \cap E$ and $C = A \cap E^c$.

Proposition 20.27 (continued 1)

Proof (continued). For each $n \in \mathbb{N}$, define

$$B_n = \{x \in \mid arphi(x) > \mathsf{a} + 1/n\}$$
 and $R_n = B_n \setminus B_{n-1}.$

Notice that $B_1 \subset B_2 \subset \cdots$, $\cup_{k=1}^{\infty} B_n = B$, and

$$B = b_n \cup \left(\cup_{k=n+1}^{\infty} (B_k \setminus B_{k-1}) \right) = B_n \cup \left(\cup_{k=n+1}^{\infty} R_k \right).$$

Now on B_{n-2} (by definition of B_n) we have $\varphi > a + 1/(n-2)$, which on $R_n = B_n \setminus B_{n-1}$ we have $a + 1/n < \varphi \le a + 1/(n-1)$. Thus φ separates R_n and B_{n-2} and hence separates R_{2k} and $\bigcup_{j=1}^{k-1} R_{2k}$ since $\bigcup_{j=1}^{k-1} R_{2j} \subset B_{2k-2}$. So by hypothesis,

$$\mu^*\left(\cup_{j=1}^k R_{2j}\right) = \mu^*(R_{2k}) + \mu^*\left(\cup_{j=1}^{k-1} R_{2j}\right).$$

So by induction on k,

$$\mu^*\left(\bigcup_{j=1}^k R_{2j}\right) = \mu^*(R_{2k}) + \mu^*\left(\bigcup_{j=1}^{k-1} R_{2j}\right) = \sum_{j=1}^k \mu^*(R_{2j}).$$

Proposition 20.27 (continued 1)

Proof (continued). For each $n \in \mathbb{N}$, define

$$B_n = \{x \in \mid arphi(x) > \mathsf{a} + 1/n\}$$
 and $R_n = B_n \setminus B_{n-1}.$

Notice that $B_1 \subset B_2 \subset \cdots$, $\cup_{k=1}^{\infty} B_n = B$, and

$$B = b_n \cup \left(\cup_{k=n+1}^{\infty} (B_k \setminus B_{k-1}) \right) = B_n \cup \left(\cup_{k=n+1}^{\infty} R_k \right).$$

Now on B_{n-2} (by definition of B_n) we have $\varphi > a + 1/(n-2)$, which on $R_n = B_n \setminus B_{n-1}$ we have $a + 1/n < \varphi \le a + 1/(n-1)$. Thus φ separates R_n and B_{n-2} and hence separates R_{2k} and $\bigcup_{j=1}^{k-1} R_{2k}$ since $\bigcup_{j=1}^{k-1} R_{2j} \subset B_{2k-2}$. So by hypothesis,

$$\mu^*\left(\cup_{j=1}^k R_{2j}\right) = \mu^*(R_{2k}) + \mu^*\left(\cup_{j=1}^{k-1} R_{2j}\right).$$

So by induction on k,

$$\mu^*\left(\cup_{j=1}^k R_{2j}\right) = \mu^*(R_{2k}) + \mu^*\left(\bigcup_{j=1}^{k-1} R_{2j}\right) = \sum_{j=1}^k \mu^*(R_{2j}).$$

Proposition 20.27 (continued 2)

Proof (continued). Since $\cup_{j=1}^k R_{2j} \subset B_{2k} \subset B \subset A$ we have by monotonicity that

$$\mu^*\left(\cup_{j=1}^k R_{2j}\right) \le \mu^*(A) \text{ or } \sum_{j=1}^k \mu^*(R_{2j}) \le \mu^*(A).$$

Since we have $\mu^*(A) < \infty$ then the series $\sum_{j=1}^{\infty} \mu^*(R_{2j})$ converges (absolutely). Similarly, the series $\sum_{j=1}^{\infty} \mu^*(R_k)$ converges. So there is $n \in \mathbb{N}$ such that $\sum_{k=n+1}^{\infty} \mu^*(R_k) < \varepsilon$. Since $B = B_n \cup (\bigcup_{k=n+1}^{\infty} R_k)$ then by the countable monotonicity of μ^* ,

$$\mu^*(B) \leq \mu^*(B_n) + \sum_{k=n+1}^{\infty} \mu^*(R_k) < \mu^*(B_n) + \varepsilon$$

or $\mu^*(B_n) > \mu^*(B) - \varepsilon$. Now $C = A \cap E^c$ by definition so $C \subset A$, and $B = A \cap E$ by definition so $B \subset A$. So by monotonicity of μ^* , $\mu^*(A) \ge \mu^*(B_n \cup C)$.

Proposition 20.27 (continued 2)

Proof (continued). Since $\cup_{j=1}^k R_{2j} \subset B_{2k} \subset B \subset A$ we have by monotonicity that

$$\mu^*\left(\cup_{j=1}^k R_{2j}\right) \le \mu^*(A) \text{ or } \sum_{j=1}^k \mu^*(R_{2j}) \le \mu^*(A).$$

Since we have $\mu^*(A) < \infty$ then the series $\sum_{j=1}^{\infty} \mu^*(R_{2j})$ converges (absolutely). Similarly, the series $\sum_{j=1}^{\infty} \mu^*(R_k)$ converges. So there is $n \in \mathbb{N}$ such that $\sum_{k=n+1}^{\infty} \mu^*(R_k) < \varepsilon$. Since $B = B_n \cup \left(\bigcup_{k=n+1}^{\infty} R_k \right)$ then by the countable monotonicity of μ^* ,

$$\mu^*(B) \leq \mu^*(B_n) + \sum_{k=n+1}^{\infty} \mu^*(R_k) < \mu^*(B_n) + \varepsilon$$

or $\mu^*(B_n) > \mu^*(B) - \varepsilon$. Now $C = A \cap E^c$ by definition so $C \subset A$, and $B = A \cap E$ by definition so $B \subset A$. So by monotonicity of μ^* , $\mu^*(A) \ge \mu^*(B_n \cup C)$.

Proposition 20.27 (continued 3)

Proposition 20.27. Let φ be a real-valued function on a set X and $\mu^* : 2^X \to [0, \infty]$ an outer measure with the property that whenever two subsets A and B of X are separated by φ , then

$$\mu^*(A\cup B)=\mu^*(A)+\mu^*(B).$$

Then φ is measurable with respect to the measure induced by μ^* .

Proof (continued). Now $\varphi > a + 1/n$ on B_n and $\varphi \le a$ on E^c (by the definition of E) and so φ separates B_n and C. So by hypothesis, $\mu^*(A) \ge \mu^*(B_n \cup C) = \mu^*(B_n) + \mu^*(C)$. Since $\mu^*(B_n) > \mu^*(B) - \varepsilon$ then $\mu^*(A) > \mu^*(B) + \mu^*(C)$, or $\mu^*(A) + \varepsilon > \mu^*(A \cap E) + \mu^*(A \cap E^c)$, and hence $\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$ for all $A \subset X$ where A is of finite outer measure. That is, $E = \{x \in X \mid \varphi(x) > a\}$ is measurable. Since $a \in \mathbb{R}$ is arbitrary, then function φ is measurable.

Theorem 20.28. Let μ^* be a Carathéodory outer measure on matrix space (X, ρ) . Then every Borel subset of X is measurable with respect to μ^* .

Proof. The collection of Borel sets is the smallest σ -algebra containing the closed sets, and the measurable sets are a σ -algebra. So if we show that each closed set is measurable, then the result follows. For closed set F, define function $f(x) = \rho(F, \{x\})$. In Exercise 20.4.A it is to be shown that f is continuous on X and that $f^{-1}(\{0\}) = F$.

Theorem 20.28. Let μ^* be a Carathéodory outer measure on matrix space (X, ρ) . Then every Borel subset of X is measurable with respect to μ^* .

Proof. The collection of Borel sets is the smallest σ -algebra containing the closed sets, and the measurable sets are a σ -algebra. So if we show that each closed set is measurable, then the result follows. For closed set F, define function $f(x) = \rho(F, \{x\})$. In Exercise 20.4.A it is to be shown that f is continuous on X and that $f^{-1}({0}) = F$. So if we show f is measurable then this implies $f^{-1}(\{0\}) = \{x \in X \mid f(x) \ge 0\} \cap \{x \in X \mid f(x) \le 0\}$ is measurable (that is, arbitrary closed set F is measurable) and the result then follows. We use Proposition 20.27 to show that every continuous real valued function on X is measurable. First, if a continuous function separates no sets, then the hypothesis of Proposition 20.27 are vacuously satisfies and that function is measurable.

Theorem 20.28. Let μ^* be a Carathéodory outer measure on matrix space (X, ρ) . Then every Borel subset of X is measurable with respect to μ^* .

Proof. The collection of Borel sets is the smallest σ -algebra containing the closed sets, and the measurable sets are a σ -algebra. So if we show that each closed set is measurable, then the result follows. For closed set F, define function $f(x) = \rho(F, \{x\})$. In Exercise 20.4.A it is to be shown that f is continuous on X and that $f^{-1}(\{0\}) = F$. So if we show f is measurable then this implies

 $f^{-1}(\{0\}) = \{x \in X \mid f(x) \ge 0\} \cap \{x \in X \mid f(x) \le 0\}$ is measurable (that is, arbitrary closed set *F* is measurable) and the result then follows. We use Proposition 20.27 to show that every continuous real valued function on *X* is measurable. First, if a continuous function separates no sets, then the hypothesis of Proposition 20.27 are vacuously satisfies and that function is measurable.

Proposition 20.28 (continued)

Proof. Second, let *A* and *B* be subsets of *X* which are separated by some continuous function *f*, say $f \leq a$ on *A* and $f \geq b$ on *B* where a < b. ASSUME that $\rho(A, B) = 0$. Then there are sequences $\{u_k\} \subset A$ and $\{v_k\} \subset B$ such that $\lim_{k\to\infty} \rho(u_k, v_k) = 0$. Since *f* is continuous then $\lim_{k\to\infty} |f(u_k) - f(v_k)| = 0$. But then there is some $u_N \in A$ and $v_N \in B$ with $|f(u_N) - f(v_N)| < (b - a)/2$, a CONTRADICTION. So the assumption that $\rho(A, B) = 0$ is false and in fact $\rho(A, B) > 0$.

Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some continuous function f, say $f \leq a$ on A and $f \geq b$ on B where a < b. ASSUME that $\rho(A, B) = 0$. Then there are sequences $\{u_k\} \subset A$ and $\{v_k\} \subset B$ such that $\lim_{k\to\infty} \rho(u_k, v_k) = 0$. Since f is continuous then $\lim_{k\to\infty} |f(u_k) - f(v_k)| = 0$. But then there is some $u_N \in A$ and $v_N \in B$ with $|f(u_N) - f(v_N)| < (b - a)/2$, a CONTRADICTION. So the assumption that $\rho(A, B) = 0$ is false and in fact $\rho(A, B) > 0$. Since μ^* is a Carathéodory outer measure then (by definition) $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$. So for any $A, B \subset X$ separated by some continuous function f, we have by Proposition 20.27 that continuous f is a measurable function with respect to μ^* . Since this holds for arbitrary A and B, all continuous functions are measurable with respect to μ^* . As discussed above, this establishes that all Borel sets are μ_p^* -measurable.

Proposition 20.28 (continued)

Proof. Second, let A and B be subsets of X which are separated by some continuous function f, say $f \leq a$ on A and $f \geq b$ on B where a < b. ASSUME that $\rho(A, B) = 0$. Then there are sequences $\{u_k\} \subset A$ and $\{v_k\} \subset B$ such that $\lim_{k\to\infty} \rho(u_k, v_k) = 0$. Since f is continuous then $\lim_{k\to\infty} |f(u_k) - f(v_k)| = 0$. But then there is some $u_N \in A$ and $v_N \in B$ with $|f(u_N) - f(v_N)| < (b-a)/2$, a CONTRADICTION. So the assumption that $\rho(A, B) = 0$ is false and in fact $\rho(A, B) > 0$. Since μ^* is a Carathéodory outer measure then (by definition) $\mu^*(A \cup B) = \mu^*(A) + \mu^*(B)$. So for any $A, B \subset X$ separated by some continuous function f, we have by Proposition 20.27 that continuous f is a measurable function with respect to μ^* . Since this holds for arbitrary A and B, all continuous functions are measurable with respect to μ^* . As discussed above, this establishes that all Borel sets are μ_n^* -measurable.

Proposition 20.29. Let (X, ρ) be a metric space and α a positive real number. Then $H^*_{\alpha} : 2^X \to [0, \infty]$ is a Carathéodory outer measure.

Proof. First, for any $\varepsilon > 0$, $H_{\alpha}^{(\varepsilon)}(\emptyset) = 0$ and so $H_{\alpha}^{*}(\emptyset) = 0$. For countable monotonicity, let $\{E_k\}_{k=1}^{\infty}$ be a countable cover of E. For any coverings $\{A_i^k\}_{i=1}^{\infty}$ of E_k (for k = 1, 2, ...) we have $\{A_i^k\}_{i,k=1}^{\infty}$ is a countable cover of $E \subset \bigcup_{k=1}^{\infty} E_k$.

Proposition 20.29. Let (X, ρ) be a metric space and α a positive real number. Then $H^*_{\alpha} : 2^X \to [0, \infty]$ is a Carathéodory outer measure.

Proof. First, for any $\varepsilon > 0$, $H_{\alpha}^{(\varepsilon)}(\emptyset) = 0$ and so $H_{\alpha}^{*}(\emptyset) = 0$. For countable monotonicity, let $\{E_k\}_{k=1}^{\infty}$ be a countable cover of E. For any coverings $\{A_i^k\}_{i=1}^{\infty}$ of E_k (for k = 1, 2, ...) we have $\{A_i^k\}_{i,k=1}^{\infty}$ is a countable cover of $E \subset \bigcup_{k=1}^{\infty} E_k$. Now

$$\sum_{i,k=1}^{\infty} \left(\mathsf{diam}(A_i^k) \right)^{\alpha} = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} \left(\mathsf{diam}(A_i^k) \right)^{\alpha} \right)$$

and taking an infimum over all such A_i^k we get

$$\inf \sum_{i,k=1}^{\infty} \left(\operatorname{diam}(A_i^k) \right)^{\alpha} = \inf \left(\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \left(\operatorname{diam}(A_i^k) \right)^{\alpha} \right)$$

Proposition 20.29. Let (X, ρ) be a metric space and α a positive real number. Then $H^*_{\alpha} : 2^X \to [0, \infty]$ is a Carathéodory outer measure.

Proof. First, for any $\varepsilon > 0$, $H_{\alpha}^{(\varepsilon)}(\emptyset) = 0$ and so $H_{\alpha}^{*}(\emptyset) = 0$. For countable monotonicity, let $\{E_k\}_{k=1}^{\infty}$ be a countable cover of E. For any coverings $\{A_i^k\}_{i=1}^{\infty}$ of E_k (for k = 1, 2, ...) we have $\{A_i^k\}_{i,k=1}^{\infty}$ is a countable cover of $E \subset \bigcup_{k=1}^{\infty} E_k$. Now

$$\sum_{i,k=1}^{\infty} \left(\mathsf{diam}(A_i^k) \right)^{\alpha} = \sum_{k=1}^{\infty} \left(\sum_{i=1}^{\infty} \left(\mathsf{diam}(A_i^k) \right)^{\alpha} \right)$$

and taking an infimum over all such A_i^k we get

$$\inf \sum_{i,k=1}^{\infty} \left(\operatorname{diam}(A_i^k) \right)^{\alpha} = \inf \left(\sum_{k=1}^{\infty} \sum_{i=1}^{\infty} \left(\operatorname{diam}(A_i^k) \right)^{\alpha} \right)$$

Proposition 20.29 (continued 1)

Proof (continued).

$$= \sum_{k=1}^{\infty} \inf_{k} \sum_{i=1}^{\infty} \left(\operatorname{diam}(A_{i}^{k}) \right)^{\alpha} \text{ where } \inf_{k} \text{ denotes an infimum}$$

over all $\{A_{i}^{k}\}_{i=1}^{\infty}$ coverings of E_{k}
$$= \sum_{k=1}^{\infty} H_{\alpha}^{(\varepsilon)}(E_{k}).$$

Now since $\{A_i^k\}_{i,k=1}^{\infty}$ is *some* covering of E (namely, one based on a union of coverings of the E_k) then when an infimum is taken over all coverings of E we have $H_{\alpha}^{(\varepsilon)}(E) \leq \inf \sum_{i,k=1}^{\infty} (\operatorname{diam}(A_i^k))^{\alpha}$ and hence $H_{\alpha}^{(\varepsilon)}(E) \leq \sum_{k=1}^{\infty} H_{\alpha}^{(\varepsilon)}(E_k)$. a limit as $\varepsilon \to 0$ we have $H_{\alpha}^*(E) \leq \sum_{k=1}^{\infty} H_{\alpha}^*(E_k)$ so that H_{α}^* is countably monotone. So H_{α}^* is (by definition) an outer measure on 2^X .

Proposition 20.29 (continued 1)

Proof (continued).

$$= \sum_{k=1}^{\infty} \inf_{k} \sum_{i=1}^{\infty} \left(\operatorname{diam}(A_{i}^{k}) \right)^{\alpha} \text{ where } \inf_{k} \text{ denotes an infimum}$$

over all $\{A_{i}^{k}\}_{i=1}^{\infty}$ coverings of E_{k}
$$= \sum_{k=1}^{\infty} H_{\alpha}^{(\varepsilon)}(E_{k}).$$

Now since $\{A_i^k\}_{i,k=1}^{\infty}$ is *some* covering of E (namely, one based on a union of coverings of the E_k) then when an infimum is taken over all coverings of E we have $H_{\alpha}^{(\varepsilon)}(E) \leq \inf \sum_{i,k=1}^{\infty} (\operatorname{diam}(A_i^k))^{\alpha}$ and hence $H_{\alpha}^{(\varepsilon)}(E) \leq \sum_{k=1}^{\infty} H_{\alpha}^{(\varepsilon)}(E_k)$. a limit as $\varepsilon \to 0$ we have $H_{\alpha}^*(E) \leq \sum_{k=1}^{\infty} H_{\alpha}^*(E_k)$ so that H_{α}^* is countably monotone. So H_{α}^* is (by definition) an outer measure on 2^X .

Proposition 20.29 (continued 2)

Proof (continued). To establish that H_{α}^* is a Carathéodory outer measure, let $E, F \subset X$ for which $\rho(E, F) > \delta > 0$. Let $\varepsilon > 0$ be such that $\varepsilon < \delta$. If $\{A_k\}_{k=1}^{\infty}$ is a cover of $E \cup F$ then since $\varepsilon < \delta$ then each A_k can intersect at most one of E and F. So any such cover of $E \cup F$ yields a cover of E and a cover of F. Taking an infimum over all such coverings of $E \cup F$ we have

$$H^{(arepsilon)}_{lpha}(E\cup F)= {
m inf}\sum_{k=1}^{\infty} ({
m diam}(A_k))^{lpha}$$

$$\geq \inf_{E} \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_{k}^{E}) \right)^{\alpha} + \inf_{F} \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_{k}^{E}) \right)^{\alpha} = H_{\alpha}^{(\varepsilon)}(E) + H_{\alpha}^{(\varepsilon)}(F)$$

where \inf_E is an infimum over all coverings $\{A_k^E\}_{k=1}^{\infty}$ of E (and similarly for \inf_F); the inequality is introduced since (for $\varepsilon < \delta$) every covering $E \cup F$ implies a covering of E and a covering of F but \inf_E and \inf_F involves *more* potential coverings of E and F.

Proposition 20.29 (continued 2)

Proof (continued). To establish that H^*_{α} is a Carathéodory outer measure, let $E, F \subset X$ for which $\rho(E, F) > \delta > 0$. Let $\varepsilon > 0$ be such that $\varepsilon < \delta$. If $\{A_k\}_{k=1}^{\infty}$ is a cover of $E \cup F$ then since $\varepsilon < \delta$ then each A_k can intersect at most one of E and F. So any such cover of $E \cup F$ yields a cover of E and a cover of F. Taking an infimum over all such coverings of $E \cup F$ we have

$$\mathcal{H}^{(arepsilon)}_{lpha}(E\cup F) = \inf\sum_{k=1}^{\infty} (\operatorname{diam}(A_k))^{lpha}$$

$$\geq \inf_{E} \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_{k}^{E}) \right)^{\alpha} + \inf_{F} \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_{k}^{E}) \right)^{\alpha} = H_{\alpha}^{(\varepsilon)}(E) + H_{\alpha}^{(\varepsilon)}(F)$$

where \inf_E is an infimum over all coverings $\{A_k^E\}_{k=1}^{\infty}$ of E (and similarly for \inf_F); the inequality is introduced since (for $\varepsilon < \delta$) every covering $E \cup F$ implies a covering of E and a covering of F but \inf_E and \inf_F involves *more* potential coverings of E and F.

Proposition 20.29 (continued 3)

Proposition 20.29. Let (X, ρ) be a metric space and α a positive real number. Then $H^*_{\alpha} : 2^X \to [0, \infty]$ is a Carathéodory outer measure.

Proof (continued). Taking a limit as $\varepsilon \to 0$ we get $H^*_{\alpha}(E \cup F) \ge H^*_{\alpha}(E) + H^*_{\alpha}(F)$. We showed above that H^*_{α} is countably monotone and so $H^*_{\alpha}(E \cup F) \le H^*_{\alpha}(E) + H^*_{\alpha}(F)$ so that H^*_{α} is (by definition) a Carathéodory outer measure.

Proposition 20.30. Let (X, ρ) be a metric space. Let A be a Borel subset of X, and let α, β be positive real numbers for which $\alpha < \beta$. If $H_{\alpha}(A) < \infty$ then $H_{\beta}(A) = 0$.

Proof. Let $\varepsilon > 0$. Choose $\{A_k\}_{k=1}^{\infty}$ as a covering of A by sets of diameter less than or equal to ε for which

$$\sum_{k=1}^{\infty} (\operatorname{diam}(A_k))^{\alpha} \leq H_{\alpha}^*(A) + 1 = H_{\alpha}(A) + 1$$

(which can be done, by the definition of "infimum").

Proposition 20.30. Let (X, ρ) be a metric space. Let A be a Borel subset of X, and let α, β be positive real numbers for which $\alpha < \beta$. If $H_{\alpha}(A) < \infty$ then $H_{\beta}(A) = 0$.

Proof. Let $\varepsilon > 0$. Choose $\{A_k\}_{k=1}^{\infty}$ as a covering of A by sets of diameter less than or equal to ε for which

$$\sum_{k=1}^{\infty} \left(\mathsf{diam}(A_k)\right)^{\alpha} \leq H_{\alpha}^*(A) + 1 = H_{\alpha}(A) + 1$$

(which can be done, by the definition of "infimum"). Then

$$\begin{aligned} H_{\beta}^{(\varepsilon)}(A) &\leq \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_k) \right)^{\beta} \text{ by the infimum definition of } H_{\beta}^{(\varepsilon)}(A) \\ &= \varepsilon^{\beta} \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam}(A_k)}{\varepsilon} \right)^{\alpha} \end{aligned}$$

Proposition 20.30. Let (X, ρ) be a metric space. Let A be a Borel subset of X, and let α, β be positive real numbers for which $\alpha < \beta$. If $H_{\alpha}(A) < \infty$ then $H_{\beta}(A) = 0$.

Proof. Let $\varepsilon > 0$. Choose $\{A_k\}_{k=1}^{\infty}$ as a covering of A by sets of diameter less than or equal to ε for which

$$\sum_{k=1}^{\infty} (\operatorname{\mathsf{diam}}(A_k))^lpha \leq H^*_lpha(A) + 1 = H_lpha(A) + 1$$

(which can be done, by the definition of "infimum"). Then

$$\begin{aligned} H_{\beta}^{(\varepsilon)}(A) &\leq \sum_{k=1}^{\infty} \left(\operatorname{diam}(A_k) \right)^{\beta} \text{ by the infimum definition of } H_{\beta}^{(\varepsilon)}(A) \\ &= \varepsilon^{\beta} \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam}(A_k)}{\varepsilon} \right)^{\alpha} \end{aligned}$$

Proposition 20.30 (continued 1)

Proof (continued).

$$\leq \ \varepsilon^{\beta} \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\alpha} \text{ since } \operatorname{diam}(A_{k}) \leq \varepsilon, \ \frac{\operatorname{diam}(A_{k})}{\varepsilon} \leq 1 \text{ and so} \\ \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\beta} \leq \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\alpha} \text{ because } \alpha < \beta \\ = \ \varepsilon^{\beta-\alpha} \sum_{k=1}^{\infty} (\operatorname{diam}(A_{k}))^{\alpha} \leq \varepsilon^{\beta-\alpha} (H_{\alpha}(A) + 1)$$

Taking a limit as $\varepsilon \to 0$ we get

$$H^*_{\beta}(A) = \lim_{\varepsilon \to 0} H^{(\varepsilon)}_{\beta}(A) \le \lim_{\varepsilon \to 0} \varepsilon^{\beta - \alpha} (H_{\alpha}(A) + 1) = 0$$

since $\beta - \alpha > 0$ and $H_{\alpha}(A) + 1$ is finite. Since $H_{\beta}^{*}(A) = 0$ (here, H_{β}^{*} is a Carathéodory outer measure) then the induced Hausdorff β -dimensional measure satisfies $H_{\beta}(A) = 0$.

()

Proposition 20.30 (continued 1)

Proof (continued).

$$\leq \ \varepsilon^{\beta} \sum_{k=1}^{\infty} \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\alpha} \text{ since } \operatorname{diam}(A_{k}) \leq \varepsilon, \ \frac{\operatorname{diam}(A_{k})}{\varepsilon} \leq 1 \text{ and so} \\ \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\beta} \leq \left(\frac{\operatorname{diam}(A_{k})}{\varepsilon} \right)^{\alpha} \text{ because } \alpha < \beta \\ = \ \varepsilon^{\beta-\alpha} \sum_{k=1}^{\infty} (\operatorname{diam}(A_{k}))^{\alpha} \leq \varepsilon^{\beta-\alpha} (H_{\alpha}(A) + 1)$$

Taking a limit as $\varepsilon \to 0$ we get

$$H^*_{eta}(A) = \lim_{arepsilon o 0} H^{(arepsilon)}_{eta}(A) \leq \lim_{arepsilon o 0} arepsilon^{eta - lpha}(H_{lpha}(A) + 1) = 0$$

since $\beta - \alpha > 0$ and $H_{\alpha}(A) + 1$ is finite. Since $H_{\beta}^{*}(A) = 0$ (here, H_{β}^{*} is a Carathéodory outer measure) then the induced Hausdorff β -dimensional measure satisfies $H_{\beta}(A) = 0$.

Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, H_1 , is the same as Lebesgue measure on the σ -algebra of Lebesgue measurable sets of real numbers.

Proof. Let $I \subset \mathbb{R}$ be an interval. Given $\varepsilon > 0$, I can be expressed as the disjoint union of subintervals of length less than ε and the diameter of each subinterval is its length (we make no restriction on any of the intervals in terms of open/closed). So

$$H_1^{(\varepsilon)}(I) = \inf \sum_{k=1}^{\infty} \ell(I_k) = m^*(I) = m(I) = \ell(I)$$

and so $H_1(I) = \lim_{\varepsilon \to 0} H_1^{(\varepsilon)}(I) = m^*(I)$.

Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, H_1 , is the same as Lebesgue measure on the σ -algebra of Lebesgue measurable sets of real numbers.

Proof. Let $I \subset \mathbb{R}$ be an interval. Given $\varepsilon > 0$, I can be expressed as the disjoint union of subintervals of length less than ε and the diameter of each subinterval is its length (we make no restriction on any of the intervals in terms of open/closed). So

$$H_1^{(\varepsilon)}(I) = \inf \sum_{k=1}^{\infty} \ell(I_k) = m^*(I) = m(I) = \ell(I)$$

and so $H_1(I) = \lim_{\varepsilon \to 0} H_1^{(\varepsilon)}(I) = m^*(I)$. Thus H_1 and Lebesgue measure agree on the semiring of intervals of real numbers. Since H_1 and Lebesgue measure are extensions of the same premeasure on the semiring of intervals, then by the uniqueness claim of the Carathéodory-Hahn Theorem, Lebesgue measure and H_1 are equal on the σ -algebra of measurable sets.

Theorem 20.4.A

Theorem 20.4.A. The Hausdorff 1-dimensional measure, H_1 , is the same as Lebesgue measure on the σ -algebra of Lebesgue measurable sets of real numbers.

Proof. Let $I \subset \mathbb{R}$ be an interval. Given $\varepsilon > 0$, I can be expressed as the disjoint union of subintervals of length less than ε and the diameter of each subinterval is its length (we make no restriction on any of the intervals in terms of open/closed). So

$$H_1^{(\varepsilon)}(I) = \inf \sum_{k=1}^{\infty} \ell(I_k) = m^*(I) = m(I) = \ell(I)$$

and so $H_1(I) = \lim_{\varepsilon \to 0} H_1^{(\varepsilon)}(I) = m^*(I)$. Thus H_1 and Lebesgue measure agree on the semiring of intervals of real numbers. Since H_1 and Lebesgue measure are extensions of the same premeasure on the semiring of intervals, then by the uniqueness claim of the Carathéodory-Hahn Theorem, Lebesgue measure and H_1 are equal on the σ -algebra of measurable sets.