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Proposition 3.1

Proposition 3.1

Proposition 3.1. Let the function f have a measurable domain E . The
following are equivalent:

(i) For each c ∈ R, {x ∈ E | f (x) > c} ∈ M.

(ii) For each c ∈ R, {x ∈ E | f (x) ≥ c} ∈ M.

(iii) For each c ∈ R, {x ∈ E | f (x) < c} ∈ M.

(iv) For each c ∈ R, {x ∈ E | f (x) ≤ c} ∈ M.

Each of these properties implies that for each extended real number c ,
{x ∈ E | f (x) = c} ∈ M.

Proof. The sets in (i) and (iv) are complements and the sets in (ii) and
(iii) are complements. Since the complements of measurable sets are
measurable, then (i) and (iv) are equivalent and (ii) and (iii) are
equivalent.

Since {x ∈ E | f (x) ≥ c} = ∩∞k=1{x ∈ E | f (x) > c − 1/k},
then (i) implies (ii). Since
{x ∈ E | f (x) > c} = ∪∞k=1{x ∈ E | f (x) ≥ c + 1/k}, then (ii) implies (i).
So (i), (ii), (iii), and (iv) are equivalent.
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Proposition 3.1

Proposition 3.1 (continued)

Proposition 3.1. Let the function f have a measurable domain E . The
following are equivalent:

(i) For each c ∈ R, {x ∈ E | f (x) > c} ∈ M.

(ii) For each c ∈ R, {x ∈ E | f (x) ≥ c} ∈ M.

(iii) For each c ∈ R, {x ∈ E | f (x) < c} ∈ M.

(iv) For each c ∈ R, {x ∈ E | f (x) ≤ c} ∈ M.

Each of these properties implies that for each extended real number c ,
{x ∈ E | f (x) = c} ∈ M.

Proof (continued). Now assume any one of (i)–(iv) hold (and therefore
all hold).

Then by (ii) and (iv),
{x ∈ E | f (x) = c} = {x ∈ E | f (x) ≥ c} ∩ {x ∈ E | f (x) ≤ c} is
measurable. For c = ∞, {x ∈ E | f (x) = ∞} = ∩∞k=1{x ∈ E | f (x) > k}
is measurable.
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Proposition 3.1 (continued)
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Proposition 3.2

Proposition 3.2

Proposition 3.2. Let f be defined on E ∈M. Then f is measurable if
and only if for each open O, the inverse image of O, f −1(O), is
measurable.

Proof. First, if the inverse image under f of every open set is measurable,
then for every c ∈ R we have that the inverse image of (c ,∞),
f −1((c ,∞)) = {x ∈ E | f (x) > c}, is measurable. Therefore, by
Proposition 3.1(i), f is measurable.

Second, suppose f is measurable and let O be open. Then O is a
countable disjoint union of open intervals. Now any unbounded open
interval can be written as a countable union of bounded open intervals, so
O = ∪∞k=1Ik where each Ik is bounded, say Ik = (ak , bk) = Bk ∩ Ak where
Bk = (−∞, bk) and Ak = (ak ,∞). Since f is a measurable function, each
f −1(Bk) and f −1(Ak) are measurable sets by Proposition 3.1(i and iii).
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Proposition 3.2

Proposition 3.2 (continued)

Proposition 3.2. Let f be defined on E ∈M. Then f is measurable if
and only if for each open O, the inverse image of O, f −1(O), is
measurable.

Proof (continued). Since

f −1(O) = f −1 (∪∞k=1Bk ∩ Ak)

= ∪∞k=1f
−1(Bk ∩ Ak) = ∪∞k=1(f

−1(Bk) ∩ f −1(Ak))

and since the measurable sets form a σ-algebra by Note 2.3.B, then
f −1(O) is measurable, as claimed.

() Real Analysis October 27, 2022 6 / 12



Proposition 3.3

Proposition 3.3

Proposition 3.3. A real-valued function that is continuous on its
measurable domain is measurable.

Proof. For continuous f , we have for all open O that f −1(O) is open
relative to the domain of f (see my online notes for Analysis 1 [MATH
4217/5217] on 4.1. Limits and Continuity; see Theorem 4.5). So for O
open, f −1(O) = E ∩ U where U is open (i.e., f −1(O) is open with respect
to E ), and so f −1(O) is measurable. By Proposition 3.2 we now have that
f is a measurable function, as claimed.
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Proposition 3.5

Proposition 3.5

Proposition 3.5. Let f be an extended real-valued function defined on E .

(i) If f is measurable on E and f = g a.e., then g is measurable
on E .

(ii) For D ⊆ E , D ∈M, f is measurable on E if and only if f
restricted to D is measurable and f restricted to E \ D is
measurable.

Proof. (i) Suppose f is measurable on E (then E ∈M).

Define
A = {x ∈ E | f (x) 6= g(x)}. Since f = g a.e. then m(A) = 0. Then
{x ∈ E | g(x) > c} = {x ∈ A | g(x) > c} ∪ [{x ∈ E | f (x) > c} ∩ (E \A)]
for all c ∈ R. Since m(A) = 0, then {x ∈ A | g(x) > c} ∈ M by
Proposition 2.4. Since f is measurable, {x ∈ E | f (x) > c} ∈ M. Since
E ,A ∈M, then E \ A ∈M since M is a σ-algebra. Therefore
{x ∈ E | g(x) > c} ∈ M and g is measurable.
(ii) Notice
{x ∈ E | f (x) > c} = {x ∈ D | f (x) > c} ∪ {x ∈ E \ D | f (x) > c} and
(ii) follows.
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Proposition 3.6

Proposition 3.6(i)

Proposition 3.6. Suppose f , g are measurable on E and f , g are
extended real-valued functions which are finite a.e. on E . Then

(i) αf + βg is measurable on E for all α, β ∈ R.

(ii) fg is measurable on E .

Proof of (i). By Proposition 3.5(i), we may assume f and g are finite on
all of E .

If α = 0, αf is measurable. If α 6= 0, then
{x ∈ E | αf (x) > c} = {x ∈ E | f (x) > c/α} if α > 0 and
{x ∈ E | αf (x) > c} = {x ∈ E | f (x) < c/α} if α < 0. So αf is
measurable for all α ∈ R.
For x ∈ E , if f (x) + g(x) < c , then f (x) < c − g(x) and so there is q ∈ Q
such that f (x) < q < c − g(x). Then {x ∈ E | f (x) + g(x) < c} =
∪q∈Q[{x ∈ E | g(x) < c − q} ∩ {x ∈ E | f (x) < q}]. This set is
measurable and so f + g is measurable.
Since scalar multiples of measurable functions are measurable and since
sums of measurable functions are measurable, then linear combinations of
measurable functions are measurable.
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Proposition 3.6

Proposition 3.6(ii)

Proof of (ii). To prove (ii), observe that for all x ∈ E ,
f (x)g(x) = 1

2 [(f (x) + g(x))2 − f (x)2 − g(x)2]. For c ∈ R with c ≥ 0 we
have

{x ∈ E | f (x)2 > c} = {x ∈ E | f (x) >
√

c} ∪ {x ∈ E | f (x) < −
√

c}.

For c ∈ R with c < 0 we have

{x ∈ E | f (x)2 > c} = E .

In both cases, since f is a measurable function, we see that f 2 is a
measurable function.

Similarly, g2 and (since f + g is measurable by (i))
(f + g)2 are measurable functions. Since by part (i), linear combinations
of measurable functions are measurable, then we now have that
fg = 1

2 [(f + g)2 − f 2 − g2] is measurable.
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Proposition 3.7

Proposition 3.7

Proposition 3.7. Let g be a measurable real-valued function defined on E
and f a continuous real-valued function defined on all of R. The
composition f ◦ g is measurable on E .

Proof. Let O be open. Then (f ◦ g)−1(O) = g−1(f −1(O)). Since f is
continuous, f −1(O) is open.

Since g is measurable, by Proposition 3.2,
g−1(f −1(O)) is measurable. Therefore, by Proposition 3.2, f ◦ g is
measurable.
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Proposition 3.8

Proposition 3.8

Proposition 3.8. For a finite family {fk}n
k=1 of measurable functions with

common domain E , the functions max{f1, f2, . . . , fn} and
min{f1, f2, . . . , fn} (defined pointwise) are measurable.

Proof. For any c ∈ R, we have

{x ∈ E | max
1≤k≤n

{fk} > c} = ∪n
k=1{x ∈ E | fk(x) > c} and

{x ∈ E | min
1≤k≤n

{fk} > c} = ∩n
k=1{x ∈ E | fk(x) > c}.

Since each {x ∈ E | fk(x) > c} is a measurable set (because each fk is a
measurable function) and since the measurable sets form a σ-algebra, then
each set {x ∈ E | max1≤k≤n{fk} > c} and {x ∈ E | min1≤k≤n{fk} > c} is
measurable. Hence max{f1, f2, . . . , fn} and min{f1, f2, . . . , fn} are
measurable functions.
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