Proposition 3.9

Let \(\{f_n\} \) be a sequence of measurable functions on \(E \) that converges pointwise a.e. on \(E \) to function \(f \). Then \(f \) is measurable.

Proof. Let \(E_0 \subset E \) for which \(m(E_0) = 0 \) and \(\{f_n\} \) converges to \(f \) pointwise on \(E \setminus E_0 \). By Proposition 3.5(i), \(f \) is measurable if and only if its restriction to \(E \setminus E_0 \) is measurable. So, without loss of generality, we assume pointwise convergence on all of \(E \).

Let \(c \in \mathbb{R} \). For a given \(x \in E \) we have \(\lim_{n \to \infty} f_n(x) = f(x) \) and so \(f(x) < c \) if and only if there exists \(n, k \in \mathbb{N} \) for which \(f_j(x) < c - 1/n \) for all \(j \geq k \). Since \(f_j \) is measurable, then \(\{x \in E \mid f_j(x) < c - 1/n\} \) is measurable for all \(n, j \in \mathbb{N} \). So we have

\[
\cap_{j=k}^{\infty} \{x \in E \mid f_j(x) < c - 1/n\} \in \mathcal{M}.
\]

Finally,

\[
\{x \in E \mid f(x) < c\} = \bigcup_{k=1}^{\infty} \cap_{j=k}^{\infty} \{x \in E \mid f_j(x) < c - 1/n\}
\]

is measurable and \(f \) is measurable.

The Simple Approximation Lemma

Let \(f \) be measurable and real valued on set \(E \). Assume \(f \) is bounded on \(E \) (i.e., \(|f| \leq M \) on \(E \) for some \(M \)). Then for each \(\varepsilon > 0 \), there are simple functions \(\varphi_\varepsilon \) and \(\psi_\varepsilon \) for which

\[
\varphi_\varepsilon \leq f \leq \psi_\varepsilon \text{ and } 0 \leq \psi_\varepsilon - \varphi_\varepsilon < \varepsilon \text{ on } E.
\]

(That is, these inequalities hold pointwise for each \(x \in E \).)

Proof. Let \((c, d) \) be an open bounded interval that contains \(f(E) \) and partition \((c, d) \) as \(c = y_0 < y_1 < \cdots < y_n = d \) such that \(y_k - y_{k-1} < \varepsilon \) for each \(k \). Define \(I_k = (y_{k-1}, y_k) \) and \(E_k = f^{-1}(I_k) \). Since \(f \) is measurable, each \(E_k \in \mathcal{M} \). Define \(\varphi_\varepsilon = \sum_{k=1}^{n} y_{k-1} 1_{E_k} \) and \(\psi_\varepsilon = \sum_{k=1}^{n} y_k 1_{E_k} \). For each \(x \in E \), \(f(x) \in I_k \) for some \(k \) and so

\[
\varphi_\varepsilon(x) = y_{k-1} \leq f(x) < y_k = \psi_\varepsilon(x).
\]

Since \(y_k - y_{k-1} < \varepsilon \), then it follows that \(0 < \psi_\varepsilon(x) - \varphi_\varepsilon(x) < y_k - y_{k-1} \) (for all \(k \)) < \varepsilon.

The Simple Approximation Theorem

An extended real-valued function \(f \) on a measurable set \(E \) is measurable if and only if there is a sequence \(\{\varphi_n\} \) of simple functions on \(E \) which converges pointwise on \(E \) to \(f \) and has the property that \(|\varphi_n| \leq |f| \) on \(E \) for all \(n \). If \(f \) is nonnegative, we may choose \(\{\varphi_n\} \) to be increasing.

Proof. First, suppose that the sequence \(\{\varphi_n\} \) of simple functions on \(E \) exists as described. Each simple function is measurable (by definition of “simple function”), so by Proposition 3.9 the pointwise limit of \(\{\varphi_n\} \) is measurable. That is, \(f \) is measurable.

Second, suppose \(f \) is measurable. We also assume \(f \geq 0 \) on \(E \). The general case will then follow by expressing \(f \) as the difference of nonnegative measurable functions, as shown in Problem 3.23. Let \(n \in \mathbb{N} \). Define \(F_n = \{x \in E \mid f(x) \leq n\} \). Then \(F_n \) is a measurable set (by definition of “measurable function”) and the restriction of \(f \) to \(E_n \) is a nonnegative bounded measurable function (measurable by Proposition 3.5(ii)).
The Simple Approximation Theorem (continued 1)

Proof (continued). By the Simple Approximation Lemma, applied to the restriction of f to E_n and with $\varepsilon = 1/n$, we may select simple functions φ_n and ψ_n defined on E_n which satisfy

$$0 \leq \varphi_n \leq f \leq \psi_n \text{ on } E_n \text{ and } 0 \leq \psi_n - \varphi_n < 1/n \text{ on } E_n.$$

So $0 \leq \varphi_n \leq f$ and $0 \leq f - \varphi_n \leq \psi_n - \varphi_n < 1/n$ on E_n. Extend φ_n to all of E by setting $\varphi_n(x) = n$ if $f(x) \geq n$. Then the extended φ_n is a simple function defined on E and $0 \leq \varphi_n \leq f$ on E. We claim that the sequence φ_n converges to f pointwise on E. Let $x \in E$.

Case 1. Suppose $f(x)$ is finite. Choose $N \in \mathbb{N}$ for which $f(x) < N$. Then $0 \leq f(x) - \varphi_n(x) < 1/n$ for $n \geq N$. Therefore $\lim_{n \to \infty} \varphi_n(x) = f(x)$.

Case 2. Suppose $f(x) = \infty$. Then $\varphi_n(x) = n$ for all n so that $\lim_{n \to \infty} \varphi_n(x) = \lim_{n \to \infty} n = \infty = f(x)$.

The Simple Approximation Theorem (continued 2)

An extended real-valued function f on a measurable set E is measurable if and only if there is a sequence $\{\varphi_n\}$ of simple functions on E which converges pointwise on E to f and has the property that $|\varphi_n| \leq |f|$ on E for all n. If f is nonnegative, we may choose $\{\varphi_n\}$ to be increasing.

Proof (continued). If we now replace φ_n with $\max\{\varphi_1, \varphi_2, \ldots, \varphi_n\}$ (which is also simple by Problem 3.19) we have that the new sequence $\{\varphi_n\}$ is thus increasing and the new sequence is pointwise a subsequence of the original sequence and so converges to f pointwise as well. \qed